陕西双王金矿区岩浆岩特征及与金成矿的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕西双王金矿床是西秦岭地区一个重要的大型金矿床,位于西秦岭东段南麓,夹持于商-丹断裂和凤-镇断裂之间,矿化表现为热液隐爆角砾岩型。本文通过对矿床地质特征,矿区岩浆岩的矿物学、岩石学、地球化学研究以及成矿信息和成岩信息的对比研究获得以下认识:
     (1)矿区出露最广的岩浆岩为西坝岩体,其具有两期侵入的特点,第一期侵入体为典型的I型花岗质岩石,并且多具有埃达克质岩石的特征,形成时代为218~219Ma,第二期侵入体具有I型和A型花岗质岩石过渡的特征,形成时代为215Ma。Hf-Sr-Nd-Pb同位素特征表明,两期侵入体的成岩物质主要以类似耀岭河群的元古代基底物质为主,并且有起源于地幔的基性岩浆的混入。两期侵入体是在扬子板块和华北板块全面碰撞之后的岩石圈由挤压向拉张转变的环境下批示部分熔融形成的,第一期侵入体的源区残留主要为角闪石和石榴石,形成深度大,而第二期侵入体源区残留主要为角闪石和斜长石及少量的石榴石,形成深度比第一期稍浅。
     (2)矿区出露的脉岩有花岗斑岩脉、煌斑岩脉、石英钠长岩脉。花岗斑岩形成于印支晚期-燕山早期,为发生了一定分异的I型花岗质岩石,成岩物质为古老的地壳基底物质,其形成于地壳厚度开始发生减薄的环境下,源区残留主要为斜长石和石榴石;煌斑岩形成于燕山期的板内环境中,岩浆源区为受到俯冲带物质脱水形成的流体交代的富集岩石圈地幔,并且岩浆在上侵过程中受到了一定程度的大陆地壳物质混染。石英钠长岩的源区物质可能为下伏的钠质地壳基底物质,其为西坝岩体形成过程中同熔钠质基底物质并经过强烈的分异形成。
     (3)研究认为双王金矿床形成于印支晚期,与西坝岩体形成时代相近,两者具有密切的时空关系及成因联系,而花岗斑岩和煌斑岩为成矿后岩体,它们与金矿的形成没有成因联系。通过对西坝岩体、围岩地层、蚀变岩石、矿石的物质成分研究结合氢、氧、碳、硫、铅同位素组成表明,成矿金属物质主要来源于赋矿岩石和下伏地层,西坝岩体为金矿的形成提供成矿热液及部分硫、碳、铅,其在上升侵位过程中活化了基底岩石的钠质和碳酸盐,带来了气液隐爆作用所需的大量挥发份并且驱动大量的流体运移。
The Shuangwang gold deposit is an impotant large gold deposit occurs in theWest Qinling area. It is located in the South Qinling gold metallogenic belt betweenthe Shangzhou-Danfeng fault and Fengxian-Zhen’an fault.The deposit is hosted inhydrothermal cryptoexplosive breccia. Through systematic study of geologicalfeatures of deposit, mineralogy, petrology, geochemistry of magmatic rocks inShuangwang gold mine, and comparative study between deposit and magmatic rocks,we have figured out the characteristics and genesis of magmatic rocks around themine, revealing the genetic relationship between magmatic rocks and deposit. Someconclusions have been drawn as below:
     (1) In Shuangwang gold mine, Xiba granitiod as the most widely distributedmagmatic rocks have two periods. The first phase of the intrusions formed in218~219Ma, are typical of I-type granitic rocks and have the characteristics ofadakitic rocks. The second phase of the intrusions formed in215Ma, are transitionalbetween I-type and A-type granites. The Xiba granites have the same source rockswhich mainly consisted by Proterozoic mafic lower crust(such as Yaolinghe group)with some mafic magma derived from partial melting of mantle lithosphere.Thegranitiods were formed in the tectonic environment of transformation fromcompression to extension in the Qinling orogenic belt. The residual mineralassemblage of the first phase intrusions are consist of hornblend and garnet withoutinvolvement of significant amouts of plagioclase, which implies its source region isvery deep. The residuum of the second phase intrusions are horrnblend, plagioclase,and a small quantity of garnet, which indicate a slightly lighter source depth than thefirst.
     (2) Granite-porphyry formed between Late Indosinian and early Yanshanian aredifferentiation of I-type granitoid rocks. The diagenetic material are the ancient crustalbasement without mantle material. It was formed in the tectonic environment ofthinning of the crustal thickness, the source region residues are mainly plagioclase andgarnet.Lamprophyre dikes formed in the within-plate setting of Yanshanian. Thelamprophyre formed from the magma derived from partial melting of the mantle withmetasomatism of fluids in subduction zone, and with contamination of crustalmaterials in rising process of the magma.
     (3) Through the geochronology study of other deposits in the region of Fengtai area. We figure out Shuangwang gold deposit formed in the late Indosinian similar tothe age of Xiba granitiod, had a temporal relationships and close genetic link with themagmatism. Granite-porphyry and lamprophyre are post-ore dikes with no geneticrelationship to gold mineralization.According to study of material composition ofXiba granitiod, ore-hosted stratum, altered rocks, and ore, coupled with hydrogen,oxygen, carbon, sulfur, lead isotopic composition, it is reasonably considered thatore-forming materials were mainly derived from country rocks and underlying rocks.Xiba granitiod provided hydrothermal fluid, heat and some ore-forming materials.
引文
Allegre CJ, Minster JF. Quantitantive method of trace element behavior in magmaticprocesses[J].Earth and Planetary Science Letters,1978,38:1~25
    Alther R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the EuropeanVariscides: northern Vosges (Fance) and northern Schwarzwald(Germany)[J]. Lithos,2000,50:51~73
    Anderson J L, Smith D R. The effects of temperature and fO2on the Al-in-hornblende barometer[J].American Mineralogist,1995,80(5-6):549~559
    Anderson J L. Status of thermobarometry in granitic batholiths[J]. Transactions of the RoyalSociety of Edinburgh Earth Science,1996,87:125~138
    Atherton MP, Petford N. Generation of sodium-rich magmas from newly underplated basalticcrust[J].Nature,1993,362:144~146
    Belousova EA, Griffin WL, Suzanne Y, et al. Ingeous zircon: trace element compositions as anindicator of source rock type[J].Contributions to Mineralogy and Petrology,2002,143:602~622
    Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution ofthe mantle-crust system[J]. Earth Planetary Science Letters,1997,148:243~258
    Blundy J D, Holland T J B. Calcic amphibole equilibria and a new amphibole-plagioclasegeothermometer[J]. Contributions to Mineralogy and Petrology,1990,104(2):208~224
    Brown GC. Calc-alkaline intrusive rocks: Their diversity, evolution and relation to volcanicarcs[C]. In: Thorpe RS(ed). Andesites-orogenic andesites and related rocks. New York: JohnWiley and Sons,1982.437-464
    Carmichael I S E. The redox states of basic and silicic magmas:a reflection of their sourceregions[J]. Contributions to Mineralogy and Petrology,1991,106(2):129~141
    Castillo PR, Janney PE, Solidum RU. Petrology and geochemistry of Camiguin island,southernPhilippiness:insight to the source of adakites and other lavas in a complex arc setting[J].Contributions to Mineralogy and Petrology,1999,134:33~51
    Creaser RA, Price RC, Wormald RJ. A-type granite revisited:Assessment of a residual-sourcemodel[J].Geology,1991,19:163~166
    Defant MJ,Drummond MS. Derivation of some modern arc magmas by melting of youngsubducted lithosphere[J]. Nature,1990,347(6294):662~665
    Dupuy C, Liotard JM, Dostal. Zr/Hf fractionation in intraplate basaltic rocks:carbonatemetasomatism in the mantle sourcs[J]. Geochimi. Cosmochim. Acta,1992,56(6):2417~2423
    Foster M D. Interpretation of the composition of trioctahedral micas[J]. Geological SurveyProfessional Paper,1960,354-B:11~49
    Furman T, Graham D. Erosion of lithospheric mantle beneath the East African Rift system:geochemical evidence from the Kivu volcanic province[J].Lithos,1999,48(1-4):23~262
    Gao S, Roberta IR, Yuan HL, et al. Recycling of lower continental crust in the North ChinaCraton[J]. Nature,2004,424:392~397
    Green TH. Experimental studies of trace element partitioning applicable to igneous petrogenesisSedona16years later[J]. Chemical Geology,1994,117:1~36
    Griffin WL, Pearson NJ, Belousova E, et al. The Hf isotope composition of cratonic mantle:LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochim. Cosmochim. Acta,2000,64:133~147
    Griffin WL, Wang X, Jackson SE, et al. Zircom chemistry and magma genesis,SE China: In-situanalysis of Hf isotopes,Tonglu and Pingtan Ingeous Complexes[J]. Lithos,2002,61:237~269
    Holland T, Blundy J. Non-ideal interactions in calcite amphiboles and their bearing onamphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology,1994,116(4):433~447
    Hoskin PWO, Ireland TR. Rare earth element chemistry of zircon and its use as a provenanceindicator[J]. Geology,2000,28:627
    Huebner J S, Sato M. The oxygen fugacity-temperature relationships of manganese oxide andnickel oxide buffers[J]. American Mineralogist,1970,55(5-6):934~952
    Jochum KP, Mcdonough WF, Palme H, et al. Compositional constraints on the continentallithospheric mantle from trace elements in spinel peridotite xenoliths[J]. Nature,1989,340(6234):544-550
    King PL, Chappell BW, Allen CM, et al. Are A-type granites the high-temperature felsicgranites?Evidence from fractionated granites of the Wangrah Suite[J]. Australian Journal ofEarth Science,2001,48:501~514.
    King PL, White AJR, Chappell BW,et al. Characterization and oring of aluminous A-type granitefrom the Lachlan Fold Belt,Southeastern Australia[J]. Journal of Petrology,1997,38:371~391.
    Leak B E, Woolley A R, Arps C E S. Nomenclature of amphiboles:report of the subcommittee onamphiboles of the International Mineralogical Association, commission on new minerals andmineral names[J]. American Mineralogist,1997,82(9-10):1019~1037
    Maniar P, Piccoli P. Tectonic discrimination of granitoids[J]. Geological Society of AmericaBulletin,1989,101:635~643
    Mao JW, Qiu YM, Goldfarb RJ, Geology, distribution, and classification of gold deposits in thewestern Qinling belt, central China[J]. Mineralium Deposita,2002,37(1):352~377
    Maury RC, Defant MJ, Joron JL. Metasomatism of the sub-arc mantle inferred from traceelements in Philippine xenoliths[J]. Nature,1992,360(6405):661~663
    McDonough WF, Sun SS. The composition of the Earth[J]. Chemical Geology,1995,120:223~253
    Meen JK, Eggler DH, Ayear JC. Experimental evidence for very low solubility of rare earthelements in CO2rich fluids at mantle condition[J]. Nature,1989,340(6231):301~303
    Meschede M. A method of discriminating between different types of mid-ocean ride basalts andcontinental tholeiites with Nb-Zr-Y diagram[J]. Chemical Geology,1986,56:207~211.
    Miller CF, McDowell SM, Mapes RW. Hot and cold granites? Implication of zircon saturationtemperature and preservation of inheritance[J].Geology,2003,31(6):529~532
    M ller A, O’Brien PJ, Kennedy A. Linking growth episodes of zircon and metamorphic textures tozircon chemistry:An example from the ultralhigh-temperature granulites of Rogaland(SWNorway)[J].Geological Society (London) Special Publications,2003,220:65~81
    Neiva A M R. Geochemistry of hybrid granitoid rocks and of their biotites from central northernPortugal and their petrogenesis[J]. Lithos,1981,14(2):149~163
    PatinoDouce AE, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal ofPetrology,1998,39(4):689~710
    Pearce JA, Norry MJ. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J].Contributions to Mineralogy and Petrology,1979,69:33~47
    Pearce JA. Sources and settings of granitic rocks[J]. Episodes,1996,19:120~125
    Rapp RP, Shimizu N, Norman MD, et al. Reaction between slab-derived melts and peridotite inthe mantle wedge:experimental constrains at3.8GPa[J].Chemical Geology,1999,160:335~356
    Rickwood PC. Boundary lines within petrologic diagrams which use oxides of major and minorelements[J]. Lithos,1989,22:247~263
    Rock NMS. The nature and origin of the lamprophyres: an overview[J]. Geol. Soc. Spec. Publ.1987,30:191~226
    Scherer EE, Cameron KL, Blichert-toft J. Lu-Hf garnet geochronology:closure temperaturerelative to the Sm-Nd system and the effect of trace mineral inclusion[J]. Geochimical andCosmochimical Acta,2000,64:3413~3432
    Schiano P, Clocchiatti R, Joron JL. Melt and fluid inclusions in basalts and xenoliths from TahaaIsland, Society Archipelago:evidence for a metasomatized upper mantle[J].Earth andPlanetary Science Letters,1992,111(1):69~82
    Schmidt M W. Amphibole composition in tonalite as a function of pressure: an experimentalcalibration of the Al-in-hornblende barometer[J]. Contributions to Mineralogy and Petrology,1992,110(2-3):304~310
    Schmidt M W. Phase relations and composition in tonalite as a function of pressure:Anexperimental study at650°C [J].American Journal of science,1993,293:1011~1060
    Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at1.5and2.0GPa:implications for the origin of adakites[J]. Contributions to Mineralogy and Petrology,1994,117:394~409
    Sisson TW, Ratajeski K, Hankins WB, et al. Voluminous granitic magmas from common basalticsources[J]. Contributions to Mineralogy and Petrology,2005,148(6):635~661
    Soderlund U, Patchett PJ, Vervoort JD, et al. The176Lu decay constant determined by Lu-Hf andU-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth Planetary Science Letters,2004,148:243~258
    Spear FS. NaSi-CaAl exchange equilibrium between plagioclase and amphibole:an empiricalmodel[J].Contributions to Mineralogy and Petrology,1980,80:140~146.
    Sun SS, McDonough WF. Chemical and isotopic systematics of oceanic desalts: Implications formantle composition and processes[C].In: Saunders AD and Norry MJ,ed. Magmatism in theOcean Basins. Geol. Soc. Spec.Publ.,1989.313~345
    Taylor SR, Mclennan SM. The continental crust: its compositions and evolution[M]. London:Blackwell,1985.57~72
    Watson EB, Harrison TM. Zircon saturation revisited: Temperature and composition effects in avariety of crustal magma type[J]. Earth and Planet Science Letters,1983,64:295~304.
    Weaver BL. The origin of ocean island basalt end member compositions: trace element andisotopic constraints[J]. Earth and Planetary Sciences Letters,1991,104(2-4):381~397
    Whalen JB, Currie KJ, Chappell BW. A-tyoe granites:geochemical characteristics,discriminationand petrogenesis[J].Contributions to Mineralogy and Petrology,1987.
    Wones D R, Eugster H P. Stability of biotite:experiment, theory, and application[J]. AmericanMineralogist,1965,50(9):1228~1272
    Zartman RE, Doe BR. Plumbotectonics-the model[J].Tectonophysics,1981,75:135~162
    Zhang F, Liu SW, Li QG, et al. Re-Os and U-Pb Geochronology of Erlihe Pb-Zn Deposit,QinlingOrogenic Belt,Central China, and Constraints on Its Deposit Genesis[J].Acta GeologicaSinica(English Edition),2011,85(3):673~682
    陈衍景,富士谷.豫西金矿成矿规律[M].北京:地震出版社,1992.234
    陈衍景,张静,张复新.西秦岭地区卡林-类卡林型金矿床及成矿时间、构造背景和模式[J].地质论评,2004,50(2):134~152
    陈毓川.矿床的成矿系列[J].地学前缘,1994,1(3-4):90~94
    樊硕诚.陕西双王大型金矿床成矿模式成矿规律与找矿前景探讨[J].陕西地质,1994,12(1):27~35
    方维萱.凤太泥盆纪拉分盆地中硅质铁白云岩-硅质岩特征及成岩成矿方式[J].岩石学报,2000,16(4):700~710.
    方维营,张国伟,胡瑞忠,等.秦岭造山带泥盆系热水沉积岩相应用研究及实例[J].沉积学报,2001,19(1):48~54
    冯建忠,邹世才,汪东坡,等.八卦庙金矿脆-韧性剪切带控矿特征及成矿构造的动力学机制[J].中国地质,2002,29(1):58~66
    葛小月,李献华,陈志刚,等.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征极其成因:对中国东部地壳厚度的制约[J].科学通报,2002,47(6):474~480
    弓虎军,朱赖民,孙博亚,等.南秦岭沙河湾、曹坪和柞水岩体锆石U-Pb年龄、Hf同位素特征及其地质意义[J].岩石学报,2009a,25(2):248~264
    弓虎军,朱赖民,孙博亚,等.南秦岭地体东江口花岗岩及其基性包体的锆石U-Pb年龄和Hf同位素组成[J].岩石学报,2009b,25(11):3029~3042
    古貌新,戴安周.陕西双王金矿床地质特征[J].陕西地质,1983,1(2):23~31
    赫英.构造岩浆活化与秦岭金矿床[J].大地构造与成矿学,1996,20(1):6l~66
    侯可军.La-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595~2604
    胡乔青,王义天,王瑞廷,等.陕西凤太矿集区二里河铅锌矿床的成矿时代-来自闪锌矿Rb-Sr同位素的证据[J].岩石学报,2012,28(1):258~266
    胡西顺.陕西双王金矿床成因的再认识[J].黄金科学技术,2009,17(2):17~22
    惠德峰,周乃武.双王金矿床矿化类型问题研究[J].黄金学报,2001,3(1):l~5
    贾大成,胡瑞忠,卢焱,等.湘东北钠质煌斑岩地幔源区特征及成岩构造环境[J].中国科学(D缉),2003,33(4):344~352
    贾润幸,郭键,赫英,等.秦岭凤太成矿区金多金属矿床成矿流体地球化学研究[J].中国地质,2004,31(2):192~198
    贾润幸,韩述山,魄合明.秦岭凤太矿田金矿成矿特征及成因分析[J].西安工程学院学报,1999,21(4):67~75
    金勤海,鞠党辰.陕西太白南部西坝复式岩体的成因及其与双王金矿床的关系[J].现代地质,1990,4(4):65~76
    靳西祥.陕西双王金矿成因的新认识[J].西北地质,1991,12(4):21~23
    康磊,李永军,张兵,等.新疆西准噶尔下尔莆岩体岩浆混合的岩相学证据[J].岩石矿物学杂志,2009,28(5):623~432.
    黎彤.化学元素的地球丰度[J].地球化学,1976,3:167~174
    李建华.陕西凤太地区“八卦庙式”金矿控矿因素及其找矿潜力分析[J].矿产与地质,2008,22(1):26~46
    李强.南秦岭富钠长石岩石的岩石学和地球化学研究[J].岩石矿物学杂志,2011,30(2):199~207
    李胜荣,孙丽,张华锋.西藏曲水碰撞花岗岩的混合成因:来自成因矿物学证据[J].岩石学报,2006,22(4):884~894.
    李曙光,孙卫东,张国伟,等.南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学-古生代洋盆极其闭合时代的证据[J].中国科学(D缉),1996,26(3):223~230.
    李霞.陕西省凤太矿集区丝毛岭金矿传地质地球化学特征与成因研究[D].中国地质大学(北京),2010
    李勇,苏春乾,刘继庆.东秦岭造山带钠长岩的特征、成因及时代[J].岩石矿物学杂志,1999,18(2):121~127
    李永飞,赖少聪,秦江锋.碧口火山岩系地球化学特征及Sr-Nd-Pb同位素组成—晋宁期扬子北缘裂解的证据[J].中国科学D辑:地球科学,2007,37(增刊Ⅰ):295~306
    梁华英,王秀璋,程景平.陕西双王钠长石岩特征及金矿床形成期次分析[J].大地构造与成矿学,2000,24(4):350~356
    刘洪杰,陈衍景,毛世东,等.西秦岭阳山金矿带花岗斑岩元素及Sr-Nd-Pb同位素地球化学[J].岩石学报,2008,24(5):1101~1111.
    刘家军,何明勤,李志明,等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质,2004,23(1):1~8
    刘家军,毛光剑,吴胜华,等.甘肃寨上金矿床成矿特征与形成机理[J].矿床地质,2010,29(1):1~14
    刘燊,胡瑞忠,赵军红,等.胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究[J].岩石学报,2005,21(3):947~958
    刘淑文,王涛,曾荣,等.南秦岭旬阳志留系热水沉积钠长石岩地质地球化学特征[J].地质与勘探,2008,44(3):40~46
    刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:地质出版社,1984.194-215
    路凤香,舒小辛,赵崇贺.有关煌斑岩分类的建议[J].地质科技情报,1991,10(增刊):55~62.
    鹿坤,冯佐海,侯读杰,等.桂东北煌斑岩地球化学特征及其成因研究[J].地质与勘探,2009,45(2):8~13
    路远发.Geokit:一个用VBA构建的地球化学工具软件包[J].地球化学,2004,33(5):459-464
    马铁球,陈俊,郭乐群等.湘东北临湘地区钾质煌斑岩40Ar-39Ar定年及其地球化学特征[J].中国地质,2010,37(1):56~63
    毛景文.西秦岭地区造山型与卡林型金矿床[J].矿物岩石地球化学通报,2001,20(1):11~13
    彭大明.秦岭地区金矿成矿研讨[J].黄金地质,1997,3(1):38~44
    蒲关虎.东秦岭钠长岩和角砾岩带成因讨论[J].陕西地质,1997,15(1):46~50
    祁思敬,李英.南秦岭泥盆系成矿带热水沉积成矿系列[J].西安地质学院学报,1997,19(3):19~26
    祁思敬,李英.南秦岭晚古生代海底喷气一沉积成矿系统[J].地学前缘,1999,6(1):171~179
    秦江锋,赖少聪,李永飞.扬子板块北缘碧口地区阳坝花岗闪长岩体成因研究极其地质意义[J].岩石学报,2005,21(3):697~710.
    秦江锋.秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景[D].西北大学,2010
    陕西省地质矿产局.陕西省区域地质志.北京:地质出版社,1989
    石准立,刘瑾璇,樊硕诚,等.陕西双王金矿床地质特征及其成因[M].西安:陕西科学技术出版社,1989.1~118
    石准立,刘瑾漩,金勤海.与碱性碳酸盐有关的双王金矿床[M].北京:地质出版社,1993.133~146
    史静海.陕西双王金矿床含金角砾岩分类及其找矿意义[J].地质找矿论丛,2001,16(3):206~209
    汤静如,汪劲草,王国富,等.陕西双王含金角砾岩地质特征及成因初探[J].西北地质,2002,35(1):60~64
    滕道鹏.陕西双王金矿床韧脆性剪切变形控矿特征[J].黄金学报,2001,3(1):14~18
    汪劲草,汤静如,王国富,等.太白双王含金角砾岩体的形成过程及金矿体预测[J].地质论评,2001,47(5):508~513
    汪昭祥.对陕西凤县-商南泥盆系中钠化特征的初步认识[J].陕西地质,1987,5(2):68~74
    汪昭祥.试论双王金矿的矿化特征和成矿模式[J].陕西地质,1989,7(2):15~25
    王国富,孙振家,彭恩生,等.陕西双王金矿床角砾岩动力学成因探讨[J].大地构造与成矿学,2002,35(1):81~85
    王国富.陕西双王金矿床构造成矿作用及成矿预测研究[D].中南大学,2006
    王建业,刘莺玲.秦岭地区卡林型金矿成矿模式[J].矿产与地质,1995,9(4):243~246
    王瑞廷,王涛,高章鉴,等.凤-太多金属矿集区主要金属矿床成矿系列与找矿方向.西北地质,2007,2(40):77~84
    王瑞廷,李芳林,陈二虎,等.陕西凤县八方山-二里河大型铅锌矿床地球化学特征及找矿预测[J].岩石学报,2011,27(3):779~793
    王晓霞,王涛,Himari H,等.秦岭环斑结构花岗岩中暗色包体的岩浆混合成因及岩石学意义—元素和Nd、Sr同位素地球化学证据[J].岩石学报,2005,21(3):935~946
    王亚力.太白双王含金角砾岩带钠长板岩的成因探讨.陕西秦巴地质论文稿集,第一集,陕西省地质矿产局,1985
    王治华,郭晓东,葛良胜等.云南大坪金矿区煌斑岩的地球化学特征及成因探讨[J].岩石矿物学杂志,2010,29(4):355~366
    吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007a,23(2):185~220
    吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007b,23(6):1217~1238
    夏林圻,夏祖春,李向民.南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因[J].西北地质,2008,41(3):1~29
    夏林圻,夏祖春,徐学义等.碧口群火山岩岩石成因研究[J].地学前缘,2007,14(3):84~101
    谢玉玲,钱大益,徐久华.南秦岭泥盆系典型金矿床高盐度流体及其深源特征[J].岩石学报,2000a,16(4):655~660
    谢玉玲,徐久华,何知礼,等.太白金矿流体包裹体中黄铁矿和铁白云石等子矿物的发现及成因意义[J].矿床地质,2000b,19(1):54~60
    薛春纪,祁思敬.南秦岭泥盆纪同生热水沉积环境的沉积学及地球化学信息[J].西北地质,1995,16(4):37~42
    炎金才.论双王金矿床的成因[J].西北大学学报.1992,22(增刊):221~229
    炎金才.秦岭泥盆系热水沉积硅质岩的地球化学特征[J].西北地质,1996,17(1):32~38
    炎金才.秦岭泥盆系热水沉积岩中主要矿物的标型特征[J].矿物学报,1995,15(3):317~326
    炎金才.陕西双王金矿床含铁白云石的某些标型特征[J].矿物岩石,1993,13(4):27~33
    闫全人,Ander DH,王宗起,等.扬子板块西北缘碧口群火山岩系的地球化学特征及其构造环境[J].岩石矿物学杂志,2004,23(1):1~11
    严阵.陕西花岗岩[M].西安交通大学出版社,1985
    杨喜安,刘家军,韩思宇,等.云南羊拉铜矿床里农花岗闪长岩体锆石U-Pb年龄、矿体辉钼矿Re-Os年龄及其地质意义[J].岩石学报,2011,27(9):2567~2576
    翟裕生.论成矿系统[J].地学前缘,1999,6(1):13~27
    张成立,周鼎武,金海龙,等.武当地块基性岩墙群及耀岭河群基性火山岩的Sr、Nd、Pb、O同位素研究[J].岩石学报,1999,15(3):430~437
    张成立,罗静兰,李淼,等.东秦岭西坝花岗岩体及其脉岩的地球化学特征[J].西北大学学报(自然科学版),2002,32(4):384~388
    张二朋,牛道韬,霍有光,等.秦巴及邻区地质—构造特征概论[M].北京:地质出版社,1993
    张帆,刘树文,李秋根,等.秦岭西坝花岗岩LA-ICP-MS锆石U-Pb年代学及其地质意义[J].北京大学学报(自然科学版),2009,45(5):833~840.
    张复新,季军良,龙灵利,等.南秦岭卡林型一似卡林型金矿床综合地质地球化学特征[J].地质论评,2001,47:492~499
    张复新,刘文峰.秦岭泥盆系层控金矿类型及找矿前景[J].西北大学学报,1992,22(增刊):213~220
    张复新,魏宽义,马建秦.南秦岭微细粒浸染型金矿床地质与找矿[M].西安:西北大学出版社,1997.l~190
    张复新,宗静婷,马建秦.秦岭卡林型金矿床及相关问题探讨[J].矿床地质,1998,17(2):172~184
    张复新.沉积岩型金矿床综述—兼论秦岭沉积岩区金矿类型及其分布[J].西北地质,1996,17(4):24~30
    张复新.陕西双王金矿床成矿作用及金的赋存状态研究[J].西北地质,1997,18(2):28~32
    张国伟,董云鹏,赖少聪,等.秦岭—大别造山带南缘勉略构造带与勉略缝合带[J].中国科学(D缉),2003,33(12):1121~1135.
    张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001.855
    张宏飞,勒兰兰,张利,等.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成及其构造属性的限制[J].中国科学(D缉),2005,35(10):914~926
    张宏飞,欧阳建平,凌文黎.南秦岭宁陕地区花岗岩类Pb、Sr、Nd同位素组成及其深部地质信息[J].岩石矿物学杂志,1997,16(1):22~32.
    张宏飞,肖龙,张利,等.扬子陆块西北元碧口块体印支期花岗岩类地球化学和Pb-Sr-Nd同位素组成:限制岩石成因及其动力学背景[J].中国科学,2007,37(4):460~470
    张旗,金惟俊,李承东,等.再论花岗岩按照Sr-Yb的分类:标志[J].岩石学报,2010a,26(4):985~1015
    张旗,金惟俊,李承东,等.三论花岗岩按照Sr-Yb的分类:应用[J].岩石学报,2010b,26(12):3431~3455
    张作衡,毛景文,李晓峰.双王角砾岩型金矿床地质地球化学及成矿机制[J].矿床地质,2004,23(2):241~252
    赵振华.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J].地学前缘,2010,17(1):267~286
    钟建华.陕西秦岭泥盆系区域成矿大地构造演化及八卦庙金矿地质成因与控矿构造的研究[西北大学地质系博士后流动站出站报告].
    周勇,李昌年,钟称生,等.赣东北港边火成杂岩体岩浆混合作用结构类型与成因机理[J].矿物学报,2006,26(2):181~188.
    周振华,吕林素,王挨顺.内蒙古黄岗锡铁矿床花岗岩深部源区特征与构造岩浆演化:Sr-Nd-Pb-Hf多元同位素制约[J].地质科技情报,2011,30(1):1~14
    朱炳泉.地球科学中同位素体系理论与应用-兼论中大陆壳幔演化[M].北京:科学出版社,1998.1~330
    朱振涛.凤县-太白一带泥盆系中钠长板岩的地质特征及成因[J].西北地质,1985,(5)51~55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700