济阳坳陷深层稠油成因机理、储层评价与成藏规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深层稠油是指油藏深度大于1800m的稠油。在胜利油田分布广泛,罗家-垦西地区是深层稠油重要分布区域。本论文从石油地质、地球化学和地球物理多方面系统研究了济阳坳陷(尤其是罗家-垦西地区)深层稠油的物性、地球化学特征、储层特征以及源岩地球化学特征,探讨本区域深层稠油的形成机理和分布、富集规律。
     罗家-垦西地区的典型稠油在物性上具有高密度、高粘度和高凝固点等特点。在化学组成上具有含硫量高、胶质和沥青质含量高,而饱和烃、芳烃含量低。稠油物性与含硫量和族组成之间具很好的相关关系。由于这两个地区同时又有稀油及稀、稠混合原油分布。因此,在整体上,这两个地区原油物性、含硫量和族组成变化很大。
     罗家—垦西地区稠油饱和烃色谱、色谱-质谱分析结果展示:(1)正构烷烃具有明显的偶奇优势;(2)类异戊二烯烷烃具有较强的植烷优势,姥姣烷/植烷(Pr/Ph)比值远小于1;(3)伽玛蜡烷相对含量(相对于C30藿烷)普遍很高;(4)C35升藿烷明显高于C34、甚至C33升藿烷;表现出膏盐湖相生物标志物的组成特征。油源对比研究表明,罗家-垦西深层稠油来源于沾化凹陷沙四段膏盐相源岩。
     罗家-垦西稠油大部分样品饱和烃中正构烷烃分布十分完整,不具有生物降解特征。这表明这两个地区深层稠油属原生稠油,不是由于生物降解、地表氧化、水洗等次生作用形成的。生物标志物成熟度指标显示稠油具有中低成熟度,相对低于来源于沙三段源岩稀油成熟度。因此,深层稠油可能是沙四段膏盐相源岩早期生烃的产物。由于后期埋深,稠油成熟度指标有所增高,但稠油物性和族组成变化不大。
     济阳坳陷也有典型次生稠油分布,这类稠油具有明显的生物降解特征。两类稠油生物标志物组成也有明显的差异,次生稠油主要由来源于沙三段源岩的正常原油(稀油)经生物降解、地表氧化、水洗等次生作用形成的,并且成熟度指标相对较高。
     罗家—垦西地区储层主要分布于巨厚的洪积砂砾岩体中,物性变化大,采用地质统计分析与地球物理方法相结合的研究思想,在巨厚的复杂砂砾岩体中描述出可信度很高的储层空间展布,应用测井多参数综合分析方法识别油、水、干层,进而描述了罗家—垦西地区油藏空间展布,经开发准备井钻探证实,储层预测和含油气预测都是准确的。
     在系统研究的基础上,指出了济阳坳陷具有很大的深层稠油资源潜力及不同类型深层稠油的勘探方向
Deep viscous crude oils,with depth more than 1800m,widely occur in Jiyang Depression,especially in Loujia-Kenxi region. Here,based on geological,geochemical and geophysical data,these oils were described and studied extensively in physical properties,sulfur contents,gross compositions,geochemical characteristics and reservoir features. Finally,we discussed the formation mechanism and outlined some exploration strategies of these viscous oils.
    The typical deep viscous oils in Loujia-Kenxi area are characterized by a high density (or low API gravity),a high viscosity,a high sulfur content and low amounts of saturates and aromatics as compared to resins and asphaltenes. The physical properties of these crude oils are closely related to their sulfur contents and gross compositions,hi addition to viscous oils,there are also some normal oils and intermediate oils between the normal and viscous types. As a result,the physical property,sulfur content and bulk composition of crude oils in this area vary significantly.
    Based on GC and GC-MS analyses,the geochemical characteristics of these typical deep viscous oils are listed as follows:(1) strong preference of even n-alkanes over odd n-alkanes;(2) strong preference of phytane over pristane,i.e. Pr/Ph ratio1;(3) high abundance of gammacerane relative to Caohopanes;(4) much more amounts of C35 pentakishomohopanes than C34 tetrakishomohopanes and even C33 trishomohopanes. Oil source correlation results demonstrate that these deep viscous oils are derived from the Es4 evaporite source rocks.
    Most of these deep viscous oils in Loujia-Kenxi region show no sign of biodegradation effects based on n-alkane and acyclic isoprenoid distributions. It appears that biodegradation,oxidation and water washing near the surface are not responsible for the high density and high viscosity of these deep viscous heavy oils,In addition,biomarker parameters demonstrate maturities of these viscous oils are relatively low to that of the normal oils derived from the Es3 source rocks in this area. It is possible that these deep viscous oils were generated from the Es4 evaporite source rocks during the early oil generation stage. After further burial,their maturity parameters increased while their physical properties remained unchanged.
    hi addition to these native viscous oils,there are also typical altered viscous ones in Jiyang Depression,of which the gas chromatograms show clearly the features of biodegradation effects. The biomarker characteristics of these two types of viscous oils are distinctive. Oil source correlation results show the altered viscous oils were generated from the Es3 source rocks and subsequently suffered biodegradation,oxidation and water washing effects near the surface.
    There exists huge thick alluvial glutinite in Luojia-Kenxi area,with various physical properties. By applying the comprehensive study idea of geostatistical analysis and geophysics,the reliable reservoir distribution is described in the complicated thick glutinite body. By comprehensive analyzing log multi-parameters,oil,gas and dry layer are identified,and the reservoir distribution in Luojia-Kenxi area is further described. The reservoir and hydrocarbon prediction are reliable proved
    
    
    by the drilling of production preparing wells.
    On the basis of systematic research,it is shown that there exist great resource potential and different exploration targets in deep viscous crude of Jiyang depression.
引文
1.B.P. Tissot and D.H.Welte: Petroleum Formation and Occurrence,Springer-Verlag Berlin Heidelberg New York Tokyo 1984.
    2.Cross T.A.1994. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation. North west Europe conference of sequence stratigraphy.
    3.Cross T A,Baker. M R,Chapin M.A.Application of High-Resolution Sequence Stratigraphy to Reservoir Analysis.Paris:Editions Techip-1993,P 11-33
    4.Donal s. Influences of Depositional Enviroment and Diagenesis on Geophymcal Log Response in the South Carolina Coastal Plain:Effects of Sedimentary Fabbic and Mineralogy, Sedimentary Geology. 1997,P 163-180
    5.Deroo, g., T.G., Tissot, B., McCrossan, R.G., Der, F.: Geochemistry of the heavy oils of Alberta. In: Oil Sands Fuel of the Future.Memoir 3, Can Soc.Pet. Geol. 148-167, 184-189(1974).Goldstein T P. Geocatalytic in formation and maturation of petroleum.AAPG Bull, 1983,(41): 152-159
    6.Ho T.Y.,Rogers M.A.,Drushel H.V. et al. Evolution of sulfur compounds in crude oils. AAPG Bulletin, 1974,58. 2338-2348.
    7.Jin Qiang,Rong Qihong,Wang weifeng. Sequence Stratigraphy and Depositional System of the Huagou Sag,Dongying Depression. Petroleum Science. Vol.3,No. 1.2000.P26-33
    8.Moldowan J M, et al. Sedimentary 24-n-propylcholestanes. Molecular fossils diagnostic of martine algae, Science, 1990,247:309-312
    9.Mowers.A. Quantitive Method on the Reduction of Porosity and Permerbility of Carbonate due to Cementation.AAPG Bulletin. VOl.80,NO.4.1996
    10.Nelson C H,Maldonado A.Factors Controlling Depositional Patterns of Ebro Turbidite Systems,Meatenanean Sea. AAPG Bulletin Vol.72.1988,P698-716
    11.Orr W.L.Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation-study of Big Horn basin Paleozoic oils. AAPG Bulletin, 1974,58.2295-2318.
    12.Rohmer M. The hopanoids,prokaryotic triterpenoids and sterol surrogates. In:Surface Structures of Microorganisms and Their Interactions with the Mammalian Host (E.Schriner et al.,eds.)Proceedings of the Eighteenth Workshop Conference, Hocchst,Scholoss Ringberg, October 20-23,1987,VCH:227-242.
    
    
    13.Ranson B & Helegeson H C, Achemical and themodynamic model of dioctahedral 2:1 layers clay minerals in diagenetic processes:dehydration of dioctahedral aluminous smectite as a function of temperature and depth in sedimentary basins. American Journal of Science, 1995,295:245-281
    14.Selly R C.An Introduction to Sedimentology (second edition)-Academic Press Inc. (London)Ltd. 1982
    15.Scholle P A,Spearing D Sandstone Depositional Environments.AAPG Tulsa, Oklahoma. U.S.A. 1982
    16.Surdam R C.Organic-Inorganic Interactions and Sandstone Diagensis 1989
    17.Sheriff R.E. Geldar L.P. Exploratm seismology. Cambridge University Press 1995
    18.Sassen R. and Moore C.H. Framework of hydrocarbon generation and destruction in Eastern Smackover Trend. AAPG Bulletin, 1988,72(6): 649-663.
    19.T.F.Yan Structural differentces between petroleum and coal-derived asphaltenes.Preprints,Div. Pet. Chem.,Am. Chem. Soc.,1979, 24(4): 901-909.
    20.Tannenbaum E,Huizinga B T,Kaplan I R. Role of minral alteration of organic matter.I. Generation of gases and codensates under dry condition. Geochimica Cosmochim Acta, 1985,(49):2 589-2604
    21.Tannenbaum E,Huizinga B T, Kaplan I R. Role of minral alteration of organic matter.Ⅱ. A material balance.AAPG Bull,1986,70(9):1 156-1 165
    22.Vail. P R.Seismic Stratigraphy Interpretation Procedure. In:Bally A W.Atlas of Seismic Stratigraphy. AAPG Studies in Geology 27.Vol.1.1987.p1-10
    23.Worden R.H.,Smalley P.C. and Oxtoby N.H. Gas souring by thermochemical sulfate reduction at 140 ℃ .AAPG Bulletin, 1995,79(6): 854-863.
    24.Wu Shenghe,Wu Junchang. Low-gamma Shale as Mark for High Resolution Sequence Stratigraphic Correlation. Petroleum Science.Vol.2,NO.4.1999.P50-54
    25.于立君,张锐,吐玉克深层稠油油田化学段塞驱开采方式数值模拟研究。特种油气藏。1999年,第2期。第21-26页。
    26.于连东,世界稠油资源的分布及其开采技术的现状与展望。特种油气藏。2001年6月。第98-103页。
    27.贝丰,宋振亚,秦天我.昆明盆地滇池地区晚新生代沉积有机质的研究.成都地质学院学报,1986.3,17—37.
    28.牛嘉玉.中国非常规油气藏地质.北京:石油工业出版社.1995.
    29.王同和、王喜双、韩宇春、李心宁著,华北克拉通构造演化与油气聚集,石油工业出版社,1999.12
    
    
    30.王铁冠,钟宁宁,侯读杰,黄光辉,包建平,李贤庆等,低熟油气形成机理与分布,石油工业出版社,1995.6
    31.邓宏文,美国层序地层研究中的新学派—高分辨率层序地层学,石油与天然气地质,16(2),1995.6
    32.邓宏文、王红亮、钟宁宁,沉积物体积分配原理—高分辨率层序地层学的理论基础,地学前缘,7(4),2000.10
    33.纪友亮,张世奇等,层序地层学原理及层序成因机制模式,地质出版社,1998.2
    34、刘文章编著,热采稠油油藏开发模式。中国油藏开发模式丛书。石油工业出版社。1998年7月。
    35.刘德汉,包裹体研究—盆地流体追踪的有力工具,地学前缘,2(3/4),1995
    36.任战利,沉积盆地热演化史研究新进展,地球科学进展,7(3),1992
    37.宋一涛,李树青 孤东油田生物降解原油的特征及成因探讨,石油技术 第11卷1989
    38.吴元燕、吕修祥,利用含油气系统认识油气分布,石油学报,16(4),1995
    39.张林晔等,半咸水湖相未熟油成因机理模拟实验研究,科学通报 44(4)1999
    40.张林晔等,济阳坳陷低熟油形成机理研究 勘探家 5(3)2000
    41.张善文,杨凤丽等.几种类型油气藏的描述方法及应用 石油地球物理勘探 No.4 2000
    42.张善文,隋风贵,王永诗 济阳坳陷下第三系陡岸沉积模式 沉积学报 Vol.19 No.2 2001
    43.赵澄林、张善文、袁静、崔勇等著,胜利油区沉积储集层与油气,石油工业出版社,1999.10
    44.赵健、徐君,吐哈盆地吐玉克深层稠油油田开发方式研究。新疆石油地质。2000年,第4期。第323-325页。
    45.秦匡宗。干酪根的热解聚与未熟石油的形成,有机地球化学论文集—第三届全国有机地球化学会议论文选.北京:地质出版社:159—168.1987.
    46.徐伟民编箸,石油地球化学在油气勘探中的应用,石油大学出版社,1993.12
    47.黄第藩,成烃理论的发展—未熟油及有机质成烃演化模式,地球科学进展,11(4),1996
    48.黄第藩,李晋超主编.中国陆相油气生成.北京:石油工业出版社.1982.
    
    
    49.黄第藩,廖前进,徐永昌等.未成熟石油成因的初步研究.中国科学院兰州地质所生物气体地球化学开放实验室研究年报.兰州:甘肃科学技术出版社:1-19.1987.
    50.傅家谟,秦匡宗主编,干酪根地球化学,广东科技出版社,1995.12
    51.傅家谟,盛国英,江继纲.膏盐沉积盆地形成的未熟石油.石油与天然气地质,6(2),150-158.1985.
    52.彭平安,傅家谟,盛国英等 膏盐沉积环境及成烃有机地球化学特征,中国科学 13辑,1989(1):84—92
    53.曾凡刚、李赞豪、程克明、卜硕勋等著,中国重质原油的分布和地球化学特征,石油工业出版社,1999.6
    54.裘怿楠,薛叔浩等,油气储集层评价技术,石油工业出版社,1994.7
    55.滕学顺,2500米深层注蒸汽驱油技术上是可行的。石油情报。中国石油天然气总公司情报研究所。1988年,第53期。
    56.戴启德,纪友亮等,油气储集层地质学,石油大学出版社,1996.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700