高分辨核磁共振实验与数据处理的自动化关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1945年核磁共振(Nuclear Magnetic Resonance, NMR)现象被发现以来,核磁共振技术的发展犹如一棵常青树,目前已经成为应用最为广泛的分析技术之一。核磁共振技术之所以能具有如此强大的生命力主要是由于其能提供大量的化学结构信息和动力学信息,而高分辨率的谱图正是提供这些信息的基础。随着核磁共振在代谢组学等领域的不断发展应用,如何自动地获得高分辨率的核磁共振谱图越来越受到人们的重视,这也是核磁共振波谱仪研发的一个重要挑战和机遇。
     本论文从实验和数据处理两个方面,开展自动获取高分辨核磁共振谱图的研究工作。在具有自主知识产权的核磁共振波谱仪上,实现了自动获取高分辨核磁共振谱图所需的三项关键技术:自动匀场方法,自动相位校正方法以及自动基线校正方法,并在此基础上提出了一些更优化的改进方案。
     在自动化核磁共振实验的研究工作中,我们针对高分辨核磁共振实验必须具备的前提条件之一——均匀的静磁场展开研究。在自主开发的核磁共振波波谱仪中实现了各种自动匀场方法包括基于搜索算法的自动匀场方法,一维和三维梯度匀场方法,及结合线形的梯度匀场方法。并在此基础上,提出了一些改进方法,如:在三维梯度匀场方法中,采用了改进的脉冲序列,使得谱仪可以利用XY匀场线圈来产生相位编码梯度,从而实现了在普通探头上的三维梯度匀场;此外,针对梯度匀场中匀场电流值越界和三维梯度匀场时间过长的两个问题,分别提出了相应的解决方案。
     在自动数据处理方面,我们首先实现了核磁共振数据处理软件中的常规算法,并在此基础上发展了若干改进方法,包括一种适用性和准确性都非常高的自动相位校正方法,以及可以适用于基线失真较大谱图的自动基线校正方法。新的自动相位校正方法采用了粗调和细调相结合的方案,在粗调过程中利用了“基线-谱峰”分界点差异最小化的方法获得一个大致准确的校正结果,基于这个结果判断出各个谱峰的特性,即将谱图中的谱峰区分为正峰、负峰和畸变峰。然后利用最小化自定义的负值惩罚函数进行细调,从而获得更准确的自动相位校正结果。最后,通过实验验证出新的自动相位校正方法不仅适用于各种NMR谱图,而且几乎不受信噪比、基线失真等因素的影响。表明此方法不仅普适性强,而且具有很好的鲁棒性以及准确性。新的自动基线校正方法的基础是改进的基线识别算法和迭代的基线模型构建算法。其中,改进的基线识别算法不仅结合了三种常用的基线识别算法,而且还利用谱峰轮廓拟合的方法来准确地识别出谱图中的宽峰信号。而在迭代的基线模型构建算法中,我们不仅利用了识别出的基线区间,还在迭代的过程中自动地寻出谱图中谱峰重叠非常严重区间中的“准基线点”,利用这些“准基线点”我们可以构建出更符合实际情况的基线模型,从而得到更好的基线校正结果。实验证明这种新的自动基线校正方法能够更有效地处理谱峰密集和基线失真严重的复杂NMR谱图。
Nuclear Magnetic Resonance technology has been developing rapidly since1945and has become one of the most successful analytical techniques. High resolution is the basis of the fact that the NMR spectra can provide the information of chemical structure and dynamics. In recent years, the rapid development of NMR in the field of metabolomics has raised a question of how to get the spectra automatically, which is an important challenge and opportunity for NMR spectrometer manufacturers.
     In this thesis, the question of how to get the high resolution spectra automatically is discussed through both experiment and data processing. A variety of methods of automatic shimming and automatic data processing methods are implemented in the spectrometer with independent intellectual property rights.
     The research of automatic shimming includes shimming based on search algorithm, gradient shimming and gradient shimming with lineshape optimization. In the gradient shimming, an improved pulse sequence is utilized to make three dimensional gradients shimming available in the probe without XY gradient coils. Moreover, some improvements are also made to address two issues of gradient shimming:One is that the shimming current will be out of range, and the other one is that a long time is needed in three dimensional automated shimming.
     In the research of automatic data processing, a robust automatic phase correction method and a new automatic baseline correction method are proposed. In the automatic phase correction method, a new strategy combining'coarse tuning' with 'fine tuning' is introduced to correct various spectra accurately. In the'coarse tuning' procedure, the preliminary phased spectra are obtained by minimizing the objective function based on the height difference of'critical signal points'in peaks'tails. After that, the peaks in the preliminary corrected spectra can be categorized into three classes:positive, negative, and distorted. Based on the classification result, a new custom negative penalty function used in the step of 'fine tuning' is constructed to avoid the negative points in the spectra excluded in the negative peaks and distorted peaks. Finally, the fine phased spectra can be obtained by minimizing the custom negative penalty function. This automatic method is proven to be very robust for it is tolerant to low signal-to-noise ratio, large baseline distortion and independent of the starting search points of phasing parameters. The new baseline correction method is based on an improved baseline recognition method and a new iterative baseline modeling method. The presented baseline recognition method takes advantages of three baseline recognition algorithms in order to recognize all signals in spectra. While in the iterative baseline modeling method, except for the well-recognized baseline points in signal-free regions, the 'quasi-baseline points' in the signal-crowded regions are also identified and then utilized to improve robustness by preventing the negative regions. The experimental results on both simulated data and real metabolomics spectra with over-crowded peaks show the efficiency of this automatic method.
引文
[1]裘祖文,裴奉奎.核磁共振波谱.北京:科学出版社,1989
    [2]R. R Ernst著.一维和二维核磁共振原理.毛希安译.北京:科学出版社,1997
    [3]毛希安.现代核磁共振实用技术及应用.北京:科学技术文献出版社,2000
    [4]M. H. Levitt. Spin dynamics:Basics of nuclear magnetic resonance. Academic Press, 2001
    [5]J. Cavagh. Protein NMR spectroscopy principle and practice. Academic Press,1996
    [6]周世勋.量子力学教程.北京:高等教育出版社,1979
    [7]曾谨言.量子力学卷II(第三版).北京:科学出版社,2000
    [8]俎栋林.核磁共振成像.北京:科学出版社,2004
    [9]高汉宾.核磁共振原理与实验方法.武汉:武汉大学出版社,2008
    [10]王金山.核磁共振波谱仪与实验技术.北京:机械工业出版社,1984
    [11]汪志诚.热力学统计物理.北京:高等教育出版社,1982
    [12]K. F. K. Matt A. Bernstein, Xiaohong Joe Zhou. Handbook of MRI pulse sequences. Elsevier Academic Press,2004
    [13]刘朝阳,裘鉴卿,叶朝辉.核磁共振控制台.发明专利,申请号Z1200410060985.3.2004
    [14]D. J. Adduci, B. C. Gerstein. Versatile pulse programmer for nuclear magnetic-resonance. Rev. Sci. Instrum.,1979,50:1403-1415
    [15]R. P. Ning, G Yang, G. Y. Li. A versatile pulse programmer for magnetic resonance imaging. Rev. Sci. Instrum.,2011,82
    [16]R. K. Shenoy, J. Ramakrishna, R. Srinivasan. Versatile and flexible digital pulse programmer for pulsed nuclear magnetic-resonance. Journal of Physics E-Scientific Instruments,1976(9):779-783
    [17]C. E. Tarr, Nickerso. Ma. Versatile pulse programer for pulsed nuclear magnetic-resonance spectroscopy. Journal of Physics E-Scientific Instruments, 1972(5):328-334
    [18]L. Yang, Q. Bao, W. Mao, et al. System performance evaluation of a self-developed NMR spectrometer. Chinese Journal of Magnetic Resonance,2012(29):78-85
    [19]Z. Zhang, W. Mao, C. Liu. Progress in the Development of pulse programmer for nuclear magnetic resonance. Chinese Journal of Magnetic Resonance,2012(29): 339-345
    [20]W. Mao, Q. Bao, L. Yang, et al. A modularized pulse programmer for NMR spectroscopy. Measurement Science & Technology,2011(22):114-121
    [21]J. F. Haw. From soup to full NMR data-processing:NUTS NMR data. Analytical Chemistry,1994(66):A1128-A1129
    [22]J. C. Cobas, F. J. Sardina. Nuclear magnetic resonance data processing. MestRe-C: A software package for desktop computers. Concepts in Magnetic Resonance Part A, 2003(19A):80-96
    [23]J. D. van Beek. matNMR:A flexible toolbox for processing, analyzing and visualizing magnetic resonance data in Matlab. Journal of Magnetic Resonance, 2007(187):19-26
    [24]M. Gettel, J. S. Gulliver, M. Kayhanian, et al. Improving suspended sediment measurements by automatic samplers. Journal of Environmental Monitoring, 2011(13):2703-2709
    [25]N. Larsson, T. Berhanu, N. Megersa, et al. An automatic field sampler utilising supported liquid membrane (SLM) for on-site extraction of s-triazine herbicides and degradation products:applied to an agricultural region of Ethiopia. International Journal of Environmental Analytical Chemistry,2011(91):929-944
    [26]W. W. Yang, Z. Q. Yue, L. G. Tham. Automatic monitoring of inserting or retrieving SPT sampler in drillhole. Geotechnical Testing Journal,2012(35):420-436
    [27]F. Hwang, D. I. Hoult. Automatic probe tuning and matching. Magnetic Resonance in Medicine,1998(39):214-222
    [28]P. D. Gatehouse, D. N. Firmin. The cardiovascular magnetic resonance machine: hardware and software requirements. Herz,2000(25):317-330
    [29]D. I. Hoult, B. Tomanek. Use of mutually inductive coupling in. probe design. Concepts in Magnetic Resonance,2002(15):262-285
    [30]L. T. Muftuler, G Gulsen, K. D. Sezen, et al. Automatic tuned MRI RF coil for multinuclear imaging of small animals at 3T. Journal of Magnetic Resonance, 2002(155):39-44
    [31]R. D. Venook, B. A. Hargreaves, G. E. Gold, et al. Automatic tuning of flexible interventional RF receiver coils. Magnetic Resonance in Medicine,2005(54): 983-993
    [32]F. N. Vlachos, A. D. Garetsos, N. K. Uzunoglu. Automatic deactivation design for phased array surface probe in 1.5T MRI, Biodevices 2008:Proceedings of the First Internation Conference on Biomedical Electronicas and Devices,2008
    [33]K. Motoshima, N. Suzuki, K. Shimizu, et al. A channel-number insensitive erbium-doped fiber amplifier with automatic gain and power regulation function. Journal of Lightwave Technology,2001(19):1759-1767
    [34]S. Kan, P. Gonord, M. Fan, et al. Automatic NMR field-frequency lock-pulsed phase locked loop approach. Rev. Sci. Instrum.,1978(49):785-789
    [35]S. Hiller, H. Arthanari, G Wagner. The T-lock:automated compensation of radio-frequency induced sample heating. Journal of Biomolecular NMR,2009(44): 69-76
    [36]C. G. Kim, E. R. Williams, H. Sasaki, et al. Nuclear magnetic resonance-based current-voltage source. IEEE Transactions on Instrumentation and Measurement, 1993(42):153-156
    [37]H. Sasaki, A. Miyajima, N. Kasai, et al. High-stability DC-current source using NMR lock technique. IEEE Transactions on Instrumentation and Measurement, 1986(35):642-643
    [38]P. B. Chilvers, G. A. Morris. Automated shimming with normal spectrometer hardware:3D profile edge shimming. Journal of Magnetic Resonance,1998(133): 210-215
    [39]W. E. Hull. Gradient Shimming:Priciples and Prctical Aspects. Rheinstetten:Bruker BioSpin GmbH,1999
    [40]J. Hu, T. Javaid, F. Ariasmendoza, et al. A fast, reliable, automatic shimming procedure using 1H chemical-shift-imaging spectroscopy. Journal of Magnetic Resonance Series B,1995(108):213-219
    [41]P. Irarrazabal, C. H. Meyer, D. G. Nishimura, et al. Inhomogeneity correction using an estimated linear field map. Magnetic Resonance in Medicine,1996(35):278-282
    [42]C. Juchem, T. W. Nixon, P. Diduch, et al. Dynamic Shimming of the Human Brain at 7 T. Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering, 2010(37B):116-128
    [43]P. Konzbul, K. Sveda. Shim coils for NMR and mri solenoid magnets. Measurement Science & Technology,1995(6):1116-1123
    [44]V. M. E. Dorri B. Method of optimizing passive shim placement in magnetic resonance magnets, in:USA,1991
    [45]R. Salomir, B. D. De Senneville, C. T. W. Moonen. A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility, Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering, 2003(19B):26-34
    [46]B. Dorri, M. E. Vermilyea, W. E. Toffolo. Passive shimming of mr magnets algorithm, hardware, and results. IEEE Transactions on Applied Superconductivity, 1993,3(1):254-257
    [47]D. H. Kim, B. S. Kim, J. H. Lee, et al.3-D optimal shape design of ferromagnetic pole in MRI magnet of open permanent-magnet type. IEEE Transactions on Applied Superconductivity,2002(12):1467-1470
    [48]M. J. E. Golay. Field homogenizing coils for nuclear spin resonance instrumentation. Rev. Sci. Instrum.,1958(29):313-315
    [49]W. A. Anderson. Electrical current shims for correcting magnetic fields. Rev. Sci. Instrum.,1961(32):241-249
    [50]武海澄,周荷琴,刘正敏.有源匀场电流优化算法研究.北京生物医学工程,2007(5):466-469
    [51]储岳森.有源匀场的优化算法.高电压技术,1996(2):32-36
    [52]储岳森.核磁共振成像磁体的有源匀场技术.电工技术学报,1996(5):40-44
    [53]郭硕鸿.电动力学.北京:高等教育出版社,1995
    [54]梁昆淼.数学物理方法.北京:高等教育出版社,1998
    [55]R. R Ernst. Measurement and control of magnetic field homogeneity. Rev. Sci. Instrum.,1968(39):998-1003
    [56]J. A. Nelder, R. Mead. A Simplex-method for function minimization. Computer Journal,1965(7):308-313
    [57]P. C. M. Vanzijl, S. Sukumar, M. O. Johnson, et al. Optimized shimming for high-resolution NMR using 3-dimensional image-based field-mapping. Journal of Magnetic Resonance Series A,1994(111):203-207
    [58]M. Weiger, T. Speck, M. Fey. Gradient shimming with spectrum optimisation. Journal of Magnetic Resonance,2006(182):38-48
    [59]H. Barjat, P. B. Chilvers, B. K. Fetler, et al. A practical method for automated shimming with normal spectrometer hardware. Journal of Magnetic Resonance, 1997(125):197-201
    [60]C. L. Evans, G A. Morris, A. L. Davis. A new method for variable temperature gradient shimming. Journal of Magnetic Resonance,2002(154):325-328
    [61]S. Sukumar, M. O. Johnson, R. E. Hurd, et al. Automated shimming for deuterated solvents using field profiling. Journal of Magnetic Resonance,1997(125):159-162
    [62]C. A. Michal. Magnetic field homogeneity:A new approach to orthogonalizing and optimizing shim gradients. Journal of Magnetic Resonance,2007(185):110-117
    [63]焦玮玮,董增仁,孙威等.核磁共振永磁体无源匀场的神经网络方法.中国科学院研究生院学报,2006(2):149-154
    [64]D. D. Traficante, M. Rajabzadeh. Optimum window function for sensitivity enhancement of NMR signals. Concepts in Magnetic Resonance,2000(12):83-101
    [65]Z. Q. Bi, A. P. Bruner, J. Li, et al. Spectral fitting of NMR spectra using an alternating optimization method with a priori knowledge. Journal of Magnetic Resonance,1999(140):108-119
    [66]P. Koehl. Linear prediction spectral analysis of NMR data. Progress in Nuclear Magnetic Resonance Spectroscopy,1999(34):257-299
    [67]D. Marion, A. Bax. Baseline correction of 2D FT NMR-spectra using a simple linear prediction extrapolation of the time-domain data. Journal of Magnetic Resonance,1989(83):205-211
    [68]G Zhu, A. Bax. Improved linear prediction for truncated signals of known phase. Journal of Magnetic Resonance,1990(90):405-410
    [69]D. Moskau. Application of real time digital filters in NMR spectroscopy. Concepts in Magnetic Resonance,2002(15):164-176
    [70]S. De Sanctis, W. M. Malloni, W. Kremer, et al. Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra. Journal of Magnetic Resonance,2011(210):177-183
    [71]W. M. Malloni, S. De Sanctis, A. M. Tome, et al. Automated solvent artifact removal and base plane correction of multidimensional NMR protein spectra by AUREMOL-SSA. Journal of Biomolecular NMR,2010(47):101-111
    [72]D. Marion, M. Ikcura, A. Bax. Improved solvent suppression in one-dimensional and two-dimensional NMR-spectra by convolution of time-domain data. Journal of Magnetic Resonance,1989(84):425-430
    [73]A. Coron, L. Vanhamme, J. P. Antoine, et al. The filtering approach to solvent peak suppression in MRS:A critical review. Journal of Magnetic Resonance,2001(152): 26-40
    [74]Y. Y. Lin, P. Hodgkinson, M. Ernst, et al. A novel detection-estimation scheme for noisy NMR signals:Applications to delayed acquisition data. Journal of Magnetic Resonance,1997(128):30-41
    [75]G L. Bretthorst. Bayesian-analysis part1 parameter-estimation using quadrature NMR models. Journal of Magnetic Resonance,1990(88):533-551
    [76]G L. Bretthorst. Bayesian-analysis Part2. signal-detection and model selection. Journal of Magnetic Resonance,1990(88):552-570
    [77]G L. Bretthorst. Bayesian-analysis Part2. applications to NMR signal-detection, model selection, and parameter-estimation. Journal of Magnetic Resonance, 1990(88):571-595
    [78]M. A. Delsuc, G. C. Levy. The application of maximum-entropy processing to the deconvolution of coupling patterns in NMR. Journal of Magnetic Resonance, 1988(76):306-315
    [79]P. E. Jupp, K. D. M. Harris, A. E. Aliev. Precision in estimating the frequency separation between spectral lines. Journal of Magnetic Resonance,1998(135):23-29
    [80]J. J. Du, P. Yuan, L. Z. Ma, et al. A novel design methodology for active shim coil. Measurement Science & Technology,2012(23)
    [81]W. E. Hull. NMR Tips for Shimming, Part 1. Rheinstetten:Bruker BioSpin GmbH, 1996
    [82]W. E. Hull. NMR tips for shimming, Part II. Rheinstetten:Bruker BioSpin GmbH, 1998
    [83]网址:http://zh. wikipedia. org/wiki/JavaScript%E5%BC%95%E6%93%8E
    [84]网址:http://zh. wikipedia. org/wiki/%E8%85%B3%E6%9C%AC%E8%AA%9E% E8%A8%80
    [85]C. Xiao, C. Cai, Z. Chen, et al. Improvement of one-dimensional gradient shimming method in nuclear magnetic resonance experiments, Proc. of 2008 IEEE international symposium on ITME,2008(1):689-692
    [86]C. D. Gregory. Projection-reconstruction spectroscopic imaging for Bo field plotting and shimming without pulsed gradients. Journal of Magnetic Resonance,1997(129): 173-183
    [87]T. R. Brown, B. M. Kincaid, K. Ugurbil. NMR chemical-shift imaging in 3 dimensions, roceedings of the National Academy of Sciences of the United States of America-Biological Sciences,1982(79):3523-3526
    [88]C. Juchem, H. Merkle, F. Schick, et al. Region and volume dependencies in spectral line width assessed by 1H 2D MR chemical shift imaging in the monkey brain at 7 T. Magnetic Resonance Imaging,2004(22):1373-1383
    [89]J. M. Liu, M. Drangova. Phase-unwrapping algorithm for translation extraction from spherical navigator echoes. Magnetic Resonance in Medicine,2010(63): 510-516
    [90]L. An, Q. S. Xiang, S. Chavez. A fast implementation of the minimum spanning tree method for phase unwrapping. IEEE Transactions on Medical Imaging,2000(19): 805-808
    [91]L. Axel, D. Morton. Correction of phase wrapping in magnetic-resonance imaging. Medical Physics,1989(16):284-287
    [92]J. M. Bioucas-Dias, G. Valadao. Phase unwrapping via graph cuts. IEEE Transactions on Image Processing,2007(16):698-709
    [93]T. J. Flynn. Two-dimensional phase unwrapping with minimum weighted discontinuity. Journal of the Optical Society of America a-Optics Image Science and Vision,1997(14):2692-2701
    [94]M. Hedley, D. Rosenfeld. A new 2-dimensional phase unwrapping algorithm for MRI images. Magnetic Resonance in Medicine,1992(24):177-181
    [95]J. Szumowski, W. R. Coshow, F. Li, et al. Phase unwrapping in the 3-point Dixon method for fat-suppression MR-imaging. Radiology,1994(192):555-561
    [96]M. P. Ekstrom, R. L. Rhoads. Application of eigenvector expansions to numerical deconvolution. Journal of Computational Physics,1974(14):319-340
    [97]P. C. Hansen. The truncated SVD as a method for regularization. Numerical Analysis Project,1987(27):534-553
    [98]B. A. Vining, R. E. Bossio, A. G. Marshall. Phase correction for collision model analysis and enhanced resolving power of fourier transform ion cyclotron resonance mass spectra. Analytical Chemistry,1999(71):460-467
    [99]L. M. Smith, A. D. Maher, E. J. Want, et al. Large-Scale Human Metabolic Phenotyping and Molecular Epidemiological Studies-via H-1 NMR Spectroscopy of Urine:Investigation of Borate Preservation. Analytical Chemistry,2009(81): 4847-4856
    [100]M. E. Dumas, R. H. Barton, A. Toye, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America, 2006(103):12511-12516
    [101]G Balacco. A new criterion for automatic phase correction of high-resolution NMR-spectra which does not require isolated or symmetrical lines. Journal of Magnetic Resonance Series A,1994(110):19-25
    [102]Z. Dzakula. Phase angle measurement from peak areas (PAMPAS). Journal of Magnetic Resonance,2000(146):20-32
    [103]J. J. Vanvaals, P. H. J. Vangerwen. Novel methods for automatic phase correction of NMR-spectra. Journal of Magnetic Resonance,1990(86):127-147
    [104]R. R Emst. Numerical Hilbert tranform and automatic phase correction of NMR-spectra. Journal of Magnetic Resonance,1969(1):26
    [105]E. C. Craig, A. G Marshall. Automated phase correction of FT NMR-spectra by means of phase measurement based on dispersion versus absorption relation (DISPA). Journal of Magnetic Resonance,1988(76):458-475
    [106]A. Heuer. A new algorithm for automatic phase correction by symmetrizing lines. Journal of Magnetic Resonance,1991(91):241-253
    [107]D. E. Brown, T. W. Campbell, R. N. Moore. Automated phase correction of FT NMR-spectra by baseline optimization. Journal of Magnetic Resonance,1989(85): 15-23
    [108]L. L. Sterna, V. P. Tong. Automated-method of phasing difficult nuclear-magnetic-resonance spectra with application to the unsaturated carbon analysis of oils. Fuel,1991(70):941-945
    [109]L. Chen, Z. Q. Weng, L. Y. Goh, et al. An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. Journal of Magnetic Resonance,2002(158):164-168
    [110]H. de Brouwer. Evaluation of algorithms for automated phase correction of NMR spectra. Journal of Magnetic Resonance,2009(201):230-238
    [111]S. Golotvin, A. Williams. Improved baseline recognition and modeling of FT NMR spectra. Journal of Magnetic Resonance,2000(146):122-125
    [112]X. G Shao, C. X. Ma. A general approach to derivative calculation using wavelet transform. Chemometrics and Intelligent Laboratory Systems,2003(69):157-165
    [113]J. C. Cobas, M. A. Bernstein, M. Martin-Pastor, et al. Anew general-purpose fully automatic baseline-correction procedure for ID and 2D NMR data. Journal of Magnetic Resonance,2006(183):145-151
    [114]C. G Tang. An analysis of base-line distortion and offset in NMR-spectra. Journal of Magnetic Resonance Series A,1994(109):232-240
    [115]R. J. Hodrick, E. C. Prescott. Postwar U. S. Business Cycles:An Empirical Investigation. Jounal of Money Credit and Banking,1994(29):8-16
    [116]Z. Starcuk, J. Halamek. Correction of base-line and lineshape distortions in fourier-transform NMR-spectroscopy by estimation of missing signals. Journal of Magnetic Resonance,1990(86):30-38
    [117]陈长忠,陈忠,程恩等.适用于多重强峰的脉冲梯度场自动匀场技术.厦门大 学学报,2000(3):317-322
    [118]肖策,陈志伟,王东等.一维梯度匀场方法的实现与改进.第十五届全国波谱学学术会议论文摘要集.2008:155-156
    [119]许勤,陈恒,杨光等.模拟匀场软件的设计与实现.波谱学杂志.2001(18):275-280
    [120]D. E. Brown. Fully automated base-line correction of ID and 2D NMR-spectra using bernstein polynomials. Journal of Magnetic Resonance Series A,1995(114): 268-270
    [121]M. S. Friedrichs. A model-free algorithm for the removal of base-line artifacts. Journal of Biomolecular NMR,1995(5):147-153
    [122]F. Gan, G H. Ruan, J. Y. Mo. Baseline correction by improved iterative polynomial fitting with automatic threshold. Chemometrics and Intelligent Laboratory Systems, 2006(82):59-65
    [123]W. Dietrich, C. H.. Rudel, M. Neumann. Fast and precise automatic base-line correction of one-dimensional and 2-dimensional NMR-spectra. Journal of Magnetic Resonance,1991(91):1-11
    [124]D. Chang, C. D. Banack, S. L. Shah. Robust baseline correction algorithm for signal dense NMR spectra. Journal of Magnetic Resonance,2007(187):288-292
    [125]G A. Pearson. General baseline-recognition and baseline-flattening algorithm. Journal of Magnetic Resonance,1977(27):265-272
    [126]Z. Zolnai, S. Macura, J. L. Markley. Spline method for correcting baseplane distortions in two-dimensional NMR-spectra. Journal of Magnetic Resonance, 1989(82):496-504
    [127]P. H. C. Eilers. A perfect smoother. Analytical Chemistry,2003(75):3631-3636
    [128]D. F. Howarth, J. A. Weil, Z. Zimpel. Generalization of the lineshape useful in magnetic resonance spectroscopy. Journal of Magnetic Resonance,2003(161): 215-221
    [129]L. Komsta. Comparison of Several Methods of Chromatographic Baseline Removal with a New Approach Based on Quantile Regression. Chromatographia,2011(73): 721-731
    [130]A. Savitzky, M. J. E. Golay. Smoothing differentiation of data by simplified least squares procedures. Analytical Chemistry,1964(36):1627-1632

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700