面向目标搜索的群机器人协调控制及其仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
群机器人是由数量众多、结构和功能相对简单的自主移动机器人组成的人工群体系统。在自组织机制下,通过有限感知和局部交互涌现群体智能,协同完成超出单个机器人能力的规定任务。其分布式协调控制策略源于生物群体的启发,具有鲁棒性强、柔性好、规模可伸缩等特点。本文针对目标搜索任务,通过建立反映生物群体特征的微粒群算法和目标搜索问题之间的映射关系,将前者扩展为群机器人的系统建模和协调控制工具,然后围绕定位、通信、避碰规划、信号融合等切实影响类微粒群算法发挥作用的主要环节,进行控制策略及其仿真研究。围绕这些内容所进行的工作及其成果如下:
     (1)就机器人与微粒的特征异同以及目标搜索与函数寻优的作用机理相似性,提出了系统层面上的机器人通信邻域结构和个体层面上的时变特征群概念,建立了微粒群算法与群机器人目标搜索问题之间的映射关系。在将机器人抽象为二维封闭空间中的运动微粒、将其动态特性抽象为一阶惯性环节后,给出了群机器人的扩展微粒群算法模型。在理想条件下基于该模型所做的目标搜索仿真实验,表明了该法的可行性,揭示了主要的算法参数与控制性能间的关系。
     (2)对于不便部署全局定位系统的搜索环境,提出了相对定位机制下扩展微粒群算法模型的形式化描述。首先由机器人的有限能力特性引入了短期记忆机制,根据机器人仅能记忆当前时刻和上一时刻的位置及相应信号的特点,确定了个体的最优认知位置和特征群的最优位置。由此,基于机器人的当前位置与个体认知位置和特征群最优位置间的相对观测距离和方位,确定了下一时刻个体坐标系下的期望速度和位置。仿真结果表明了该法的可行性,但也发现,系统的运行效率低于绝对定位机制下的目标搜索。
     (3)针对机器人之间的通信交互对控制算法效率的影响,提出了将个体认知和特征群共享信息分别更新的异步通信原则。机器人在各时间步采样后按扩展微粒群算法模型计算下一时刻的进化速度和位置,并随时更新自身认知,但对所记忆的关于特征群共享信息的更新则只在自身发现了更佳的特征群位置或监听到邻居机器人己对共享信息进行了更新时才进行。在此基础上,提出了基于通信周期和基于期望进化位置的异步通信策略。仿真结果表明,搜索算法中嵌入期望进化位置的异步通信策略后,系统具有较高的搜索效率。
     (4)针对机器人具有质量和物理尺寸,并受非完整运动学特性约束,且非结构化环境中存在障碍物和其他机器人的问题,提出了群机器人的避碰规划问题。首先基于机器人的多传感器结构,改进了人工势场法,并与扩展微粒群算法模型进行了有效集成。将各个时刻计算得到的一系列期望位置分别作为临时目标,对机器人产生吸引力,而接近传感器探测范围内的障碍物对其产生排斥力。合力决定了机器人的运动方向。而机器人在向临时目标移动过程中须服从自身的运动学特性约束。由此,确定了输入机器人控制器的控制向量,直至无碰撞地接近目标。仿真结果表明了该法的有效性。
     (5)针对位置评价以机器人对目标信号的检测为基础,且非结构化环境中目标信号具有多源异类等特点,故以一类典型的多源异类信号的传播环境为背景,提出了机器人对间歇性呼救声、周期性无线射频电磁波和连续性扩散瓦斯等实时性异类信号的融合框架。令目标和机器人分别作为信源和信宿,用单个信源和多个信宿之间各自独立的虚拟连续通信描述目标信号的检测过程。由此,给出了信源信号的三位二进制编码表。再引入二值逻辑,基于检测阈值提出了信宿侧的感知事件概念。然后,利用不同种类信号所具有的统计分布特性、可能籍此进行目标定位时的不同定位性质及精度,基于信息熵准则确定了不同种类信号对融合值的贡献度(权向量),对检测值进行归一化处理后作为信号的区分度,以此将异类信号融合为无量纲的纯量。在多源异类信号的传播环境中所进行的信号融合仿真,表明建立在该法基础上的目标信号搜索是可行的。
As a novel branch of intelligent robotics, the focus of swarm robotics is on ap-plying swarm intelligence principles or techniques to the control of large groups of cooperating autonomous robots. In such a system, lots of homogenous robots hav-ing relative simple structure are controlled in a distributed fashion, being expected to emerge intelligence from limited sense and local interactions for accomplishing complex tasks. As to the task named target search, particle swarm optimization (PSO) is extended to model and control swarm robots. Being focused on this topic, some works are done and corresponding contributions are achieved in this thesis:
     (1) Due to the similarities and differences between particle and robot, swarm search can be mapped to PSO based on the common working mechanism.. To be-gin with, two concepts of communication neighborhood structure at systemic level and time varying characteristic swarm (TVCM) at individual level are introduced. Viewed as a particle moving in a closed two-dimensional workspace, each robot is abstracted as one order inertial element, and further, the model of extended PSO (EPSOM) can be given under an ideal environment. As for individual robots, each one is controlled by a three-state finite state machine.
     (2) In case of possible failure in deployment of global localization, relative po-sitioning mechanism is required. For this end, a short-time memory is introduced where each robot is capable of remembering signals measurement readings and po-sition coordinates at present and in the near previous time step. In this case, the cognitive position of each robot and the best-found position within its TVCM must be one of the two remembered positions. Then the relative observations including distance and bearing between the current position and the two best ones can be used to decide the expected velocity and position.
     (3) Local interactions among robots affect computation efficiency to a large ex-tent. Accordingly, an asynchronous parallel communication strategy is presented. In this case, virtual trigger with combinational logic is set for the shared social in-formation updating. The logical components are both finding signals fusion beyond the best social position by robot itself and monitoring update by other robots. Each robot updates its cognitive information at every time step, while its memory about social information updating occurs only when the trigger is sparked. If then, the robot will broadcast the updating information within its TVCM.
     (4) In the presence of obstacles and neighbors, path planning for each robot hav-ing physical size and kinematic properties have to be considered. Thus, a modified sensor-based artificial potential field (SBAPF) method and EPSOM is integrated for the problem solving after the kinematic model of individual robots are introduced. Each evolution position belonging to certain robot is taken as temporary target that attracts this robot. However, other robots and obstacles within its proximity sensors coverage repulse it. The moving direction depends on the composition of virtual forces. Besides, robot moving has to comply with its kinematic constraints.
     (5) PSO-type algorithm works on the premise that each robot fuses target sig-nals independently like fitness evaluate. Therefore, one typical environment where propagation of multi-source signals including intermittent call-for-help sound, peri-odic RF waves and continuous gas is brought forth. Let target and individual robot be virtual source and sink of information respectively. Then virtual continuous sink-source communication can be used to describe signals measurement. Because of the independence of heterogeneous signals emission from source, the signals can be encoded with three-bit codes at every time step and be transmitted to different sinks. Meanwhile, a concept of detection event can be proposed based on signals detection threshold at sinks. After then, those signals beyond threshold will be normalized and taken as distinguishing resolution. Also, some signal characteristics such as statistical properties, detection range, localization type and accuracy (if possible) can be used to decide the weights of contribution to fusion in dependence on comentropy-based criterion.
     All the above presented strategies are validated through a series of simulations conducted under satisfying corresponding conditions.
引文
[1]E Gelenbeabc, N Schmajukab, J Staddonb, J Reifc. Autonomous search by robots and animals:A survey. Robotics and Autonomous Systems.1997, 22:23-34
    [2]JS Jennings, G Whelan, WF Evans. Cooperative search and rescue with a team of mobile robots. Advanced Robotics,1997. ICAR'97. Proceedings,8th International Conference on.1997,193-200
    [3]S Doctor, GK Venayagamoorthy, VG Gudise. Optimal PSO for collective robotic search applications. Evolutionary Computation,2004. CEC2004. Congress on.2004, vol.2
    [4]G Beni. From Swarm Intelligence to Swarm Robotics. Proc. of the SAB 2004 Workshop on Swarm Robotics. Santa Monica, CA, USA:Springer, vol.3342 of LNCS,1-9
    [5]DP Stormont. An Autonomous Robot Swarm for Urban Search and Rescue. Proc. of IEEE Int'l Conf. on Robotics and Automation. Orlando, FL, USA: IEEE Robotics and Automation Society,2006,15-19
    [6]J Casper, M Micire, RR Murphy. Issues in Intelligent Robots for Search and Rescue. Unmanned Ground Vehicle Technology Ⅱ.2000:292-302
    [7]2006年“863计划”先进制造技术领域立项课题,8 2007.URL http://168. 160.11.115/tztg/200611/P020061124632112962870.doc
    [8]L Marques, U Nunes, AT de Almeida. Particle Swarm-Based Olfactory Guided Search. Autonomous Robots.2006,20(3):277-287
    [9]AT Hayes. Self-Organized Robotic System Design and Autonomous Odor Localization. Ph.D. thesis, California Institute of Technology, Pasadena, CA, USA,2002
    [10]国家“863”计划2006年先进制造技术领域专题课题申请指南,2006.URL http://www.most.gov.cn/tztg/t20061001_36446.htm
    [11]2007年国家“863计划”申请指南,2007. URL http://www.863.org.cn/863_105/applyguide/guide_infotech/200704060001.html
    [12]2004年国家自然科学基金申请指南,2004. URL http://www.nsfc.gov.cn/ nsfc/cen/xmzn/2004xmzn/index.htm
    [13]2005年国家自然科学基金申请指南,2005. URL http://www.nsfc.gov.cn/ nsfc/cen/xmzn/2005xmzn/index.htm
    [14]2008年国家自然科学基金申请指南,2008.URL http://www.nsfc.gov.cn/ nsfc/cen/xmzn/2008xmzn/02zd/06.htm
    [15]RR Murphy.人工智能机器人学导论.北京:电子工业出版社,2004
    [16]U Greggers, R Menzel. Memory Dynamics and Foraging Strategies of Honey-bees. Behavioral Ecology and Sociobiology.1993,32(1):17-29
    [17]N Quijano, KM Passino. Honey Bee Social Foraging Algorithms for Resource Allocation, Part Ⅱ:Application. Proc. of ACC'07. New York, NY, USA: American Control Conference,3389-3394
    [18]Y Liu, KM Passino. Biomimicry of Social Foraging Bacteria for Distributed Optimization:Models, Principles, and Emergent Behaviors. J of Optimization Theory and Applications.2002,115(3):603-628
    [19]KM Passino. Biomimicry of Bacterial Foraging for Distributed Optimization and Control. Control Systems Magazine, IEEE.2002,22(3):52-67
    [20]V Ramos, C Fernandes, AC Rosa. On Ants, Bacteria and Dynamic Environ-ments. ArXiv preprint cs/0512005.2005
    [21]J Toner, Y Tu. Flocks, Herds, and Schools:A Quantitative Theory of Flocking. Physical Review E.1998,58(4):4828-4858
    [22]E hin, NR Franks. Measurement of Space:From Ants to Robots. Proc. of WGW 2002:EPSRC/BBSRC Int'l Workshop Biologically-Inspired Robotics: The Legacy of W. Grey Walter. Bristol, UK:HP Labs,2002,241-247
    [23]E Bonabeau, M Dorigo, G Theraulaz. Swarm Intelligence:From Natural to Artificial Systems. New York, NY, USA:Oxford University Press,1999
    [24]谭民,王硕,曹志强.多机器人系统.北京:清华大学出版社,2005
    [25]AFT Winfield, CJ Harper, J Nembrini. Towards Dependable Swarms and A New Discipline of Swarm Engineering. Proc. of the SAB 2004 Workshop on Swarm Robotics. Santa Monica, CA, USA:Springer, vol.3342 of LNCS, 126-142
    [26]王玫,朱云龙,何小贤.群体智能研究综述.计算机工程.2005,31(22):194—196
    [27]J Kennedy, RC Eberhart, Y Shi. Swarm intelligence. Springer,2001
    [28]E Bonabeau, M Dorigo, G Theraulaz. Swarm intelligence:from natural to artificial systems. Oxford University Press, USA,1999
    [29]ST Kazadi. Swarm Engineering. Ph.D. thesis, California Institute of Technol-ogy, Pasadena, CA, USA,2000
    [30]ST Kazadi. On the Development of a Swarm Engineering Methodology. Proc. of IEEE Int'l Conf. on Systems, Man and Cybernetics. Waikoloa, HI, USA, 2005, vol.2,1423-1428
    [31]K Chang, J Hwang, E Lee, S Kazadi. The Application of Swarm Engineering Technique to Robust Multi-chain Robot System. Proc. of IEEE Int'l Conf. on Systems, Man and Cybernetics. Waikoloa, HI, USA,2005, vol.2,1429-1434
    [32]杨波,方华京.大规模群体系统的现状研究.武汉理工大学学报(信息与管理工程版).2007,29(1):1-6
    [33]M Dorigo, LM Gambardella, M Middendorf, T Stutzle. Guest Editorial:Spe-cial Section on Ant Colony Optimization. IEEE Trans on Evolutionary Com-putation.2002,6(4):317-319
    [34]R Eberhart, J Kennedy. A New Optimizer using Particle Swarm Theory. Proc. of the 6th Int'l Symposium on Micro Machine and Human Science. Nagoya Municipal Industrial Research Institute, Nagoya, Japan:Institute of Electrical & Electronics Engineers (IEEE),1995,39-43
    [35]F Van den Bergh. An Analysis of Particle Swarm Optimizers. Ph.D. thesis, University of Pretoria, South Africa,2002
    [36]G Beni. Order by Disordered Action in Swarms. Proc. of the SAB 2004 Workshop on Swarm Robotics. Santa Monica, CA, USA:Springer, vol.3342, 153-171
    [37]A Martinoli. Collective Complexity out of Individual Simplicity. Artificial Life.2001,7(3):315-319
    [38]李夏,戴汝为.突现(emergence)一系统研究的新观念.控制与决策.1999,14(2)
    [39]H Jing, C Qingsheng. Emergence from Local Evaluation Function. J of Systems Science and Complexity.2003,16(3):372-390
    [40]L Li, A Martinoli, YS Abu-Mostafa. Emergent Specialization in Swarm Sys-tems. Lecture Notes in Computer Science.2002:261-266
    [41]张海英,刘祚时,林桂娟.群体机器人研究的现状和发展.电子技术应用.2004,30(2):1-3
    [42]G Gregoire, H Chate, Y Tu. Moving and Staying together without A Leader. Physica D:Nonlinear Phenomena.2003,181(3-4):157-170
    [43]E hin. Swarm Robotics:From Sources of Inspiration to Domains of Appli-cation. Proc. of the SAB 2004 Workshop on Swarm Robotics. Santa Monica, CA, USA:Springer, vol.3342,10-20
    [44]M Dorigo, E hin. Swarm Robotics-Special Issue Editorial. Autonomous Robots.2004,17(2-3):111-113
    [45]JL Jones, D Roth. Robot programming:a practical guide to behavior-based robotics. McGraw-Hill/TAB Electronics,2003
    [46]IF Akyildiz, W Su, Y Sankarasubramaniam, E Cayirci. Wireless Sensor Net-works:A Survey. Computer Networks.2002,38(4):393-422
    [47]T Balch. Communication, Diversity and Learning:Cornerstones of Swarm Behavior. Proc. of the SAB 2004 Workshop on Swarm Robotics. Santa Monica, CA, USA:Springer, vol.3342,21-30
    [48]李实,陈江.清华机器人足球队的结构设计与实现.清华大学学报(自然科学版).2001,41(7):94-97
    [49]李尚荣,李永新,孙刚.RoboCup小型足球机器人结构设计与分析.机械与电子.2003,(5)
    [50]T Balch. Hierarchic Social Entropy:An Information Theoretic Measure of Robot Group Diversity. Autonomous Robots.2000,8(3):209-238
    [51]T Schmickl, K Crailsheim. Trophallaxis among Swarm-Robots:A Biologically Inspired Strategy for Swarm Robotics. The 1st IEEE/RAS-EMBS Int'l Conf. on Biomedical Robotics and Biomechatronics. Pisa, Italy,2006,377-382
    [52]C Castelpietra, L Iocchi, D Nardi, R Rosati. Coordination in Multi-Agent Autonomous Cognitive Robotic Systems. Proc. of the 2nd Int'l Cognitive RoboCup Workshop. Amsterdam, NL,2000
    [53]苏治宝,龚建伟,熊光明等.多机器人系统的研究内容与发展趋势,2007.URL http://www.gjwtech.com/controlrobot/ researchcontentofmultirobotsystem.htm
    [54]A Grushin, JA Reggia. Stigmergic Self-Assembly of Prespecified Artifi-cial Structures in A Constrained and Continuous Environment. Integrated Computer-Aided Engineering.2006,13(4):289-312
    [55]D Payton, R Estkowski, M Howard. Pheromone Robotics and the Logic of Virtual Pheromones. Swarm Robotics, Springer-Verlag.2004:46-58
    [56]谭民,范永.机器人群体协作与控制的研究.机器人.2001,23(2):178-182
    [57]王军,苏剑波.多传感器集成与融合概述.机器人.2001,23(2):183—186
    [58]O Yadgar, S Kraus, CL Ortiz Jr. Hierarchical Organizations for Real-Time Large-Scale Task and Team Environments. Proc. of the 1st Int'l Joint Conf. on Autonomous Agents and Multiagent Systems:Part 3. New York, NY, USA: ACM,2002,1147-1148
    [59]Y Zhang, A Martinoli, EK Antonsson. Evolutionary Design of a Collective Sensory System. Proc. of the AAAI Spring Symposium on Computational Synthesis. Palo Alto, CA, USA,2003,283-290
    [60]JJ Borenstein, HR Everett, LL Feng, D Wehe. Mobile robot positioning:Sen-sors and techniques. J of Robotic Systems.1997,14(4):231-249
    [61]L Feng, HR Everett, J Borenstein. Where Am I? Sensors and Methods foi Autonomous Mobile Robot Positioning. Ann Arbor, MI, USA:Dept. of Me-chanical Engineering and Applied Mechanics, University of Michigan,1994
    [62]王玲,邵金鑫,万建伟.基于相对观测量的多机器人定位.国防科技大学学报.2006,28(2)
    [63]A Martinelli, F Pont, R Siegwart. Multi-robot localization using relative ob-servations. Robotics and Automation,2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on.2005,2797-2802
    [64]王玲,刘云辉,万建伟.基于相对方位的多机器人合作定位算法.传感技术学报.2007,20(4):794—799
    [65]王玲,邵金鑫,万建伟.多机器人定位中基于熵的分布式观测量选择方法.电子学报.2007,35(2):333—336
    [66]姜键,赵杰,李力坤.面向群智能机器人系统的声音协作定向.自动化学报.2007,33(4):385—390
    [67]X Cui, CT Hardin, RK Ragade, AS Elmaghraby. A Swarm Approach for Emission Sources Localization. The 16th IEEE Int'l Conf. on Tools with Artificial Intelligence. Boca Raton, FL, USA.:IEEE PRESS,2004,424-430
    [68]E Martinson, D Payton. Lattice Formation in Mobile Autonomous Sensor Arrays. Lecture Notes in Computer Science.2005,3342:98-111
    [69]J Pugh, A Martinoli. Relative Localization and Communication Module for Small-Scale Multi-Robot Systems. Proc. of IEEE Int'l Conf. on Robotics and Automation. Miami, FL, USA:IEEE PRESS,2006,188-193
    [70]J Pugh, A Martinoli. Inspiring and Modeling Multi-Robot Search with Par-ticle Swarm Optimization. Proc. of the 4th IEEE Swarm Intelligence Symp. Honolulu, HI, USA:IEEE PRESS,2007,1-5
    [71]JA Rothermich, I Ecemis, P Gaudiano. Distributed Localization and Mapping with A Robotic Swarm. Swarm Robotics, Springer-Verlag.2004:59-71
    [72]WM Spears, JC Hamann, PM Maxim, T Kunkel, R Heil, D Zarzhitsky, DF Spears, C Karlsson. Where Are You? Lecture Notes in Computer Science. 2007,4433
    [73]I Kelly, A Martinoli. A Scalable, On-Board Localisation and Communica-tion System for Indoor Multi-Robot Experiments. Sensor Review.2004, 24(2):Loughlin, C.
    [74]OB Bayazit, JM Lien, NM Amato. Swarming Behavior Using Probabilistic Roadmap Techniques. Swarm Robotics:SAB 2004 Int'l Workshop. Santa Monica, CA, USA:Springer
    [75]K Lerman, A Martinoli, A Galstyan. A Review of Probabilistic Macroscopic Models for Swarm Robotic Systems. Swarm Robotics:SAB 2004 Int'l Work-shop. Santa Monica, CA, USA:Springer,143-152
    [76]R Gross, M Bonani, F Mondada, M Dorigo. Autonomous Self-Assembly in Swarm-Bots. IEEE Trans on Robotics.2006,22(6):11-15
    [77]J Nembrini, N Reeves, E Poncet, A Martinoli, A Winfield. Mascarillons:Flying Swarm Intelligence for Architectural Research. Proc. of IEEE Swarm Intelli-gence Symp. Los Alamitos, CA, USA:IEEE PRESS,2005,225-232
    [78]M Dorigo, E Tuci, R Groβ. The SWARM-BOTS Project. Swarm Robotics: SAB 2004 Int'l Workshop. Santa Monica, CA, USA:Springer, vol.3342,31-44
    [79]N Correll, A Martinoli. Collective Inspection of Regular Structures using A Swarm of Miniature Robots. Experimental Robotics Ⅸ:The 9th Int'l Symp. on Experimental Robotics. Singapore:Birkhauser,2006
    [80]N Correll, A Martinoli. Modeling and Optimization of A Swarm-Intelligent In-spection System. Proc. of the 7th Symp. on Distributed Autonomous Robotic System. Springer,2007,369-378
    [81]N Correll, A Martinoli. Modeling and Analysis of Beacon-Based and Beacon-less Policies for A Swarm-Intelligent Inspection System. IEEE Int'l Conf. on Robotics and Automation. Barcelona, Spain,2005,2488-2493
    N Correll, C Cianci, X Raemy, A Martinoli. Self-Organized Embedded Sen-sor/Actuator Networks for "Smart" Turbines. Proc. of IROS 2006. Beijing, China:IEEE Robotics and Automation Society,2006
    [83]N Correll, A Martinoli. Towards Optimal Control of Self-Organized Robotic Inspection Systems. Proc. of the 8th IFAC Int.l Symp. on Robot Control. Santa Cristina Convent, Bologna, Italy:University of Bologna,2006
    [84]WM Spears, DF Spears, JC Hamann, R Heil. Distributed, Physics-Based Con-trol of Swarms of Vehicles. Autonomous Robots.2004,17(2):137-162
    [85]WM Spears, DF Spears, R Heil. An Overview of Physicomimetics. Swarm Robotics:SAB 2004 Int'l Workshop. Santa Monica, CA, USA:Springer
    [86]J Seyfried, M Szymanski, N Bender, R Estana, M Thiel, H Worn. The I-SWARM Project:Intelligent Small World Autonomous Robots for Microma-nipulation. Swarm Robotics:SAB 2004 Int'l Workshop. Santa Monica, CA, USA:Springer
    [87]G Caprari, A Colot, R Siegwart, J Halloy, JL Deneubourg. Building mixed societies of animals and robots. IEEE Robotics & Automation Magazine. 2005,12(2):58-65
    [88]J Halloy, G Sempo, G Caprari, C Rivault, M Asadpour, F Tache, I Said, V Durier, S Canonge, JM Ame, et al. Social integration of robots into groups of cockroaches to control self-organized choices. Science.2007,318(5853):1155
    [89]W Agassounon. Modeling Artificial, Mobile Swarm Systems. Ph.D. thesis, California Institute of Technology, Pasadena, California, USA,52003
    [90]AJC Sharkey. Swarm Robotics and Minimalism. Connection Science.2007, 19(3):245-260
    [91]Kristina Lerman, Aram Galstyan. A General Methodology for Mathematical Analysis of Multi-Agent Systems. Tech. Rep. ISITR-529, USC Information Sciences, California,2001
    [92]A Martinoli, K Easton. Modeling Swarm Robotic Systems. Experimental Robotics VIII.2003
    [93]0 Michel. Webots:Professional Mobile Robot Simulation. ArXiv preprint csRO/0412052.2004
    [94]K Lerman, A Galstyan. Mathematical Model of Foraging in a Group of Robots: Effect of Interference. Autonomous Robots.2002,13(2):127-141
    [95]A Martinoli. Swarm Intelligence in Autonomous Collective Robotics:From Tools to the Analysis and Synthesis of Distributed Control Strategies. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 1999
    [96]L Bayindir, E hin. A Review of Studies in Swarm Robotics. Turk J Elec Engin.2007,15(2):115-147
    [97]B Gerkey, RT Vaughan, A Howard. The player/stage project:Tools for multi-robot and distributed sensor systems. Proceedings of the 11th international conference on advanced robotics.2003,317-323
    [98]AJ Ijspeert, A Martinoli, A Billard, LM Gambardella. Collaboration Through the Exploitation of Local Interactions in Autonomous Collective Robotics: The Stick Pulling Experiment. Autonomous Robots.2001,11 (2):149-171
    [99]WM Spears, DF Gordon. Using Artificial Physics to Control Agents. Proc. of IEEE Int'l Conf. on Information, Intelligence, and Systems. Washington, DC, USA:Storming Media,1999,281-288
    [100]DF Gordon-Spears, WM Spears. Analysis of a phase transition in a physics-based multiagent system. Lecture Notes in Computer Science.2003, 2699:193-207
    [101]WM Spears, R Heil, DF Spears, D Zarzhitsky. Physicomimetics for mobile robot formations. Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems-Volume 3. IEEE Computer Society Washington, DC, USA,2004,1528-1529
    [102]WM Spears, R Heil, D Zarzhitsky. Artificial physics for mobile robot forma-tions.2005 IEEE International Conference on Systems, Man and Cybernetics. 2005, vol.3
    ■
    [103]D Spears, W Kerr, W Spears. Physics-Based Robot Swarms For Coverage Problems. Int'l J on Intelligent Control and Systems.2006,11(3)
    [104]W Kerr, D Spears, W Spears, D Thayer. Two formal gas models for multi-agent sweeping and obstacle avoidance. Lecture Notes in Computer Science. 2005,3228:111-130
    [105]谢丽萍,曾建潮.面向群机器人目标搜索的拟态物理学方法.模式识别与人工智能.8 2009,22(4):647-652
    [106]WM Spears, DF Gordon. Using artificial physics to control agents. Information Intelligence and Systems,1999. Proceedings.1999 International Conference on. 1999,281-288
    [107]WM Spears, DF Spears, R Heil. A formal analysis of potential energy in a multi-agent system. Lecture Notes in Computer Science.2005,3228:131-145
    [108]J Kari. Theory of Cellular Automata:A Survey. Theoretical Computer Sci-ence.2005,334(1-3):3-33
    [109]A Ilachinski. Cellular Automata:A Discrete Universe. Singapore:World Scientific,2001
    [110]WM Shen, CM Chuong, P Will. Simulating Self-Organization for Multi-Robot Systems. Int'l Conf. on Intelligent and Robotic Systems. Switzerland,2002
    [111]WM Shen, P Will, A Galstyan, CM Chuong. Hormone-Inspired Self-Organization and Distributed Control of Robotic Swarms. Autonomous Robots.2004,17(1):93-105
    [112]曾建潮,介婧,崔志华.微粒群算法.北京:科学出版社,2004
    [113]J Pugh, L Segapelli, A Martinoli. Applying Aspects of Multi-Robot Search to Particle Swarm Optimization. Lecture Notes in Computer Science.2006, 4150:506
    [114]A Lilienthal, H Ulmer, H Frohlich, A Stutzle, F Werner, A Zell. Gas source dec-laration with a mobile robot.2004 IEEE International Conference on Robotics and Automation,2004. Proceedings. ICRA'04.2004, vol.2
    [115]孟庆浩,李飞,张明路,曾明,魏小博.湍流烟羽环境下多机器人主动嗅觉实现方法研究.自动化学报.2008,34(010):1281-1290
    [116]蓝艇,刘士荣.受生物群体智能启发的多机器人系统研究.机器人.2007,29(003):298—304
    [117]JB Saunders, B Call, A Curtis, RW Beard, TW McLain. Static and dynamic obstacle avoidance in miniature air vehicles. AIAA Infotech at Aerospace. 2005:2005-6950
    [118]DE Chang, SC Shadden, JE Marsden, R Olfati-Saber. Collision avoidance for multiple agent systems.42nd IEEE Conference on Decision and Control,2003. Proceedings.2003, vol.1
    [119]C Di Chio, R Poli, P Di Chio. Extending the Particle Swarm Algorithm to Model Animal Foraging Behaviour. Lecture Notes in Computer Science.2006, 4150:514
    [120]C Di Chio, R Poli, P Di Chio. Modelling Group-Foraging Behaviour with Particle Swarms. Lecture Notes in Computer Science.2006,4193:661
    [121]I Rekleitis. Cooperative localization and multi-robot exploration. McGill Uni-versity Montreal, Que., Canada, Canada,2003
    [122]S Thrun. Bayesian landmark learning for mobile robot localization. Machine Learning.1998,33(1):41-76
    [123]J Borenstein, HR Everett, L Feng, D Wehe, et al. Mobile robot positioning: Sensors and techniques. Journal of Robotic Systems.1997,14(4):231-249
    [124]R Siegwart, IR Nourbakhsh. Introduction to autonomous mobile robots. MIT press,2004
    [125]D Fox, W Burgard, F Dellaert, S Thrun. Monte carlo localization:Efficient position estimation for mobile robots. Proceedings of the National Conference on Artificial Intelligence. John Wiley & Sons Ltd,1999,343-349
    [126]D Fox, S Thrun, W Burgard, F Dellaert. Particle filters for mobile robot localization. Sequential Monte Carlo Methods in Practice.2000:470-498
    [127]A Martinelli,R Siegwart. Estimating the odometry error of a mobile robot during navigation. In other words.1:3
    [128]T Arai, E Pagello, LE Parker. Guest editorial advances in multirobot systems. IEEE Transactions on Robotics and Automation.2002,18(5):655-661
    [129]D Fox, W Burgard, H Kruppa, S Thrun. A probabilistic approach to collabo-rative multi-robot localization. Autonomous Robots.2000,8(3):325-344
    [130]KO Arras, N Tomatis, BT Jensen, R Siegwart. Multisensor on-the-fly local-ization:Precision and reliability for applications. Robotics and Autonomous Systems.2001,34(2-3):131-143
    [131]J Neira, JD Tardos, J Horn, G Schmidt. Fusing range and intensity images for mobile robot localization. IEEE Transactions on Robotics and Automation. 1999,15(1):76-84
    [132]SI Roumeliotis, GA Bekey. Distributed multirobot localization. IEEE Trans-actions on Robotics and Automation.2002,18(5):781-795
    [133]J Kennedy, R Eberhart. Particle swarm optimization.1995, vol.4
    [134]JF Schutte, JA Reinbolt, BJ Fregly, RT Haftka, AD George. Parallel global optimization with the particle swarm algorithm. International journal for numerical methods in engineering.2004,61(13):2296
    [135]许有准,曾文华.并行演化算法研究进展.模式识别与人工智能.2005,18(002):183—192
    [136]王元元,曾建潮,谭瑛.基于带控制器并行结构模型的并行微粒群算法.系统仿真学报.2007,19(010):2171-2176
    [137]黄芳,樊晓平.基于岛屿群体模型的并行粒子群优化算法.控制与决策.2006,21(002):175—179
    [138]赵勇,岳继光,李炳宇,张传升.一种新的求解复杂函数优化问题的并行粒子群算法.计算机工程与应用.2005,41(016):58—60
    [139]李建明,万单领,迟忠先,胡祥培.一种基于GPU加速的细粒度并行粒子群算法.哈尔滨工业大学学报.2006,38(012):2162—2166
    [140]JF Chang, SC Chu,JS Pan. A parallel particle swarm optimization algorithm with communication strategies. Journal of information science and engineer-ing.2005,21(4):809-818
    [141]BI Koh, AD George, RT Haftka, BJ Fregly. Parallel asynchronous particle swarm optimization. International journal for numerical methods in engineer-ing.2006,67(4):578
    [142]罗建宏,张忠能.并行仿真的粒子群优化算法异步模式研究.计算机仿真.2005,22(006):68—70
    [143]职为梅,王芳,范明,杨勇.并行环境下的同步异步PSO算法.计算机技术与发展.2009,19(003):123-126
    [144]G Venter, J Sobieszczanski-Sobieski. A parallel particle swarm optimization al-gorithm accelerated by asynchronous evaluations. Journal of Aerospace Com-puting, Information, and Communication.2006,3(3):123-137
    [145]D Henrich, T Honiger. Parallel processing approaches in robotics. Industrial Electronics,1997. ISIE'97., Proceedings of the IEEE International Symposium on.1997, vol.2
    [146]J Hereford, M Siebold. Multi-robot search using a physically-embedded parti-cle swarm optimization. International Journal of Computational Intelligence Research.2008,4(2):197-209
    [147]JM Hereford, M Siebold, S Nichols. Using the particle swarm optimization al-gorithm for robotic search applications. IEEE Swarm Intelligence Symposium, 2007. SIS 2007.2007,53-59
    [148]F Ridge a't, D Kudcnko, D Kazakov'i, et al. Moving Nature-Inspired Al-gorithms to Parallel, Asynchronous and Decentralised Environments. Self-organization and autonomic informatics (Ⅰ).2005:35
    [149]SD Xue, JC Zeng. Sense Limitedly, Interact Locally:the Control Strategy for Swarm Robots Search. IEEE International Conference on Networking, Sensing and Control,.2008,402-407
    [150]TG Kolda, VJ Torczon. Understanding asynchronous parallel pattern search. Applied Optimization.2003,82:323-342
    [151]G Kowadlo, D Rawlinson, RA Russell, R Jar vis. Bi-modal search using comple-mentary sensing (olfaction/vision) for odour source localisation. Robotics and Automation,2006. ICRA 2006. Proceedings 2006 IEEE International Confer-ence on.2006,2041-2046
    [152]S Doctor, GK Venayagamoorthy, VG Gudise. Optimal PSO for collective robotic search applications.2004, vol.2
    [153]W Jatmiko, K Sekiyama, T Fukuda. A PSO-Based Mobile Robot for Odor Source Localization in Dynamic Advection-Diffusion with Obstacles Environ-ment:Theory, Simulation and Measurement. IEEE Computational Intelli-gence Magazine.2007,2(2):37-51
    [154]J Hereford, M Siebold. Multi-Robot Search Using A Physically-Embedded Particle Swarm Optimization. International Journal of Computational Intel-ligence Research.2008,4(2):197-209
    [155]张亚鸣,雷小宇,杨胜跃,樊晓平,瞿志华,贾占朝.多机器人路径规划研究方法.计算机应用研究.September 2008,25(9):2566-2569
    [156]RR Murphy. Introduction to AI Robotics. MIT Press Cambridge, MA, USA, 2000
    [157]熊举峰,谭冠政,皮剑.群机器人仿真系统设计与实现.计算机工程与应用.102007,43(30):104-107
    [158]国家安全生产监督管理局,国家煤矿安全监察局.国家安全生产科技发展规划(煤矿领域研究报告),12 2003. URL http://www.jxmkaqjc.gov.cn/ 2004-8/200484174359.htm
    [159]李军远,陈宏钧,张晓华,邓宗全.基于信息融合的管道机器人定位控制研究.控制与决策.2006,21(006):661-665
    [160]P Bahl, VN Padmanabhan. RADAR:an in-building RF-based user location and tracking system.2000, vol.2
    [161]王鲜霞,冯国瑞.高斯分布在山西煤矿烟羽扩散中的应用.太原理工大学学报.2006,37(003):331-333
    [162]丁信伟,王淑兰.可燃及毒性气体泄漏扩散研究综述.化学工业与工程.1999,16(2):118-122
    [163]贾智伟,景国勋:张强.瓦斯爆炸事故有毒气体扩散及危险区域分析.中国安全科学学报.2007,17(001):91-95
    [164]种秀华, 任志国,丁新国. 毒气扩散的界面化数值模拟,2007.URL http://www.paper.edu.cn/downloadpaper.php?serial_number=200709-38&type=1
    [165]中华人民共和国信息产业部.800/900MHz频段射频识别(RFID)技术应用规定(试行).中国无线电.2007,5:64
    [166]游战清.无线射频识别技术(RFID)理论与应用.电子工业出版社,2004
    [167]LM Ni, Y Liu, YC Lau, AP Patil. LANDMARC:Indoor Location Sensing Using Active RFID. Wireless Networks.2004,10(6):701-710
    [168]石鹏,徐凤燕,王宗欣.基于传播损耗模型的最大似然估计室内定位算法.信号处理.2005,21(005):502-504
    [169]冯浩然,袁睿翕,慕春棣.无线网络中基于信号强度的定位及算法比较.计算机工程与应用.2006,42(032):1-3
    [170]陈永光,李修和.基于信号强度的室内定位技术.电子学报.2004,32(009):1456-1458
    [171]邓宏彬,贾云得,刘书华,蒋惠萍,刘法旺.一种基于无线传感器网络的星球漫游机器人定位算法.机器人.2007,29(004):384-388
    [172]D Li, YH Hu. Energy-Based Collaborative Source Localization Using Acoustic Microsensor Array. Eurasip Journal on Applied Signal Processing.2003:321-337
    [173]李卓凡,沙斐,陈嵩.用空间传播和RCS模型研究RFID装置最大识别距离.雷达科学与技术.2006,4(002):115-120
    [174]刘艳文,王福豹,段渭军.无线传感器网络定位系统的设计原则与方法研究.计算机应用研究.2007,24(010):89-92
    [175]张旭东,陆明泉.离散随机信号处理.清华大学出版社,2005
    [176]曹雪虹,张宗橙.信息论与编码.清华大学出版社,2004
    [177]刘次华.随机过程及其应用,2004
    [178]孙佩刚,赵海,罗玎玎,张晓丹,尹震宇.智能空间中RSSI定位问题研究.电子学报.2007,35(007):1240-1245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700