水电站地下主厂房施工通风动态数值模拟与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水电站地下主厂房施工中,通风问题是影响施工人员的健康安全及施工方案的实施,制约工程进度的重要因素。传统的施工通风设计计算主要通过地下洞室通风一维常规计算理论和施工设计人员的经验来确定。针对传统通风方案凭经验确定的不足,本文提出了基于计算流体力学(CFD)对水电站地下主厂房施工通风进行模拟的方法,从而合理优化施工通风参数和资源配置,以期为水电站地下主厂房通风设计提供理论和参考依据。
     本文从水电站地下主厂房内流体流动的实际情况出发,建立了以高雷诺数k -ε封闭模型为基础的三维非稳态单相流模型。在CO运移模型的动量方程中考虑了浮力的影响;在粉尘扩散模型的动量源项中考虑了相间曳力、升力和虚拟质量力的作用,并考虑了密度差的影响。采用PISO算法对某水电站地下主厂房一层施工通风过程进行了模拟,分析了主厂房一层爆破施工通风污染物运移规律,得到如下结论:
     1、利用CFD对Nakayama等的池岛矿井巷道风流和甲烷分布进行模拟并与其试验数据、计算结果进行了对比。结果表明了本文模拟结果与Nakayama等的验结果基本吻合。
     2、采用稀、疏、密三种不同网格密度对主厂房一层上游施工通风进行了模拟,在考虑计算机的容量和运行时间的情况下,得到了合理的网格划分。
     3、结合某水电工程对其主厂房一层爆破施工通风进行了模拟。结果表明了在主厂房施工通风过程中,风管附近形成明显的涡流区;工作面不同位置处的速度差别很大;X-Y剖面不同高度处的风速分布趋势相同。
     4、运用三维非稳态单相流模型对爆破产生的CO和粉尘在主厂房一层的迁移过程进行了数值模拟。模拟表明了工作面不同位置处的污染物浓度不同;X-Y剖面不同高度处的污染物分布趋势相似;且CO和粉尘具有相似的运移规律。
     5、对主厂房一层上游两种不同通风方案进行了数值模拟,比较了不同通风方案的风量和压力分布,得到了优化的通风方案。
Problems on construction ventilation can be harmful to the health of constructors and can be a great disadvantage for the construction scheme and project progress to be actualized in the underground cavern construction of power station. However, the traditional ventilation design is based on the empirical correlations and the builder and designer’s experience. For the purpose of avoiding the deficiency of the traditional construction ventilation, the ventilation of the underground powerhouse was simulated by the computational fluid dynamics (CFD) to optimize ventilation parameter. In this paper, a 3-D transient single phase models combining high Reynolds number k -εequation for an underground powerhouse was presented. The effect of buoyancy was considered in the momentum equation of the CO transport model, while the effects of inter-phase drag force, lift force, virtual mass force, and density difference between gas and solid, were taken into account in the momentum source of the dust transport model. The PISO algorithm was used to simulate ventilation in the explosion processes of the underground powerhouse. Contaminations migration regularity during the construction ventilation of the first layer of underground powerhouse is analyzed. The simulated results are as follows:
     Firstly, methane gas distribution of the mine roadway of Ikejima is simulated by CFD. The simulated results are well in agreement with the experimental and numerical simulation work by Nakayama in methane gas distribution. Secondary, three different mesh densities of the coarse, normal and fine are adopted to simulate the ventilation of upstream in the first layer of underground powerhouse. Considering the computer capability and CPU time, the independence of the mesh plotting is obtained.
     Thirdly, the blasting ventilation in the first layer of underground powerhouse is simulated. There is an eddy zone around the air duct during the ventilation of the underground powerhouse. The velocity has a great deal of difference in the different position at the heading face, while the velocity distribution has the same tendency in different heights at the X-Y section.
     Fourthly, using a 3-Dsingle phase model, the dynamic CO and dust diffusion in the first layer of underground powerhouse are simulated. The contaminant concentration has a great deal of difference in the different position at the heading face, while the contaminant concentration distribution has the same tendency in different heights at the X-Y section. The migration rule of CO is similar with the migration tendency of the dust.
     Fifthly, the two ventilation schemes are modelled in the first layer upstream of underground powerhouse. The air volume and pressure distributions of the different ventilation schemes are compared to obtain the optimized ventilation scheme.
引文
[1]苏利军,卢文波.地下巷道钻爆开挖工程中炮烟扩散及通风[J].爆破,2000,17(1): 1-6.
    [2]林从谋,赵金桥.工程爆破实用技术[M].北京:煤炭工业出版社,1998.
    [3]卢文波,苏利军.水电工程大型地下洞室群施工中的通风散烟问题研究[J].湖北水力发电,1999,34(3): 39-43.
    [4]李雪林.地下长大隧洞施工通风方法研究[D].硕士论文,昆明:昆明理工大学,2007.
    [5]罗占夫.特长隧洞射流通风与多作业面条件下通风技术[D].硕士论文,上海:同济大学,2007.
    [6] Nakayama. In-situ measurement and simulation by CFD of methane gas distribution at a heading faces[J]. Shigen-to-Sozai, 1998, 114(11): 769-775.
    [7] M.T.Parra, J.M.Villafruela, F.Castro. Numerical and experimental analysis of different ventilation systems in deep mines[J]. Building and Enviroment, 2006, 41(2): 87-93.
    [8] Spalart P.R., Allmaras S.R. One-equation turbulent model for aerodynamic flows[J]. Recherche Aerospatiale, (1): 5-21.
    [9] Wu Zhengyan, Jiang Shuguang, He Xinjian et al. Study of 3-D numerical simulation for gas transfer in the goaf of the coal mining[J]. Journal of China University of Mining & Technology, 2007, 17(2): 152-157.
    [10] Hargreaves D.M., Lowndes I.S. The computational modeling of the ventilation flows within a rapid development drivage[J]. Tunnelling and Underground Space Technology, 2007, 22: 150-160.
    [11]梁栋,周西华.矿井空调热力过程的数值模拟研究[D].硕士论文,辽宁:辽宁工程技术大学,1999.
    [12]周西华,梁栋,王树刚等.空度因法求解含不流通区域的流场[J].辽宁工程技术大学学报(增刊),1997.
    [13]吴强,梁栋.CFD技术在通风工程中的运用[M].徐州:中国矿业大学出版社,2001.
    [14]王海桥,施式亮,刘荣华等.独头巷道射流通风流场CFD模拟研究[J].中国安全科学学报,2003,13(1):68~71.
    [15]王海桥,施式亮,刘荣华等.独头巷道附壁射流通风流场数值模拟研究[J].煤炭学报,2004,29(4):425~428.
    [16]王海桥,刘荣华,陈世强.独头巷道受限贴附射流流场特征模拟实验研究[J].中国工程科学,2004,6(8): 45-63.
    [17]张超昌,厉彦忠.高温矿井掘进面降温技术研究与气流组织数值模拟[D].硕士论文,西安:西安交通大学.2003.
    [18] L. Gidhagen, C. Johansson. J. Str?m. Model simulation of ultrafine particles inside a road tunnel[J]. Atmospheric Environment, 2003, 37(15): 2023~2036.
    [19]重庆市重点公路建设指挥部,西南交通大学,公路长隧道纵向通风研究文集[A].成都:西南交通大学出版社,1998.
    [20]范厚彬,樊志华,董明刚.公路长隧道污染物的运移机理及一维解析分析[J].交通运输工程学报,2002,2(3):57~59.
    [21]祝兵,关宝树,郑道坊.公路长隧道纵向通风的数值模拟[J].西南交通大学学报,1999,34(2):133~137.
    [22]魏金凤,曾德顺,汪庆横等,黄土岭隧道通风方案的数值模拟[J].现代隧道技术,2001,5:61~63.
    [23]徐丽.城市公路隧道洞口污染物扩散数值模拟[D].硕士论文,成都:西南交通大学,2004.
    [24]夏永旭,石平.公路隧道通风空气交叉污染三维数值分析[J].长安大学学报,2006,26(6):44~47.
    [25]金文良,李宁军,李清.新七道梁隧道通风系统局部数值仿真模拟研究[J].公路隧道,2006,(3):6~10.
    [26]刘彤,李宁军.二郎山隧道通风系统局部影响数值模拟研究[J].石家庄铁道学院学报,2006,19(2):43~46.
    [27]孙磊.地下水电站高大空间气流组织数值计算与模型试验研究[D].硕士论文,西安:西安建筑科技大学,2000.
    [28]雷勇刚.塔里木河水利枢纽工程地下水电站厂房通风气流组织模式优化数值模拟[D].硕士论文,西安:西安建筑科技大学,2004.
    [29]韩玲,郑洁,郭建辉.彭水地下水电站厂房通风数值模拟及方案比较[J].建筑热能通风空调,2005,23(3):76-79.
    [30]龙天渝,蔡增基,董宏明.水电站地下主厂房通风气流的优化设计[J].重庆建筑大学学报,2000,22(4):56~60.
    [31]龙天渝,蔡增基,董宏明.水电站地下主厂房通风气流组织的数值模拟[J].建筑热能通风空调,2000,(4):15-18.
    [32]李安桂,孙磊,伍国有等.白色地下水电站高大建筑空间气流组织的数值模拟与热态模型试验研究[J].1016~1019.
    [33]卢军,付祥钊,王惠光等.溪洛渡水电站地下厂房通风空调方案模拟分析[J].重庆大学学报(自然科学版),2002,25(8):44~47.
    [34]王智伟,万荣.地下电站高大厂房气流组织数值模拟[D].硕士论文,西安:西安建筑科技大学,2004.
    [35] Nielsen P.V. Selection of turbulence models for prediction of room airflow[J]. ASHRAE Transaction, 1998, 104(1): 1119~1127.
    [36]阳琴.西龙池水电站地下主厂房通风模型试验与数值模拟研究[J].硕士论文,重庆:重庆大学,2006.
    [37]郭红伟.大岗山水电站地下主厂房气流的CFD模拟[D].硕士论文,成都:西华大学,2007.
    [38]王晓玲,陈红超,刘雪朋等.引水隧洞独头掘进工作面风流组织与CO扩散的模拟[J].水利学报,2008,39(1): 121~127.
    [39]王晓玲,陈红超,杨丽丽.新疆八十一大阪引水隧洞TBM施工通风模拟研究[C].第三届全国水力学与水利信息学论文集[A].南京,2007.
    [40] Wang Xiao-ling, Liu Xuepeng, Luan Chuang et al. 3D simulation on CO diffusion in the underground powerhouse construction[C]. Iso Source: 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, ICBBE, 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, ICBBE, 2008.
    [41] S.Laslandes, C.Sacé. Transport of particles by a turbulent flow around an obstacle-a numerical and a wind tunnel approach[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76, 577~587.
    [42] R. Klemens, P. Kosinski, P. Wolanski.et al. Numerical study of dust lifting in a channel with vertical obstacles[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6): 469~473.
    [43] Y.S. Chen, S.W. Kim. Computation of turbulent flows using an extended k ?εturbulence closure model[J]. NASA CR-179204, 1987.
    [44]杨胜来,黄元平.综采工作面粉尘浓度分布的数值解法[J].中国安全科学学报,1996,6(增刊):64~68.
    [45]杨胜来.综采工作面粉尘运移和粉尘浓度三维分布的数值模拟研究[J].中国安全科学学报,2001,11(4):61-64.
    [46]刘毅,蒋仲安,蔡卫等.综采工作面粉尘浓度分布的现场实测与数值模拟[J].煤炭科学技术,2006,34(4):80~82.
    [47]王晓珍,蒋仲安,刘毅.抽出式通风煤巷掘进面过程中粉尘浓度分布规律的数值模拟[J].中国安全生产科学技术,2006,2(5):24~28.
    [48]王晓珍,蒋仲安,王善文等.煤巷掘进过程中粉尘浓度分布规律的数值模拟[J].煤炭学报,2007,32(4): 386-390.
    [49]张静,王晓玲,陈红超等.引水隧洞独头掘进工作面风流和粉尘扩散的模拟[J].水力发电学报,2008,27(1): 111-117.
    [50]周力行,湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社,1994.
    [51]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.
    [52]路明,孙西欢,李彦军,范志高.湍流数值模拟方法及其特点分析[J].河北建筑科技学院学报,2006,23(2):106~110.
    [53]陈玉璞,流体动力学[M].南京:河海大学出版社,1990.
    [54] Gosman, A.D., Issa, R.I., Lekakou, C., Looney, M.K., and Politis, S. Mulitidimensionsl modeling of turbulent two-phase flows in stirred vessels[J]. AICHE Journal, 1992, 38(12): 1946~1956.
    [55]胡洪营,张旭,黄霞等.环境工程原理[M].清华大学环境科学与工程系,2003.
    [56] Auton, T.R., Hunt, J.C.R., and Prud’homme, M. The force exerted on a body in inviscid unsteady non-uniform rotational flow[J]. Journal of Fluid Mechanics, 1988, 197: 241~257.
    [57] Lance, M., and Bateille, J. Turbulence in liquid and phase of a uniform bubbly air-water flow[J]. Journal of Fluid Mechanics, 1991, 222: 95~118.
    [58] Lance. M, Bateille. J. Turtulence in liquid and phase of a uniform bubbly air-water flow[J]. Journal of Fluid Mechanics, 1991, 222: 95~118.
    [59] Launder. B. E., Spalding. D. B. The numberical computation of turbulent flows[J]. Computer Methods and Engineering, 1974, 3(2): 26.
    [60] Rodi, W. Inflence of buoyancy and rotation on equations for the turbulent length scale[J]. Proc. 2nd symp. On Turbulent Shear Flows, 1979.
    [61]王汉青.通风工程[M].北京:机械工业出版社,2005.
    [62]杨庆学.基于GIS的复杂工程施工系统仿真研究[M].天津:天津大学,2001.
    [63]胡丹华.水工长引水隧洞通风方式选择[J].水利水电施工,1998,67(4):20~23.
    [64]苏利军.大型地下洞室群施工中的通风散烟问题研究[M].武汉:武汉水利电力大学,2000.
    [65] Rodi, W. Inflence of buoyancy and rotation on equations for the turbulent lengthscale[J]. Proc. 2nd symp. On Turbulent Shear Flows, 1979.
    [66]蔡小文,戴海英.引水隧洞开挖施工的通风设计与实践[J].浙江水利科技,2005,137(1):71~76.
    [67]铁道部第二工程局.铁路工程施工技术手册(隧道)[M].北京:中国铁道出版社,1981.
    [68]铁道部第二勘测设计院.铁路工程设计技术手册(隧道)[M].北京:中国铁道出版社,1981.
    [69]《井巷工程施工手册》编写组.井巷工程施工手册[M].北京:煤炭工业出版社,1979.
    [70]承伯仁.独头巷道工作面有效通风的风量计算方法[J].中国矿业大学学报,1956,4:41~54.
    [71]杨立新,陆茂成,赵军喜.隧道施工爆破后通风排烟风量计算的探讨[J].西部探矿工程,2000,62(1):55~56.
    [72]承伯仁.独头巷道压入式通风时各种风量计算公式的比较[J].中国矿业大学学报,1957,3:61~68.
    [73]水利电力部水利水电建设司.水利水电工程施工组织设计手册(第二卷)[M].北京:水利电力出版社,1990.
    [74]苏利军,卢文波.地下巷道钻爆开挖过程中炮烟扩散及通风[J].爆破,2000,1(17):1~6.
    [75]苏利军.大型地下洞室群施工中的通风散烟问题研究[D].硕士学位论文,武汉:武汉水利电力大学,2000.
    [76] Cebeci T, Bradshaw P. Momentum transfer in boundary layers[M]. New York: Hemisphere Publishing Corporation, 1977.
    [77] Schmidt David P, Senecal P K. Improving the numerical accuracy of spray simulations[J]. SAE Transactions, 2002, 111(3): 1826-1835.
    [78]吴国忠,李栋,齐晗兵.网格划分对地下管道传热计算的影响分析[J].油气储运,2007,26(12): 23-25.
    [79] Patankar S V. Numerical heat transfer and fluid flow[M]. Washington: Hemisphere Publishing Corporation, 1980.
    [80] Warsi Z V A. Conservation form of the Navier-Stokes equations in general nonsteady coordinates[J]. AIAA Journal, 1981, 19(2): 240~242.
    [81] Richtmeyer R D, Morton K W. Difference methods for initial-value problems[M]. 2nd Edition. New York: Krieger Publishing Company, 1994.
    [82] Lai K Y M. Numerical analysis of fluid transport phenomena[D]. PhD Thesis,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700