X波段AlGaN/GaN HEMT器件物理与相关实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有高温、高频和大输出功率能力的宽禁带AlGaN/GaN HEMT器件已成为国内外研究的热点课题。由于异质外延生长的AlGaN/GaN HEMT材料存在晶格和热失配问题,特别是GaN基异质结器件存在很强的自发极化和压电极化效应,从而导致器件中存在许多物理效应的作用机制仍不明确,而相关的实验如材料表征、应变分析、离子注入掺杂、欧姆接触和电流崩塌等仍然存在许多科学问题需要进一步深入研究。
     本论文围绕X波段AlGaN/GaN HEMT所涉及的器件物理和相关实验等科学技术问题开展了基础研究,取得的主要研究结论如下。
     1、基于对AlGaN/GaN HEMT自发极化和压电极化效应的研究,导出了异质结中的极化强度和晶格常数及弹性系数之间的关系;利用电中性平衡原理,建立了非故意掺杂AlGaN/GaN HEMT器件结构中极化面电荷密度和2DEG之间的物理模型。
     2、应用高分辨X射线衍射技术(HRXRD)的GaN材料晶格参数精确测量方法,深入研究了GaN基异质结构材料水平和垂直方向的应变情况;同时利用Williamson-Hall方法测量了外延材料的镶嵌结构参数,明确了材料中存在的位错类型,对螺位错和刃位错的位错密度进行了精确计算,获得总的位错密度为10~9cm~(-2)量级。
     3、通过Si离子注入GaN材料的掺杂实验,在较低温度下(<1100°C)利用快速热退火技术实现了GaN的重掺杂目的,为制作高质量欧姆接触提供了新的技术途径。研究表明,当注入能量100keV和注入剂量10~(16)cm~(-2)的样品在1100°C快速热退火处理后可实现重掺杂,其载流子面密度为2×10~(15)cm~(-2)、方块电阻100Ω/□,而穿透位错密度降低至1.55×10~9cm~(-2)。同时,利用光致发光PL谱测试发现了能量分别为2.61eV与2.67eV蓝光发光(BL)谱线,这与前人研究的结果有所不同。进一步研究表明,2.61eV蓝光BL发光是由施主能级ON到深受主复合能级VGa-SiGa的跃迁发光产生的,而2.67eV BL带发光是由20meV左右的SiGa浅施主能级向VGa-ON复合深受主能级之间电子跃迁辐射发光所产生。
     4、在非故意掺杂GaN上实现了低比接触电阻率的高质量多层金属欧姆接触。采用Ti(15nm)/Al(220nm)/Ni(40nm)/Au(50nm)四层金属在非故意掺杂GaN上进行欧姆接触实验研究,在N2气氛中经温度900°C快速热退火1min后获得了最低的比接触电阻率为1.26×10-7Ω·cm~2。经XRD和俄歇能谱剖面分析结果表明,Ti和Al之间反应形成低功函数AlTi金属相可降低势垒高度,同时氮(N)的析出与Ti之间会形成低电阻低功函数的TiN金属相,导致在GaN导带边缘能级位置以n型施主态存在大量N空位,使金属与n-GaN界面处产生重掺杂效果,导致势垒宽度变薄有利于形成高质量的欧姆接触。
     5、基于虚栅模型解释GaN HEMT电流崩塌效应的产生机理;为尽量降低自热效应特别设计制作了栅宽10μm的AlGaN/GaN HEMT器件进行电流崩塌实验,建立了脉冲条件下电流崩塌实验新方法。研究指出,脉冲频率和宽度变化均会导致器件呈现不同程度的电流崩塌效应,与器件表面态中电子的俘获和释放机制密切相关。并通过优化设计场板结构器件参数,从而降低了沟道电子峰值温度达到抑制电流崩塌目的。实验还发现,钝化后GaN HEMT电流崩塌量降低至仅4.7%。
     6、优化设计影响频率和功率特性的器件结构和关键工艺参数,研发了有和无台面隔离的器件版图和工艺流程,制作了具有优良频率和功率性能的X波段AlGaN/GaN HEMT器件。
     研究结果表明,半绝缘SiC衬底上0.25μm栅长、100μm栅宽的AlGaN/GaN HEMT器件,在零栅压下源漏饱和电流为1112mA/mm,跨导250mS/mm;截止频率fT和最大振荡频率f_(max)分别为41.5GHz和108GHz;采用负载-牵引(Load Pull)方法在栅源电压-3.2V、源漏电压28V和8GHz连续波条件下测试,获得器件的输出功率密度是5.62W/mm、增益7.49dB、功率附加效率31%。同时,总栅宽3mm的AlGaN/GaN HEMT器件经管壳封装后测试,其源漏饱和电流为2.5A,跨导660mS;在频率8GHz、栅压-2.5V和源漏电压40V偏置条件下,器件最大输出功率达15.85W,增益6.95dB,功率附加效率36%。
Wide bandgap AlGaN/GaN high-electron-mobility transistors (HEMT), which are suitable for high temperature, high frequency and high power device applications, have been regarded as the next generation technology all over the world. However, many problems of the lattice mismatch and thermal mismatch exist in AlGaN/GaN HEMT materials grown by heterogeneous epitaxial technology. Especially in wurzite GaN based transistor structures, the spontaneous polarization and piezoelectric polarization is very large, lots of mechanism of device physics effects are still ambiguous. And the related experimental studies in AlGaN/GaN HEMT devices such as characterization and strain analyse of heterostructure materials, ion implantation doping of GaN, ohmic contact and current collapse effects have not been fundamentally solved.
     The work presented in this dissertation focused on the key device physics problems and related experiments of X-band AlGaN/GaN HEMTs, and the major achievements and results of the dissertation are listed as followings.
     1. Based on the research of spontaneous polarization and piezoelectric polarization in AlGaN/GaN HEMTs, the relationship between the polarizability and lattice constants and the elastic coefficient is obtained in GaN-based heterojunction. With the principle of electroneutrality equilibrium, the physical model between the polarization induced sheet charge and the sheet 2DEG concentration for undoped Ga-face AlGaN/GaN HEMT structures is achieved.
     2. By the high resolution X-ray diffraction (HRXRD) technology, the accurate measurement methods of lattice parameters in GaN-based materials have been established, and the horizontal and vertical strain of the GaN heterojunction is conducted by further research. By means of Williamson-Hall method, the mosaic structure parameter of the epitaxial materials is measured in order to clarify the dislocation types and calculate the dislocation density in GaN-based materials. Then the accurate calculations of the dislocation densities of screw dislocation and edge dislocation in GaN materials have been made, and the total dislocation density is about 109cm~(-2).
     3. Si-ion implantation for nonalloyed contacts to an GaN heterostructure materials has been investigated, and highly-doped GaN material is obtained by means of the rapid thermal annealing(RTA) technology at relatively lower temperature (<1100℃), which offers a new technical approach for high quality ohmic contact. Results shows that the sheet electron concentration is 2×10~(15)cm~(-2) and the square resistance is 100?/□after rapid thermal annealing at 1100°C for the Si ion implantation into GaN with doses of 10~(16)cm~(-2) at energy of 100keV,and the threading dislocation densities of the samples is decreased to 1.55×10~9cm~(-2). Meanwhile, the results of photoluminescence(PL) spectra show two blue luminescence (BL) bands with energy of 2.61eV and 2.67 eV respectively, both of which differ from the previous reported results. Further studies indicate that the 2.61 eV BL band emission is attributed to an electron transition between the donor level ON and the deep acceptor complex level VGa-SiGa, and the energy of 2.67 eV BL band is considered as the transition from the shallow donor level SiGa at 20meV under the conduction band to the deep complex acceptor level VGa-ON.
     4. High quality and multilayer metal ohmic contact to the unintended doped GaN with low specific contact resistivity has been achieved. Ohmic contact containing Ti(15nm)/Al(220nm)/Ni(40nm)/Au(50nm) four-layer metals have displayed the lowest contact resistivity on unintended doped GaN. After rapid thermal annealing at 900°C for 1 min with N2 ambient, the lowest contact resistivity of 1.26×10-7Ω·cm~2 is obtained. The studies of X-ray diffraction and Auger electron spectroscopy have been made to investigate the microstructure of the annealed contacts. The key to the success of the ohmic contact is the Ti layers placed between the Al layer and GaN. Upon rapid thermal annealing, there occurrs both in-diffusion and out-diffusion of the Ti layer in intimate contact with the GaN film, Ti reduces the native oxide on GaN and the in-diffusion of this leads to the formation of TiN when Ti reacts with GaN, a high concentration of nitrogen vacancies is created near the interface, causing the GaN to be heavily doped n-type. While the out-diffusion of this leads to the formation of low work function Ti-Al intermetallic phase. The intimate contact between the low work function intermetallic and n-GaN results in a low barrier height, allowing electron to flow in direction through the heterojunction interface by tunnel effect emission.
     5. Based on virtual gate model, the physical mechanism of current collapse has been analyzed. In order to eliminate the self-heating effects of AlGaN/GaN HEMT , A special device with only 10μm gate-width is fabricated to investigate current collapse effects. A new experimental method with pulsed signal to study current collapse phenomena is established. Results shows that the variation of pulse frequency and pulse width are both induced a change of current collapse of GaN HEMTs, which is related immediately with the mechanism of electron capture and release in the surface states in the device. The optimization of the structure parameters for the field-plated GaN-based HEMT is achieved to eliminate current collapse by reducing the peak electron temperature in the device channel. The degree of current collapse of the GaN HEMTs after passivation is reduced to only 4.7%.
     6. Optimization design of various structure parameters and device processes, which is influenced of characteristics of working frequency and power-output, is achieved. The key device fabrication processes, with or without mesa isolation, have been developed, and the AlGaN/GaN HEMTs with superior frequency and power characteristic have been fabricated.
     The AlGaN/GaN HEMTs grown on semi-insulating 6H-SiC substrates with 0.25μm gate-length and 100μm gate-width is presented. The DC measurement results exhibit a maximum drain current density of 1112mA/mm at a zero gate voltage and the peak extrinsic transconductance of 250mS/mm. On-wafer RF measurements show the values of unity current gain cutoff frequency (fT) of 41.5GHz and maximum frequency of oscillation (f_(max)) of 108GHz is evaluated by extrapolation of the unity gain and MSG data at 20dB/decade. The device under 8GHz continuous wave conditions biased at a drain-source voltage of 28V and gate-source voltage of -3.2V shows a saturated output power of 5.62W/mm with an associated gain of 7.49dB and PAE of 31%. And the total gate periphery of 3mm AlGaN/GaN HEMTs after shell package shows a maximum drain current of 2.5A at zero gate voltage and the peak extrinsic transconductance of 660mS; Biased at drain-source voltage of 40V and gate-source voltage of -2.5V, 15.85W total power is achieved at 8GHz CW conditions, with gain of 6.95dB and PAE of 36%.
引文
[1] J.Bardeen and W.H Brattain. The Transistor, A Semiconductor Triode. Phys. Rev., 1948, 74(2):230-231
    [2] W. Shockley. The theory of p-n Junctions in Semiconductor and p-n Junction Transistors. Bell Syst.Tech.J., 1949,28:435
    [3] W.Shockley. A unipolar“field-effect”transistor. Proc.IRE, 1952, 40, 1365-1376
    [4] Eastman L F, Mishra U K. The toughest transistor yet [GaN transistors]. IEEE Spectrum, 2002, 39(5): 28-33
    [5] Mishra U K, Parikh P, Wu Y F. AlGaN/GaN HEMTs - an overview of device operation and applications. Proceedings of the IEEE, 2002, 90(6): 1022-1031
    [6] Jacques I. Pankove. GaN: from fundamentals to applications. Materials Science and Engineering B61–62, 1999, 305–309
    [7] H. Amano, N. Savaki, I Akasaki, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett., 1986, Vol.48:353
    [8] Nishida K, Haneda S, Hara K, et al. MOVPE of GaN using a specially designed Two-flow horizontal reactor. J. Crystal Growth., 1997, 170:312
    [9] Akasaki I, Amano H, Koide Y, et al. Effect s of AlN buffer layer on structure and properties of GaN and AlxGa1-xN. J. Crystal. Growth, 1989, 98:209
    [10] H. Amano, I. Akasaki, T. Kozawa, et al. Electron beam effects on blue luminescence of zinc-doped GaN. Journal of Luminnescence. 1988, Vol. 40-41: 121-122
    [11]S. Nakamura, Yasuhiro Harada, Masayuki Seno. Novel metalorganic chemical vapor deposition system for GaN growth. Appl. Phys. Lett., 1991, Vol.58:2021
    [12] M.Asif Khan, J.N. Kuznia, and J.M.Van Hove. Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1-xN heterojunctions. Appl. Phys. Lett. , 1993, 63(24):3027-3029
    [13] M A Khan, A Bhattarari, J N Kuznial ,et al. High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction, Appl. Phys. Lett. , 1993, 63:1214
    [14] Y.-F. Wu, B.P. Keller, S. Keller, et al. Measured microwave power performance of AlGaNGaN MODFETs. IEEE Electron Device Letters, 1996, 17(9):455-457
    [15] Z.F. Fan, O. Aktas, A. Botchkarev. Performance of AlGaN/GaN MODFETs. Founh wide bandgap and nitride workshop, St. Louis MO, 1997, 11-14
    [16] M.A. Khan, Q. Chen, J. Yang, et al. Recent advances in III-V nitride electron devices. IEDM Technical Digest, 1996, 2.1.1: 827
    [17] O Chen, J W Yang, M. A Khan, et al., High transconductance AlGaN/GaN heterostructure field effect transistors on SiC substrates, Electron. Lett., 1997, Vol.33:1413
    [18] Z F Fan, C Z Lu, A E Botchkarev, et al., AlGaN/GaN double heterostructure channel modulation doped field effect transistors (MODFETs), Electron Lett., 1997, Vol.33:814
    [19] O Chen, J W Yang, M. A Khan, et al., High transconductance AlGaN/GaN heterostructure field effect transistors on SiC substrates, Electron. Lett. , 1997 Vol.33:1413
    [20] M A Khan, J N Kuznia, D T Olson, et al., Microwave performance of a 0.25mm gate AlGaN/GaN herojunction field effect transistors, Appl. Phys. Lett., 1994,Vol.65:1121
    [21] M A Khan, M S Shur , J N Kuznia, et al., Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300℃, Appl. Phys. Lett., 1995, Vol.66:1083
    [22] M A Khan, O Chen, M S Shur, et al., Short-channel GaN/AlGaN doped channel heterostructure field effect transistors with 36.1 cut off frequency, Electron. Lett. , 1996, Vol.32: 357
    [23] Y-F Wu, B P Keller, P Fini, et al., Short-channe Al0.5GaN0.5N/GaN MODFETs with power density >3W/mm at 18 GHZ, Electron. Lett. , 1997, Vol. 33:1742
    [24] Y-F Wu, B P Keller, S Keller, et al., Measured Microwave Power Performace of AlGaN/GaN MODFET, IEEE Electron Device Lett., 1996, Vol.17:455
    [25] M A Khan, Q Chen, M S Shur, et al., CW Operation of Short-Channel GaN/AlGaN Doped Channel Heterostructure Field Effect Transistors at 10GHz and 15GHz, IEEE Electron Device Lett., 1996,Vol.17:584
    [26] Y-F Wu, S Keller, P Kozodou, et al., Bias Dependent Microwave Performace of AlGaN/GaN MODFET’s Up To 100V, IEEE Electron Device Lett., 1997,Vol.18:290
    [27] Y-F Wu, B P Keller, S Keller, et al., Short Channel AlGaN/GaN MDOFETs with 50-GHz fT and 1.7W/mm Output-Power at 10GHz, IEEE Electron Device Lett., 1997, Vol,18:438
    [28] Sullivan G J, Higgins J A, Chen M Y, et al. High power RF operation of AlGaN/GaN HEMTs grown on insulating silicon carbide substrates. Electronics Letters, 1998, 34(9): 922-924
    [29] S T Sheppard, K Doverspike, W L Pribble, et al., High Power GaN/AlGaN HEMTs on SilliconCarbide, in abstracts of 1998 Device Research Conference, Charlottesville, VA,1998
    [30] S N Mohammad, Z F Fan, A Salvador, et al., Photoluminescence characterization of the quantum well structure and influence of optical illumination of the electrical performance of AlGaN/GaN modulation-doped field-effect transistors. Appl.Phys.Lett., 1996 ,Vol.69: 1420
    [31] V Kumar, W Lu, R Schwindt., et al, High performance0.25μm gate length AlGaN/GaN HEMTs with transconductance of over 400mS/mm, IEEE Electron Letters, 2002, Vol.38:252
    [32] P Javorka, A Alam, A Fox, et al, AlGaN/GaN HEMTs on Si substrate with ft of 32/20GHz and fmax of 27/22GHz for 0.5/0.7μm gate length, IEEE Electronics Letters, 2002, Vol.38:288
    [33] J S Moom, M Micovic, P Janke, et al., GaN/AlGaN HEMTs operating at 20GHz with continuous-wave power density>6W/mm, IEEE Electronics Letters,2001, Vol.37:528
    [34] Eastman L F, Tilak V, Smart J, et al. Undoped AlGaN/GaN HEMTs for microwave power amplification. IEEE Trans Electron Devices, 2001, Vol.48(3): 479-485
    [35] Hu X, Koudymov A, Simin G, et al. Si3N4/AlGaN/GaN-metal-insulator-semiconductor heterostructure field-effect transistors. Applied Physics Letters, 2001, Vol.79(17): 2832-2834
    [36] V Kumar, W Lu, F A Khan te al., High performance 0.15μm recessed gate AlGaN/GaN HEMTs on sapphire, in IEEE IEDM, 2001:01-573
    [37] A Chini, R Coffie, G Meneghesson, et al. 2.1W/mm current density AlGaN/GaN HEMTs, Electron. Lett. , 2003, Vol.39:625
    [38] M Micovic, N X Nguyen, P Janke, et al. AlGaN high electron mobility transistor with f1 of 110GHz, IEEE Electron Letters.2000, Vol. 36:356
    [39] Y.-F. Wu, A. Saxler, M. Moore, et al. 30-W/mm GaN HEMTs by Field Plate Optimization. IEEE Electron Device Lett., 2004, 25(3):117-119
    [40] Y.-F. Wu, M. Moore, A. Saxler, et al. 40-W/mm Double Field-plated GaN HEMTs. IEEE Device Research Conference, 2006:151-152
    [41] Y.-F. Wu, S.M. Wood, R.P. Smith, et al. An Internally-matched GaN HEMT Amplifier with 550-watt Peak Power at 3.5 GHz. International Microwave Symposium Digest IEEE MTTS, 2006:722-725
    [42]曾庆明,吕长志,刘伟吉,等,AlGaN/GaN HEMT器件研究.功能材料与器件学报,2000,6(3):170-173
    [43]张锦文,闫桂珍,张太平,等. Au-AlGaN/GaN HFET研制与器件特性.半导体学报,2002,Vol.23:424
    [44]张小玲,吕长志,谢雪松,等. AlGaN/GaN HEMT器件的研制,半导体学报。2003,Vol.24:847
    [45]冯震,王勇,张志国,等. X波段AlGaN/GaN HEMT功率器件,IC China 2005,241
    [46]邵刚,刘新宇,和致经,等.蓝宝石衬底AlGaN/GaN功率HEMT研究,电子器件, 2004,27:381
    [47]张志国,杨瑞霞,王勇,等.跨导为325mS/ mm的AlGa N/ Ga N HFET器件,半导体学报,2005,26(9):1789-1792
    [48]李静强,杨瑞霞,冯震,等. X波段30W内匹配GaN HEMT功率器件.固体电子学研究与进展, 2008, 28(4): 493-496
    [49]钟世昌,陈堂胜,任春江,等. X波段连续波119W GaN功率HEMT.固体电子学研究与进展, 2008,4:38
    [50] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures, Journal of Applied Physics, 2000, vol. 87: 334
    [51] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors, Applied Physics Letters, 2000, Vol. 77: 250
    [52] E Kohn, I Daumiller, P Schmid, et al. Large signal heterostructure field effect transitions [J]. Electron Lett, 1999, Vol.35: 1022
    [53] G Simin, A Koudymov, A Tarakji, et al. Induced strain mechanism of current collapse in AlGaN/GaN heterostructure field-effect transistors[J]. Appl Phys Lett, 2001, Vol.79:2651
    [54] J. S. Foresi and T. D. Moustakas, Metal contacts to gallium nitride, Applied Physics Letters, 1993, vol. 62: 2859
    [55] B. P. Luther, J. M. DeLucca, S. E. Mohney, and J. R. F. Karlicek, Analysis of a thin AlN interfacial layer in Ti/Al and Pd/Al ohmic contacts to n-type GaN, Applied Physics Letters, 1997, Vol. 71:3859
    [56] B. P. Luther, S. E. Mohney, and T.N.Jackson, et al. Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN, Applied Physics Letters, 1997, 70(1): 57-59
    [57] D.-F. Wang, F. Shiwei, C.Lu, A. Motayed, M. Jah, S. N. Mohammad, K. A. Jones, and L. Salamanca-Riba, Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN, Journal of Applied Physics, 2001, Vol. 89:6214
    [58] C.-T. Lee and H.-W. Kao, Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN, Applied Physics Letters, 2000, Vol. 76:2364
    [59] A. N. Bright, P. J. Thomas, M. Weyland, et al. Correlation of contact resistance with microstructure for Au/Ni/Al/Ti/AlGaN/GaN ohmic contacts using transmission electron microscopy, Journal of Applied Physics, 2001, Vol. 89:3143
    [60] H. Ishikawa, K. Nakamura, T. Egawa, T. Jimbo, and M. Umeno, Pd/GaN Schottky diode with a barrier height of 1.5 eV and a reasonably effective Richardson coefficient, Japanese Journal of Applied Physics, Part 2: Letters, 1998,Vol. 37: L7
    [61] M Leszczynskit, T Suskit, P Perlint, et al. Lattice constants, thermal expansion and compressibility of gallium nitride. J. Phys. D: Appl. Phys. 1995, Vol.28 A149-A153
    [62] T. Kozawa, T. Kachi, H. Kano, et al. Thermal stress in GaN epitaxial layers grown on sapphire substrates. J. Appl. Phys. 1995, 77(9):4389-4392
    [63] D. G. Zhao, S. J. Xu, M. H. Xie, et al. Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC (0001), and c-plane sapphire. Appl.Phys. Let.2003, 83(4):677-679
    [64] R.Chierchia, T.Bottcher, H.Heinke, et al. Microstructure of heteroepitaxial GaN revealed by X-ray diffraction.Journal of Appl.Phys, 2003, 93(11):8918-8925
    [65] S. C. Jain, M. Willander, J. Narayan, et al. III–nitrides: Growth, characterization, and properties. Journal of Appl. Phys., 2000, 87(3):965-1006
    [66] Yoshitaka Nakano, Tetsu Kachia, Takashi Jimbo. N-type implantation doping of GaN. Materials Science in Semiconductor Processing, 2003, Vol.6, 515-517
    [67] O. Svensk, S. Suihkonena, T. Lang, et al. Effect of growth conditions on electrical properties of Mg-doped p-GaN. J. Crystal Growth., 2007, Vol.298:811-814
    [68] S. Porowski, J. Jun, S. Krukowski, et al. Annealing of gallium nitride under high-N2 pressure. Physica, B, 1999, Vol.265, 295
    [69] G.S.Huanga, T.C.Lua, H.H.Yao, et al. GaN/AlGaN active regions for terahertz quantum cascade lasers grown by low-pressure metal organic vapor deposition. J.Crystal Growth.,2007, Vol.298:687
    [70] H.M. Wang, J.P. Zhang, C.Q. Chen, et al, AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire.Appl.Phys.Lett. 2002, 81: 4
    [71] O. Ambacher,J.Smart, J.R.Shealy, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. Journal of Applied Physics, 1999, 85(6):3222-3233
    [72] J.L.Weyher, S. Muller, I. Grzegory, et al. Chemical polishing of bulk and epitaxial GaN. J. Cryst.Growth, 1997, 182(2):17-22
    [73] Hellman E S . The polarity of GaN : a critical review .MRS Internet J . Nitride Semicond. ,1998 ,Res. 3 ,11
    [74] Sumiya M , Tanaka M , Ohtsuka K , et al . Analysis of the polar direction of GaN film growth film growth by coaxial impact ion scattering spectroscopy . Appl. Phys. Lett. , 1999 ,75(3) :674-676
    [75] Ohnishi T , Ohtomo A , Kawasaki M , et al . Determination of surface polarity of c2axis oriented ZnO films by coaxial impact collision ion scattering spectroscopy. Appl. Phys.Lett. ,1998 ,72(7):824 - 826
    [76] Daudin B , Rouviere J L , Arlery M . Polarity determination of GaN films by ion channeling and convergent beam electron diffraction . Appl. Phys. Lett. , 1996 , 69(17) :2480- 2482
    [77] Seelmann EM , Weyher J L , Obloh H , et al . Polarity of (00.1) GaN epilayers grown on a (00.1) sapphire. Appl. Phys.Lett. ,1997 ,71(18) :2635-2637
    [78] I.Vurgaftman and J.R. Meyer. Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics, 2003, 94(6):3675-3696
    [79] E.T.Yu, X.Z.Dang, P.M. Asbeck, et al. Spontaneous and piezoelectric polarization effects in III-V nitride heterostructures. J.Vac.Sci.Technol.B, 1999, 17(4):1742-1749
    [80] G C Yi, B W W essels. Compensation in n-type GaN. Appl Phys Lett, 1996, 69:3028- 3030
    [81] T Mattila, A. P. Seitsonen, R. M. Nieminen. Large atomic displacements associated with the nitrogen antisite in GaN. Phys Rev. B, 1996, 54: 1474-1479
    [82] E R Glaser, T A Kennedy, et al. Optically detected magnetie resonancc of GaN film s grown by organometallic chemical-vapor deposition. Phys. Rev. B, 1995, 51:13326- 13329
    [83] J.Neugebauer, C.G.Van de Walle. Gallium vacancies and the yellow luminescence in GaN. Appl. Phys. Lett., 1996, 69: 503-506
    [84]丁志博,姚淑德,王坤,等. Si(111)衬底上生长有多缓冲层的六方GaN晶格常数计算和应变分析.物理学报,2006,Vol.55, 2977
    [85] T. Detchprohm, K. Hiramatsu, and K. Itoh, et al. Relaxation process of the thermal strain in the GaN/α-Al2O3 heterostructure and determination of the intrinsic lattice constants of GaN free from the strain. Jpn. J. Appl. Phys. 1992, 31:L1454
    [86] K.Dovidenko, S.Oktyabrsky, J. Narayan, et al. Aluminum nitride films on different orientations of sapphire and silicon. Journal of Applied Physics, 1996, Vol 79:2439
    [87]许振嘉.半导体的检测与分析.北京:科学出版社,2007,152-165
    [88] P.Scherrer. Nachr.Ges. Wiss.Gottingen, Sitzber., 1918, 7:26
    [89] G..K. Williamson, W.H.Hall. X-ray Line Broadening from Aluminum and Wolfram. Acta. Metall., 1953,1:22
    [90] X.H.Zheng, Y.T. Wang, Z.H.Feng, et al. Method for measurement of lattice parameter of cubic GaN layers on GaAs(001). J.Cryst.Growth, 2003, 250:345-348
    [91] P. Visconti, D. Huang, F. Yun, et al. Rapid Delineation of Extended Defects in GaN and a Novel Method for Their Reduction. Phys. Stat. Sol.(a), 2002, 190(1):5-14
    [92] Stephen A.Campbell. The Science and Engineering of Microelectronic Fabrication. (微电子制造科学原理与工程技术,曾莹,严利人,王纪民等译)北京:电子工业出版社,2003,97-120
    [93] S. J. Pearton , C. B. Vartuli, J. C. Zolper ,et al. Ion implantation doping and isolation of GaN. Appl. Phys. Lett. 1995, 67 (10):1435-1437
    [94] S. O. Kucheyev, J. S. Williams, S. J. Pearton, et al. Ion Implantation into GaN. Sci. Eng., 2001, R. 33, 51
    [95] X. A. Cao, C. R. Abernathy, R. K. Singh, et al. Ultrahigh Si implant activation efficiency in GaN using a high-temperature rapid thermal-process system . Appl. Phys. Lett., 1998, 73(2): 229-231
    [96] I. H. Lee, I. H. Choi, C. R. Lee, et al. Effects of hillocks and postgrowth annealing on electrical properties in GaN grown by metalorganic chemical-vapor-deposition. J. Cryst. Growth, 1997, 182(3-4): 309-311
    [97] J. Neugebauer, C. G. Van de Walle. Atomic geometry and electronic structure of native defects in GaN. Phys. Rev., 1994, 50(11): 8067-8069
    [98] Kevin Matocha, T. Paul Chow, Ronald J. Gutmann. High voltage normally off GaN MOSFETs on sapphire substrates. IEEE, 2005, 52(1): 6-10
    [99] Haijiang Yu, L. Mc, Carthy, et al. Dopant activation and ultralow resistance ohmic contacts to Si-ion-implanted GaN using pressurized rapid thermal annealing. Appl. Phys. Lett., 2004, 85(22): 5254-5256
    [100] S. O. Kucheyev, J. S. Williams, S. J. Pearton, et al. Ion Implantation into GaN. Sci. Eng., 2001, R. 33, 51
    [101] Felix Recht, L. McCarthy, S. Rajan, et al. Nonalloyed ohmic contacts in AlGaN/GaN HEMTs by ion implantation with reduced activation annealing temperature.IEEE,2006, 27(4): 205-207
    [102] J. Neugebauer, C. G. Van de Walle. Atomic geometry and electronic structure of native defects in GaN. Phys. Rev. 1994, 50(11): 8067-8070
    [103] H. C. Yang, T. Y. Lin, M. Y. Huang et al. Optical properties of Si-doped GaN films. Journal of Applied Physics, 1999, 86(11): 6124-6127
    [104] H. C. Yang, T. Y. Lin, Y. F. Chen. Nature of the 2.8eV photoluminescence band in Si-doped GaN. Physical review, 2000, 62(19): 594-596
    [105] Y.-F. Wu, D. Kapolnek, P. Kozodoy, et al. AlGaN/GaN MODFETs with Low Ohmic Contact Resistances by Source/Drain n+ Re-growth. IEEE Conference , 1998, 431-434
    [106] S.J.Pearton, S.M.Donovan and C.R.Abernathy. High temperature stable WSix ohmic contacts on GaN. IEEE 1998, 296-300
    [107] D. Qiao, Z. F. Guan, J. Carlton, et al. Low resistance ohmic contacts on AlGaN/GaN structures using implantation and the‘‘advancing’’Al/Ti metallization. Applied Physics Letters, 1999, 74(18):2652-2654
    [108] J. S. Foresi and T. D. Moustakas, Metal contacts to gallium nitride, Applied Physics Letters, 1993, Vol. 62: 2859
    [109] B. P. Luther, J. M. DeLucca, S. E. Mohney, et al. Analysis of a thin AlN interfacial layer in Ti/Al and Pd/Al ohmic contacts to n-type GaN, Applied Physics Letters, 1997, Vol. 71:3859
    [110] B. P. Luther, J. M. DeLucca, S. E. Mohney, et al. Analysis of a thin AlN interfacial layer in Ti/Al and Pd/Al ohmic contacts to n-type GaN, Applied Physics Letters, 1997,Vol. 71: 3859
    [111] D.F. Wang, F. Shiwei, C. Lu, et al. Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN, Journal of Applied Physics, 2001, Vol. 89:6214
    [112] C.-T. Lee and H.-W. Kao, Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN, Applied Physics Letters, 2000, Vol. 76:2364
    [113] A. N. Bright, P. J. Thomas, M. Weyland, et al. Correlation of contact resistance with microstructure for Au/Ni/Al/Ti/AlGaN/GaN ohmic contacts using transmission electron microscopy, Journal of Applied Physics, 2001, Vol. 89:3143
    [114]吴鼎芬,颜本达.金属-半导体界面欧姆接触的原理、测试与工艺.上海交通大学出版社,1989,24-47
    [115]李效白,砷化镓微波功率场效应晶体管及其集成电路.北京:科学出版社,1998,155-186
    [116] S. Noor Mohammada. Contact mechanisms and design principles for alloyed ohmic contacts to n-GaN. Journal of Applied Physics, 2004, 95(12):7940-7953
    [117] Yow-Jon Lin, Yao-Ming Chen, Tzyy-Jon Cheng, et al. Schottky barrier height and nitrogen–vacancy-related defects in Ti alloyed Ohmic contacts to n-GaN. Journal of Applied Physics, 2004, 95(2):571-575
    [118] R.Fischer, W.T.Masselink, J.Klem, et al. Elimination of Drain I/V Collapse in MODFETs through the use of thin n-GaAs/AlGaAs superlattice. Electronics Letters, 1984, 20(18):743-744
    [119] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs, Electron Devices, IEEE Transactions on, 2001, 48(3): 560-566
    [120] M. A. Khan, M. S. Shur, Q. C. Chen, et. Al., Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias. Electron. Lett., 1994, 30(25): 2175-2176
    [121] S.C.Binari, W.Kruppa, H.B.Dietrich, et al. Fabrication and characterization of GaN FETs. Solid-State Electron., 1997, 41(10):1549-1554
    [122] G Koley, V Tilak, F. Lester et al., Slow Transients Oberves in AlGaN/GaN HFETs Effects of SiNx Passivation an UV Illumination, IEEE Trans. Electron. Device, 2003,Vol.50:886
    [123] Green B M, Chu K K, Chumbes E M, et al. The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs. IEEE Electron Device Letters, 2000, Vol.21(6): 268-270
    [124] Eastman L F, Tilak V, Smart J, et al. Undoped AlGaN/GaN HEMTs for microwave power amplification. IEEE Trans Electron Devices, 2001, Vol.48(3): 479-485
    [125] Gillespie J K, Fitch R C, Sewell J, et al. Effects of Sc2O3 and MgO passivation layers on the output power of AlGaN/GaN HEMTs. IEEE Electron Device Letters, 2002, 23(9): 505-507
    [126] Luo B, Johnson J W, Kim J, et al. Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors. Applied Physics Letters, 2002, 80(9): 1661-1663
    [127] Hashizume T, Ootomo S, Hasegawa H. Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric. Applied Physics Letters, 2003, 83(14): 2952-2954
    [128] Arulkumaran S, Egawa T, Ishikawa H, et al. Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride. Applied Physics Letters, 2004, 84(4): 613-615
    [129] Kim D H, Kumar V, Chen G, et al. ALD Al2O3 passivated MBE-grown AlGaN/GaN HEMTs on 6H-SiC. Electronics Letters, 2007, Vol.43(2): 129-130
    [130]福田益美,平地康刚(王刚译). GaAs场效应晶体管基础.北京:中国石化出版社. 2005,48-64 [131 S. D. Wolter, B. P. Luther, R. J. Molnar, et. al. X-ray photoelectron spectroscopy and x-ray diffraction study of the thermal oxide on gallium nitride. Appl. Phys. Lett., 1997, 70(16): 2155-2158
    [132] J.O. Song, S.H. Kim, J.S. Kwak, et al. Formation of vanadium-based ohmic contacts to n-GaN. Appl. Phys. Lett., 2003, 83(6):1154-1156
    [133] A. Motayed, R. Bathe, M.C. Wood, et al. Electrical,themal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN. Journal of Applied Physics, 2003, 93(2):1087-1094
    [134] Z.F. Fan, S.N.Mohammad, W. Kim, et al. Very low resistance multilayer Ohmic contact to n-GaN. Appl. Phys. Lett., 1996, 70(16):1672-1674
    [135] F.Roozeboom. Rapid thermal processing status,Problems and Options after the first 25 years. Mat.Res.Soc.Symp.Proc., 1993,303:149
    [136] J.I.Pankove, H.P.Maruska, J.E. Berkeyheiser. Optical Absorption of GaN. Appl. Phys. Lett., 1970, 17(5):197-199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700