基于外磁场驱动的微型管道机器人研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃肠道是人体的重要器官,由于所处环境的复杂性,与其他器官相比更容易发生病变。对于胃肠道的检查,通常的方法是插管式内窥镜和无缆式胶囊内窥镜。前者的主要缺点是靠外力进入胃肠道,容易造成组织器官的损伤,给病人带来不适和痛苦。后者是靠胃肠道的自然蠕动来遍历全身进行检查,并期望最终排出体外。此种方法的缺点是观察过程不受控制,检查所需时间较长,可能存在检查盲区,胶囊滞留等问题。
     为了实现胶囊内窥镜的主动驱动,本文研究了一种直接利用外部均匀梯度磁场驱动的方法,微型管道机器人本体采用内嵌钕铁硼永磁体制作而成的胶囊形状机器人,利用亥姆霍兹线圈与麦克斯韦线圈空间组合,形成驱动微型管道机器人所需的组合线圈,通过调节组合线圈加载电流的大小,线圈空间位置的变换,以及管道的位置平移,共同形成微型管道机器人驱动所需的梯度磁力和磁转矩,从而有效地完成驱动动作。采用这种磁场驱动方式,具有结构简单、驱动力和速度可控、稳定性和安全性高、可对重点部位进行检查等优点。
     本文主要对均匀梯度磁场形成的原理、微型管道机器人的驱动机理进行了分析,对驱动线圈进行了磁场仿真分析,对微型管道机器人的本体进行了设计,并搭建了实验所需的微型管道机器人控制系统,最后通过实验验证了微型管道机器人的运动性能。实验结果表明,微型管道机器人具有较好的运动性能,实现了平移运动,空间姿态调整等动作,具有较好的可控性。
Gastrointestinal tract is the body's vital organs. Because of the complexity of its environment, compared with other organs, the gastrointestinal tract is more susceptible to disease. For the gastrointestinal tract examination, the usual method is intubating endoscope and non-cable-style capsule endoscopy. The main disadvantage of the former relies on external force to enter into the gastrointestinal tract. This method easily damages tissue and organ and causes patients uncomfortably and painfully. The latter is the natural peristalsis through the gastrointestinal tract, which conducts inspection through body and eventually excretes. Disadvantage of this method is out of control to observe process. It requires longer checking time. The blind spots and capsule retention may exist.
     In order to achieve the active capsule endoscopy-driven, in this paper, an approach of direct external uniform gradient-driven by magnetic field is researched. Micro-pipe robot body is capsule robot that is embedded with Nd-Fe-B permanent magnet. Helmholtz coils and the Maxwell coils are orthogonal combination in space. A combination of coil drives micro-pipe robot. By adjusting current of coil and the transformation of coil spatial location and the location of pipelines translation, those jointly form gradient force and magnetic torque to effectively complete the driver action required. Author use this magnetic field-driven approach, which has simple structure. The driving force and speed is controlled. It has high security and can examine key positions and so on.
     In this paper, principle of the formation of uniform and gradient magnetic field is analyzed. Driving mechanism of micro-pipe robot is analyzed. Magnetic field of the drive coil is simulated. The micro-pipe robot body was designed. Author built the experimental equipment needed for micro-pipe controlled system. Finally, experiment test and verify performance of the micro-pipe robot motion. Experimental results show that micro-pipe robot has good motion performance to achieve the translational motion and space posture adjustment. It has good controllability.
引文
[1]张效.工业机器人的现状与发展趋势.相关产业.2004(5):33-36页
    [2]孙立宁,周兆英,龚振邦.MEMS国内外发展状况及我国MEMS发展战略的思考.机器人技术与应用.2002(1):2-4页
    [3]孙立宁,刘品宽,吴善强等.管内移动微型机器人研究与发展现状.光学精密工程.2003,11(4):326-332页
    [4]迟冬祥,颜国正,林良明.用于肠道检查的微小机器人内窥镜系统.中国医疗器械杂志.2002,26(3):23-26页
    [5]徐阳.机器人技术在医疗领域中的应用.今日科技.1999(8):4-5页
    [6]刘文光,陈和恩,陈扬枝.医用管道微机器人的研究进展.现代制造工程.2004(5):14-16页
    [7] http://www.givenimaging.com/.以色列基文影像有限公司
    [8] http://www.rfsystemlab.com/.日本无线电系统实验室
    [9] http://www.microsystem.re.kr/.韩国智能微系统中心
    [10] SendohM,YamazakiA,ChibaAetal.Spiraltypemagneticmicroactuatorsformedicalapplications.Micro-NanomechatronicsandHumanScience,ProceedingsoftheInternationalSymposium,2004:319-324P
    [11] Hideo Saotome. Swimming properties of a bending-type magnetic micromachine. Journal of Magnetic, Society of Japan, 2001, 25(4-2):1175-1178P
    [12] Shuxiang Guo, Y.Hasegaw, T.Fukuda. Fish-like Underwater Microrobot with Multi DOF. Proceedings of the 2001 International Symposium on Micro mechatronics and Human Science. IEEE, 2001:63-68P
    [13] http://www.olympuschina.com/奥林巴斯医疗系统公司
    [14] K Zimmermann, V A Naletova, I Zeidis etal. A deformable magnetizable worm in a magnetic field-A prototype of mobile crawling robot. Journal of Magnetism and Magnetic Materials. 2007: (311)450-45P
    [15]卢秋红.微型仿生蠕动机器人驱动器及动力学建模研究.上海交通大学博士学位论文.2004:10-24页
    [16]周银生,贺惠农,顾大强等.医用微型机器人无损伤体内驱动方法.科学通报.1999,44(20):2210-2213页
    [17]周银生,贺惠农,全永昕.无损伤肠道机器人运行速度的研究.摩擦学学报.1999,19(4):299-303页
    [18]张永顺,丁凡,贾振元.外磁场驱动无缆微型机器人行走特性的分析.机械工程学报:2003,39(6):135-139.页
    [19]王广振,季林红,温诗铸.电磁驱动热膨胀型微型机械驱动器.机械工程学报.2003,39(2):79-83页
    [20] http://www.cqjs.net/重庆金山科技集团
    [21] http://www.omom.us/ OMOM胶囊内窥镜
    [22] IshiyamaK, AraiK, Sendoh M.etal. A fabrication of magnetic micro-machine for local hyperthermia. Sensors and Actuators, 2001:141-144P
    [23] Sendoh M, Ishiyama K. Fabrication of magnetic actuator for use in a capsule endoscope. IEEE Transactions on Magnetics, 2003, 39(5): 3232-3234P
    [24] FukudaT, Hosokai H. Giantmagn to strictive alloy (GMA) application to micromobile robot as a microactuator with out power supply cable. IEEE Micro Electro Mechanical System, 1991:210-215P
    [25] Honda.T. Swimming properties of a bending-type magnetic micromachine. Journal of Magnetic, Society of Japan, 2001, 25(4-2):1175-1178P
    [26] Ishiyama K, Arai K, Sendoh M etal. Spiral-type micro-machine for medical applications. Micro mechatronics and Human Science 2000. Proceedings of 2000 International Symposium on, 2000, (22-25 Oct):65-69P
    [27]牛中奇,朱满座,卢智远,路宏敏等编著.电磁场理论基础.第一版.北京:电子工业出版社,2001:79-86页
    [28]简小云,梅涛,汪小华.胶囊内窥镜机器人的外磁场驱动方法.机器人.2005(4):367-372页
    [29]王辉静,简小云.体内医疗微型机器人的外磁场驱动与控制系统研究.深圳信息职业技术学院学报.2006,11(4):10-13页
    [30]徐游,电磁学.第二版.北京:科学出版社,2005:200-207页
    [31] HiguchiT, WatanabeM, KodouK. Precise positioner utilizing rapid deformantions of piezo electric elements, JSPE 1988,11(54):2107-2112P
    [32] Katsushi Furutani, Toshiro Higuchi, Yutaka Yamagata, Naotake Mohri. Effect of lubrication on impact drive mechanism [J], Precision engineering 22(1998):78-86P
    [33] HAYASHI, IWATSUKI N. Micro moving robotics[A].IEEE International Symposium on Micro Mechatronics and Human Science[C].1998:41-50P
    [34] IDOGAXI T, KANAYAMA H, OHYA N, Characteristics of piezoelectric locomotive mechanismfor in-pipe micro inspection machine[A].IEEE Sixth International Symposium on Micro Machine and Human Science[C].1995:193-197P
    [35] Fukuda T, kawamoto A, Arai Fetal. Steering Mechanism of Underwater Micro Mobile Robot. Proceedings of the 1995 IEEE Conference on Robotics and Automation. 1995:363-68P
    [36]曾晓英,亥姆霍兹线圈磁场的均匀性分析.长沙交通学院学报. 1999(12):15-18页
    [37]曾晓英,杨昶,邱明,杨昌虎,刘丽萍.均匀梯度磁场的研究.长沙电力学院学报. 2005(5)83-85页
    [38]张永顺,张凯,张林燕.体内微型机器人的全方位旋进驱动特性.机器人.2006,28(6):560-564页
    [39]肖楠.尾部驱动微型管道机器人.哈尔滨工程大学硕士学位论文.2007:14-24页
    [40] FukudaT, Hosokai H. Giantmagn to strictive alloy (GMA) application to micro mobile robot as a micro actuator with out power supply cable. IEEE Micro Electro Mechanical System, 1991:210-215P
    [41] R T Schroer, M J Boggess, R J Bachmann, etal. Comparing cockroach and Whegs robot body motions. Proceedings of the IEEE International Conference on Robotics and Automation. Seoul, South Korea, 2001:21-26P
    [42]刘春景,肠胃检查机器人的外磁场驱动控制研究.石河子大学硕士学位论文.2006:18-29页
    [43]晃立东,仵杰,王仲奕.工程电磁场基础.第一版.西安:西北工业大学出版,2002:17-23页
    [44]孙明礼,胡仁喜,崔海蓉.电磁学有限元分析实例指导教程.第一版.北京:机械工业出版社,2007:1-10页
    [45]张榴晨,徐松.有限元法在电磁计算中的应用.第一版.北京:中国铁道出版社,1996:11-22页
    [46]王国强.实用工程数值模拟技术及其在ANSYS上的实践.第一版.西安:西北工业大学出版社,1999:42-47页
    [47]邓凡平.ANSYS10.0有限元分析自学手册.第一版.北京:人民邮电版社, 2007:22-25页
    [48]宋后定.永磁材料及其应用.第一版.北京:机械工业出版社,1984:1-8页
    [49]周寿增,董清飞.超强永磁体.第一版.北京:冶金工业出版社,2004:7-16页
    [50]薛君妍,移动旋转磁场驱动的微型管道机器人的研究.哈尔滨工程大学硕士学位论文.2009:16-25页
    [51] Sendoh M, Yamazaki A, Chiba A et al. Spiral type magnetic micro actuators for medical applications. Micro-Nanomechatronics and Human Science. Proceedings of the International Symposium on 31 Oct.-3 Nov. 2004: 319-324P
    [52]陈竹年,磁场梯度线圈的设计.电测与仪表.1994(4):18-19页
    [53]易晓柯,亥姆霍兹线圈的制作和测试.实验科学与技术.2005(10):171-172页
    [54]任思璟.微型泳动式管道机器人的理论研究.哈尔滨工程大学硕士学位论文.2008:14-24页
    [55]汤旭日,心脑血管微创手术辅助装置的研究.哈尔滨工程大学硕士学位论文.2009:33-42页
    [56]段伟山,磁力传动机构的分析与研究.天津大学硕士学位论文.2008:8-16页
    [57]胡飞.微型泳动机器人运动特性研究.浙江大学硕士论文.2006:14-72页
    [58]黄明伟.新型无缆管道机器人的初探.广东工业大学硕士学位论文.2006:12-51页
    [59]王惠颖.泳动微型机器人仿生游动机理的研究.大连理工大学硕士学位论文.2005:21-67页
    [60]张永顺,丁凡,贾振元.外磁场驱动无缆微型机器人行走特性的分析.机械工程学报:2003,39(6):135-139页
    [61] Honda.T. Swimming properties of a bending-type magnetic micro machine. Journal of Magnetic, Society of Japan, 2001, 25(4-2):1175-1178P
    [62]刘大力,张晓慧,韩相吉.磁传递力矩的简化计算方法.吉林工学院学报.1997,18 (3):40-44页
    [63]张宝裕,刘恒基,磁场的产生.机械工业出版社.1987:23-32页,40-43页,88-110页
    [64]马德志,申献辉,宁晓峰.磁粉探伤中旋转磁场的研究与应用.无损检测.2006,28(5):266-269页
    [65]雷银照.轴对称线圈磁场计算.中国计量出版社,1991:17-23页,60-63页,120-123页,146-155页
    [66]林其壬,赵佑民.磁路设计原理.机械工业出版社,1987:504-507页
    [67]李剑平.外磁场驱动胶囊内窥镜的驱动磁场线圈设计研究.合肥工业大学硕士论文,2006:26-37页
    [68]姜萍萍,颜国正,王文兴.人体全消化道微型介入式诊查系统研制.机器人技术与应用.2003(4):23-27页
    [69]吴江红.肠道微型机器人无损伤驱动原理方法及其仿真模型研究.重庆大学博士学位论文.2000:35-49页
    [70] Maeda S, Abe K , Murayama M , Tohyama Osamu. Shape memory alloy actuators and their reliability. Proceedings of The International Society for Optical Engineering. 2001:111-118P
    [71] Higuchi T,Watanabe M, Kodou K. Precise positioner utilizing rapid formations of piezo electric elements, JSPE. 1993.11(54):2107-2112P
    [72] HAYASHI, IWATSUKI N. Micro moving robotics[A].IEEE International Symposium on Micro Mechatronics and Human Science[C].1998:41-50P
    [73] IDOGAXI T, KANAYAMA H, OHYA N, Characteristics of piezoelectric locomotive mechanismfor in-pipe micro inspection machine [A]. IEEE Sixth International Symposium on Micro Machine and Human Science[C]. 1995:193-197P
    [74] Ishiyama K, Sendoh M, Arai K I.Magnetic micro machines for medical applications.Journalof Magnetism and Magnetic Materials 2002:41-46P
    [75] KazushiIshiyama, MasahikoSendoh, AyaYamazaki, Mitsuteru Inoue, Ken Ichi Arai, Swimming of Magnetic Micro-Machines under a Very Wide-Range of Reynolds Number Conditions, IEEE Transactions on Magnetics, 2001, 37(4):2868-2870P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700