齐家北地区扶余油层成岩作用及其对储层发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对松辽盆地齐家北地区扶余油层砂岩岩心观察、薄片鉴定、扫描电镜观察和包裹体测温等分析方法,确定了扶余油层的成岩作用规律和成岩相的特征及其对储层发育的影响并进行了精细描述。通过岩心观察和薄片鉴定确定了该地区泉头组四段的储层岩石类型主要为细砂岩、中砂岩,长石和岩屑含量相差不大;各种陆源碎屑组分和化学沉淀胶结物类型及其成岩演化特征。研究结果表明齐家北地区扶余油层具体的成岩作用类型有压实作用、胶结作用、以及组分的溶蚀和溶解作用。根据通过包裹体均一测温法取定成岩温度区间为70~135℃。依据石油行业标准(SY/T5477—2003)碎屑岩成岩阶段划分中淡水—半咸水水介质碎屑岩成岩阶段划分标志并结合本区成岩温度和粘土矿物组合的具体情况将扶余油层划分为中成岩AⅠ、AⅡ和B三个阶段,并绘制各小层成岩作用阶段平面分布图。综合成岩作用和成岩阶段的研究结果得出齐家北地区扶余油层的成岩序列。根据薄片显微镜下特征确定出四种成岩相:硅质胶结相、钙质胶结相、粘土环边成岩相、混合成岩相,并建立成岩相模式、绘制成岩相平面分布图。最后结合孔隙参数得出各成岩作用阶段对孔隙发育影响不大,其中AⅡ阶段孔隙发育相对较好;从成岩相角度硅质胶结相、粘土环边胶结相、混合交接箱、钙质胶结相孔隙发育依次变差。
The north of Qijia region is in the Dorbod Mongolzu Autonomous Counties which locate in the Daqing City of Heilongjiang Province, whose east is Daqing Placanticline, the west is Qijia oil field, the south is Lamadian Town, the north is Zhangqi Country Lindian Town, it is in the north of Qijia-Gulong Sag Central Depression region which is in the north of Songliao Basin. In the evolution of Songliao Basin Qijia-Gulong Sag undergo four stages: fault depression-fault and depression-depression- uplifting.
     Through the observation and description to core, the major sedimentary facies are delta plain and front subfacies, the oil shows are obvious. Rock types are mudstone with silt, fine-sandstone, middling-granularity-sand, major clastic particles components are quartz, feldspar and lava debris, the contents of feldspar and lava debris are similar. The cement type is carbonate with iron and magnesium, siliceous cement, clay cement and zeolite. The matrixes include mud and argillaceous. The content of fillings of sandstone is 9%~17%.
     The major diagenetic evolution of quartz is overgrowth which is the result of chemic deposition in acidity liquid environment; in addition the corrosion of quartz shows that the pH value augment is along with the increasing of temperature in diagenetic evolution. The diagenetic evolution of feldspar is overgrowth which occurred in high diagenetic temperature and alkalescence solution; on the side the clayization of feldspar represents that the illite and illite hydromica are on the surface of feldspar; the degree of the corrosion had the direct relationship with the physical character of reservoir. Lava debris is the important fragment component in this region, the major is acidic and intermediate, the minor is basic; the dissolved pores in debris granule is an important pore type. Beside secondary enlarged quartz and feldspar, carbonate cement and clay mineral are the most chemic deposition cement in amount, zeolite cement is less but it is also the important indicate of the diagenetic phase.
     The depth of Quan-4 member is in the range of 1800~2300m in this block, the depth diversification is small, so the dagenesis didn’t have great differences. The idiographic dagenesis types are: compaction, cementation and the corrosion, dissolution of component. The compaction is the major dagensis type at the top of Quan-4 member.
     Carbonate cements are calcite or calcite with iron and magnesium; the cementation is not strong at some positions, the proportion of the fillings is small, the cementation is strong at other positions, the calcites show intergrowth structure; the origin of Ca~(2+) is the albitization of potassium feldspar, the increasing of temperature, the reducing of partial pressure of CO2 is propitious to the sedimentation of carbonate.
     Fe~(2+)、Mg~(2+) come from the translation of montmorillonite to illite, mafic-intermediate volcanic debris’dissolution also could increase the content of Fe~(2+)、Mg~(2+). The major representation of silicic cementation is secondary enlarging of quartz, the major quartz particles are 3~5 stage, silicic cement came from the of alteration volcanic glass, the transformation of clay mineral, the dissolution of feldspar, pressure solution.
     The clay minerals in this block grew on the surface of apatite like pellicle, the degree of clayization rose with the increasing of depth, the diversification of illite’s content with the increasing of depth is not obvious, the degree of crystallinity had the ameliorative trend, judging from the result of anlysis, the kaolinite just appears a higher belt at the bottom of Quan-4 member; illite smectite mixed layer content shows negative correlation with illite content; chlorite distribute in the northwest area which is close to provenance, it could be translate from kaolinite, if the interlayer water contained Fe~(2+)、Mg~(2+) it could translate from illite or potash feldspar.
     The zeolite is the important attribute of diagensis in this block, whose formative temperature is 120℃. Dissolutions include the dissolution of calcite with iron and magnesian, denudation and metasomatism include the calcite’measomatism to quartz and the albitization of potash feldspar, the former is result of increasing of pH value and temperature and the depress of CO2 content; the latter is the result of replacement of Na+ to K+ in the potash feldspar whose exhibition is the decrease of potash feldspars and the manifold of albite.
     Through the thermometry on fluid inclusions we got the conclusion that the temperature ubterval of diagenesis is 70~135℃in Fuyu reservoir the north of Qijia region. According as the fresh water–brackish aqueous medium claslite diagenetic stage plot sttribute in the petroleum industry standard ( SY/T5477-2003) clasolite diagenetic stage plot, combining with practical situation of diagenesis in this block, we divide the diagenesis of Quan-4 member into three phases: the metaphase diagensis phase ( MDP) AⅠ, AⅡand B, approximately the demarcation temperature of MDP-A and MDP-B is 120℃. The MDP- AⅠonly distributes in the FⅠ1 and FⅠ2 little layers. The MDP- AⅡdistributes in very little layers in most area which decreases to northwest with the increasing of depth, MDP-B distribute at southeast whose area increases to northwest with the increasing of depth, the changing law above are anastomotic with the characters of construct and provenance in the north of Qijia region.
     Through the integrative analysis including the observation under the microscope, we compartmentalize four diagenesis styles: silicic cementation facies, calcitic cementation facies, clay loop facies and admixture facies; combining with diagenesis phase distribution and precipitation facies distribution, we make the distribution of the diagenesis facies of seven little layers, and than draw the pictures for the research of reservoir’s ventages.
     Combining with the result of ventage parametric statistics in different diagenesis phases and diagenetic facies, we get the conclusion: the influence of diagenesis to pores and secondary pores is not quite obvious, MDP- AⅡis a little better than other two phases, the four diagenetic facies types we divided through the characters under the microscope: silicic cementation facies, calcitic cementation facies, clay loop facies and admixture facies, the degrees of their ventage upgrowth become worse in turn. The diagenetic research provides theoretic and realistic gist for the study on secondary pores zone.
引文
1 陈克勇. 陆相坳陷盆地隐藏油气藏储层描述——以大牛地气田上古生界为例 D. 成都:成都理工大学,2006
    2 陈彦华,刘莺. 成岩相——储集体预测的新途径 J. 石油实验地质,1994,16(3): 247-281
    3 陈裕明,雷茂盛,吴相梅. 松辽盆地齐家地区薄层砂体定量解释 J. 石油勘探开发,1997,24(5):51-53
    4 窦伟坦,田景春,徐小蓉,朱平,夏青松,倪新锋,张翔,聂永生,杨华,付金华,郭正权,邓秀芹. 陇东地区延长组长 6-长 8 油层组成岩相研究 J. 成都理工大学学报(自然科学版) ,2005,(02):129-132
    5 郭少斌,刘招君,刘万洙,杨光. 应用特征分析法预测松辽盆地扶余油层有利勘探区 J. 石油实验地质,1994,16(2):157-163
    6 侯启军,冯子辉,邹玉良. 松辽盆地齐家-古龙凹陷油气成藏期次研究 J. 石油实验地质,2005,27(4):390-394
    7 侯启军,蒙启安,张革. 松辽盆地齐家-古龙凹陷扶杨油层流体包裹体特征 J. 石油勘探与开发,2004,31(4):48-51
    8 黄善炳. 应用 SEM 研究高邮凹陷 Ed-1 段砂岩硅质胶结作用及其对储集性的影响 J. 电子显微学报,1994,(04):291-296
    9 黄述旺,窦齐丰. 吉林四五家子油田下白垩统泉二段储层成岩储集相及储集空间演化 J. 地球科学——中国地质大学学报,2002,27(6):723-728
    10 贾卧,陈树民,蒋鸿亮. 大庆探区齐家北地区含油砂岩分布预测 J. 大庆石油地质与开发,2004,23(2):12-14
    11 江怀友. 大庆油田储层渗流特征研究与应用 D. 长春:吉林大学,2003
    12 李长山,吕晓光,王占国,尚玉秋,田燕春. 大庆油田北部河流相储层沉积微相与水淹特征 J. 现代地质,2000,14(2):197-202
    13 李红,柳益群,刘林玉. 鄂尔多斯盆地西峰油田延长组长 8-1 低渗透储层成岩作用J. 石油与天然气地质 ,2006,(02):209-217
    14 李晓光,陈振岩. 辽河坳陷古近系碎屑岩储层孔隙演化特征探讨 J. 古地理学报,2006,8(2):251-258
    15 李晓清,郭勤涛,丘东洲. 潍北油田储层的成岩作用及成岩相划分 J. 沉积与特提斯地质 ,2001,(04):28-33
    16 刘国庆,石才艳,刘江. 含钙储层测井响应特征分析 J. 物探与化探,2002,26(5): 395-397
    17 刘洁. 陕北三叠系延长组砂岩主要成岩作用及对孔隙发育的影响 D 成都理工学院 ,2001
    18 刘军海,刘玉洁,王永兴,张永军,陈国勋. 基于显微图像的储层流动单元划分方法 J. 大庆石油学院学报 ,2005,(05):4-11
    19 刘林玉,曹青,柳益群,王震亮. 白马南地区长 8_1 砂岩成岩作用及其对储层的影响 J. 地质学报 ,2006,(05):712-718
    20 刘林玉,高潮. 富县地区上古生界砂岩成岩作用研究 J. 西北大学学报(自然科学版) ,2006,(06):954-956
    21 刘林玉,王震亮,张龙. 鄂尔多斯盆地镇北地区长 3 砂岩的成岩作用及其对储层的影响 J. 沉积学报,2006,24(5):690-697
    22 刘孟慧,赵澄林. 辽东湾下第三系砂体微相和成岩作用研究 J. 石油大学学报(自然科学版),1994,18(1):1-9
    23 刘生国,翟永红,郭建华. 塔中地区石炭系碎屑岩储层孔隙结构特征与储层评价 J. 汉江石油学院学报,1995,17(3):8-12
    24 刘万洙,刘招君,王东坡. 松辽盆地白垩系岩石组合与粒度分布特征 J. 长春地质学院学报,1996,26(2):131-137
    25 刘晓冬,程勤松,李守田. 松辽盆地北部齐家-古龙地区断层-裂缝体系分维特征及其应用 J. 大庆石油学院学报,1998,22(2):14-17
    26 刘娅铭. 塔里木盆地志留-泥盆系碎屑岩储层特征研究 D. 北京:中国地质大学(北京),2006
    27 刘玉洁,王永兴. 茂兴地区扶-杨油层碎屑岩储层非均质性及孔隙演化模式 J. 大庆石油学院报,1994,18(4):19-22
    28 楼章华,曾允孚. 扶杨油层孔隙水成因与砂岩成岩相研究 J. 沉积学报,1995,13: 63-70
    29 楼章华,曾允孚,高瑞祺,姜传金. 扶、杨油层水化学场特征及其成因 J. 大庆石油地质与开发,1994,13(1):21-25
    30 吕晓光,闫伟林,杨根锁. 储层岩石物理相划分方法及应用 J. 大庆石油地质与开发,1997,16(3):18-21
    31 马安来,李贤庆,熊波,王铁冠,冯子辉,孔庆云,李少华. 松辽盆地齐家古龙地区烃源岩有机岩石学研究 J. 石油勘探与开发,2002,29(4):26-28
    32 马艳萍,刘立,闫建萍,高玉巧,马 锋. 松辽盆地齐家-古龙凹陷扶杨油层次生孔隙特征及其与烃类侵位的关系 J. 世界地质,2003,22(1):36-40
    33 蒙启安,黄薇,林铁峰,张 顺,厉玉乐. 松辽盆地北部岩性油藏形成条件与分布规律 J. 石油地质,2004,(4):6-11
    34 孟元林,高建军,刘德来,牛嘉玉,孙洪斌,周玥,鞠俊成,王粤川. 渤海湾盆地西部凹陷南段成岩相分析与优质储层预测 J. 沉积学报,2004,24(2):185-192
    35 穆曙光,张以明. 成岩作用及阶段对碎屑岩储层孔隙演化的控制 J. 西南石油学院学报,1994,16(3):22-27
    36 牟泽辉. 鄂尔多斯盆地庆阳以南三叠系延长组长_5、长_6、长_7 储层成岩作用 J. 天然气工业 ,2001,(02):13-17
    37 施尚明,申家年,王永林,胡春明. 大庆长垣以东地区低孔渗储层裂缝对油田开发效果的影响 J. 大庆石油学院学报,1999,23(2):9-12
    38 申艳,谢继容,唐大海. 四川盆地中西部上三叠统须家河组成岩相划分及展布 J. 天然气勘探与开发,2006,29(3):21-25
    39 寿建峰,朱国华,陈和平,周联华. 开鲁盆地陆西凹陷侏罗系火山岩屑砂岩的成岩作用特点 J. 石油勘探与开发,1995,22(5):81-87
    40 王宝清,张荻楠,刘淑芹,周永炳,金曙光. 龙虎泡地区高台子油层成岩作用及其对储集岩孔隙演化的影响 J. 沉积学报,2000,18(3):414-423
    41 王成,邵红梅,洪淑新,齐晓杰,刘彤艳. 松辽盆地北部深层碎屑岩浊沸石成因、演化及与油气关系研究 R. 大庆:大庆油田有限责任公司勘探开发研究院,2004: 213-218
    42 王建东,刘吉余,于润涛,李艳杰. 层次分析法在储层评价中的应用 J. 大庆石油学院学报,2003,27(3):12-15
    43 王璞珺,程日辉,王洪艳,梁晓东,单玄龙,杨宝俊,孙效东,刘万洙. 松辽盆地滨北地区油气勘探方向探讨 J. 石油勘探与开发,2006,33(4):429-431
    44 王雪. 松辽盆地齐家凹陷与大庆长垣扶杨油层油源 J. 石油勘探与开发,2006,33(3): 294-298
    45 万国江,唐德贵,吴丰昌,黄荣贵,谭骏,张军. 湖泊水-沉积物碳系统研究新进展J. 地质地球化学,1992,2:1-4
    46 吴少波,赵惊蜇,李健. 吴起油田长 6 油层组储层成岩作用及其对物性的影响 J. 西安石油大学学报(自然科学版),2006,21(4):42-45
    47 吴少波,赵靖舟,罗继红,雷晓兰,樊万红. 子长油田上三叠统长 2 油层组储层成岩作用及物性的影响因素 J. 西安石油学院学报(自然科学版),2003,18(4):7-11
    48 夏勇,康锐,杨友运. 鄂尔多斯盆地铁边城地区三叠系延长组长4+5沉积相研究J. 内蒙古石油化工 ,2006,(09):102-104
    49 辛仁臣,田春志,窦同君. 油藏成藏年代学分析 J. 地学前缘(中国地质大学,北京),2000,7(3):48-54
    50 徐樟有,魏萍,熊琦华. 枣南油田孔店组一、二段成岩作用及成岩相 J. 石油学报,1994,15:60-67
    51 薛永超,程林松. 新立油田扶杨油层成岩储集相研究 J. 大庆石油地质与开发 ,2007,(01):22-31
    52 闫建萍,刘 立,张革,林景晔,杨庆杰. 大庆油田齐家-古龙地区扶余油层储层敏感性分析和预测 J. 吉林大学学报(地球科学版),2002,32(3):243-247
    53 闫建萍. 松辽盆地齐家—古龙凹陷扶杨油层烃类侵位对成岩作用的影响D. 长春:吉林大学,2002
    54 杨桂芳,卓胜广,滕玉洪,牛 奔,鄂俊杰. 松辽盆地砂岩中成岩次生矿物特征 J. 石油实验地质,2002,24(6):517-522
    55 杨小萍,陈丽华. 陕北斜坡延长统低渗储集层成岩相研究 J. 石油勘探与开发 ,2001,(04):38-40
    56 尹燕义,王国娟,方少仙,侯方浩. 百色盆地子寅油田碳酸盐及硅质胶结作用特征J. 中国海上油气,1997,11(5):333-336
    57 于良肖. 贵州赤水地区阳新统、中上三叠统及下侏罗统沉积相和储层特征研究 D. 南充:西南石油学院,2003
    58 王粤川. 辽河西部凹陷鸳鸯沟地区成岩场分析与储层孔隙度预测 D 大庆石油学院 ,2006
    59 赵虹,党犇,党永潮,姚韦萍. 安塞油田延长组储集层特征及物性影响因素分析 J. 地球科学与环境学报 ,2005,(04):45-48
    60 赵有山,刘喜武,年静波. 储层沉积微相制图技术研究及其应用 J. 世界地质,2001, 20(3):291-295
    61 张东荣,王军. 利用模糊综合评判法进行储层评价 J. 内蒙古石油化工,2005,(5): 175-176
    62 张民志. 松辽盆地北部粘土矿物的成岩演化类型 J. 矿物岩石,1997,17(3):40-43
    63 张忠民,朱伟,赵澄林. 辽河盆地下第三系深部碎屑岩储层次生孔隙演化模式及其分布 J 大庆石油学院学报 ,2002,(03):12-14
    64 张庄,曾伟,杨西燕. 蜀南地区上三叠统须家河组成岩相划分 J. 西南石油学院学报,2006,28(6):15-23
    65 钟淑敏,綦敦科,王秀娟. 应用常规测井资料识别砂泥岩储层裂缝方法 J. 大庆石油地质与开发 ,2005,(01):98-100
    66 朱平,黄思静,李德敏,刘援朝. 粘土矿物绿泥石对碎屑储集岩孔隙的保护 J. 成都理工大学学报(自然科学版),2004,31(2):153-156
    67 禚喜准,王琪,史基安. 鄂尔多斯盆地盐池-姬塬地区三叠系长 2 砂岩成岩演化特征与优质储层分布 J. 矿物岩石,2005,25(4):98-106
    68 Fuchtbauer H. Classic sediments-lithification and diagenesisA. In: Fairbirdge R W Bourgeois J. ets. The encyclopaedia of sedimentologyC. Dowden: Hutchinson and Ross, Inc, 1987: 132-136
    69 Seifert W K. Moldovan J M. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oilsJ. Chinese Acta. 1978, 42: 77-95
    70 Surdam R C. Crossey L J. Hagen E S etal, 1899, Organic-inorganic interaction and sandstone diagenesis. AAPG, 73(1): 1-3
    71 Shanmugam G, 1985, Significance of secondary porosity in interpreting sandstone composition. The American Association of Petroleum Geologists Bulletin, 69(3): 378-384
    72 Wikinson M. D. Hasezeldine R S et al, 1997, Secondary porosity generation during deep burial associated with overpressure leak-off, Fulmar Formation, United Kingdom central graben. AAPG Bulletin, 81(5): 803-813
    73 Surdam R C. Z S, MacGowan D B, 1993, Redoxand reaction involving hydrycarbons and mineral oxidants: A mechanism for significant porosity enhancement in sandstones. AAPG bulletin, 77(99): 1509-1915
    74 Helgeson H C, konx A M, Owens C E et al, 1993, Petroleum, oilfield waters, and equthigenic mineral assemblages: are they in metastable equilibrium in hydrocarbon reservoirs? Geochimica er Cosmochimica Ata, 57: 3295-3339
    75 Julian C. Baker, Peter J. Havord, Ken R. Martin. Diagenesis and Petrophysics of the Early Permian Moogooloo Sandstone, Southern Carnarvon Basin, Wester Australia. 1AAPG Bulletin, 2000, 84(2): 250-265
    76 Kitty L. Milliken. Diagenetic heterogeneity in sandstone at the outcrop scale, Breathitt Formation (Pennsylvanian), eastern Kentucky. AAPG Bulletin, 2001, 85(5): 795-815
    77 Roger G. Walker. Deep-Water Sandstone facies and Ancient Submerine Fans: Models For Exploration For stratigraphic Traps. AAPG 1978, 62(6): 932-966
    78 Shelley. K. W & McCabe. P. J. Perspectives on the sequence stratigraphy of continental strata. AAPG Bull, 1994, 78: 544-568
    79 Shanmugam. G. The Bouma Sequence and the turbidite mind set. Earch-Science Reviews, 1997, 42: 4, 201-229
    80 J. Cuddy, BP Exploration. Litho-Facies and Permeability Prediction From Electrical Logs Using Fuzzy Logic. SPE Resermoir Eval. & Eng, 2000, 3(4): 319-324
    81 Varnai P. Sequence stratigraphie analysis of Plio-plestocene turbidite systems, northern Green canyon and Central Euing bank areas, northern Gulf of Mexico. AAPG Bull, 1997, 81(9)-1593

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700