新型纳米结构材料在电化学传感器中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料。纳米材料是目前超微粉体材料中最富有活力的组成部分,当物质的结构单元减小到纳米尺度时,就会产生特异的表面及界面效应——小尺寸效应、量子尺寸效应和宏观量子隧道效应,其电学、磁学、光学和化学性质也会有显著的变化,表现出常规大块材料所不具备的优异性能。因此,纳米材料的独特的性能,使其在催化,微电子器件,磁性材料,传感器等领域具有广阔的应用前景。
     近年来,日益严重的环境污染及食品安全问题,对人类生命与健康产生巨大威胁,成为全球关注的热点问题。人们迫切需要快速、灵敏、简便的分析方法进行实时检测,得到更多的污染信息。电化学传感器作为分析检测的重要手段以其操作简便、费用低、可实时在线检测等优点成为近年来的研究热点。随着纳米材料的发展,其优异的性能,与传感器所要求的多功能化、微型化、高效率等相对应。利用纳米材料构筑电化学传感器,可以将其优良的性能很好地整合到分子运作中,从而提高传感器性能。因此,随着纳米材料科学和微电子技术的快速发展,新原理、新技术、新材料和新工艺的广泛采用,具有特殊性能的电化学传感器在环境监控、食品安全和原材料质控等领域不断发展。
     本文中,我们旨在利用简单的合成方法制备出具有优良结构的新型纳米材料,并用来构筑电化学传感器。论文重点研究了新型纳米结构材料在电催化及电化学分析检测中所表现出的优异的性能,通过对其动力学及机理的研究,对微观环境中纳米材料与被检测分子之间的相互作用有了深刻的理解,从而为生物分析及环境分析提供了重要的分析手段和理论基础。
     研究内容及实验结果主要体现在以下三个部分:
     (1)半胱氨酸(CySH),高半胱氨酸,蛋氨酸等含S氨基酸是生物体内常见的氨基酸,在生物系统中起着重要的作用,其含量的多少可以作为一些疾病的诊断依据,如老年痴呆症和帕金森综合症等。另外,CySH在食品加工中也具有许多用途,是一种重要的食品添加剂,它主要用于焙烤制品,作为面团改良剂的必需成分。根据卫生部修定的《食品添加剂使用标准》,半胱氨酸作为一种食品添加剂有着严格的使用标准。因此,半胱氨酸的高灵敏度、高选择性检测在临床医学和食品安全中非常重要。
     利用简单的腐蚀金-银合金的方法制备纳米多孔金(NPG)。纳米多孔金具有规则的双连续的多孔网状结构、超高的比表面积、优异的电子传导能力。它的双连续多孔网状结构,有利于分子在其内部传输,而且由于金的良好导电性,可以作为一种理想的电极模型材料应用于电催化的研究;同时,多孔金拥有超高的比表面积,这有助于充当电化学传感器材料,提高检测器的灵敏度,具有广阔的研究前景。本章中,我们利用NPG作为电极,研究其对CySH的电化学催化及检测效果。
     研究发现CySH在NPG电极上的氧化反应电位比在玻碳电极和块状金电极上的更低一些,其在多孔电极表面上的吸附而造成的电流减小的现象也不是很明显。CySH在NPG电极上呈现两个氧化峰,一个位于0.65V,对应着CySH在金表面上发生氧化反应;另外一个大的氧化峰出现在0.85V,其氧化过程发生在金表面氧化物形成以后,并且该峰是一个混合控制过程。我们发现,当把检测电位置于0.65V时,NPG对CySH表现出最大的响应电流,并且在该电位下,常见干扰物如色氨酸,酪氨酸,蛋氨酸,尿酸等都没有干扰,利用该电极检测CySH具有很高的灵敏度,较宽的线性范围(1~400μM)和较低的分析限(0.05μM)。另外,多孔金作为电极还可以用于实际样品尿液中检测CySH的含量,具有较好的回收率。
     (2)硝基酚类化合物是化工生产中重要的有机合成原料,不仅是染料、农药和医药的重要中间体,还广泛用于防腐剂以及橡胶工业生产中。酚类都具有毒性,可通过皮肤、黏膜的接触、吸入或经口服而侵入人体内部,它与细胞原浆中的蛋白质接触时,发生化学反应,使蛋白质凝固或变性,很容易使微生物中毒,所以一直被认为是高毒性的环境污染物,其中,对硝基酚、邻硝基酚和2,4-二硝基酚毒性较大,被美国环保局(EPA)列为“优先控制污染物名单”。如果人们长期饮用含有酚类化合物的水,可引起头昏、贫血及各种神经系统症状,甚至中毒,有致癌、致畸以及致突变的潜在毒性,直接关系到人体的健康生存环境。同时,硝基酚类化合物也是难降解的有毒有机物,对硝基酚的检测过程中容易受到其他异构体的干扰,因此利用适当的方法来选择性识别并降解处理水体中的对硝基酚,使之无害化是摆在我们面前的一个严峻的问题。
     我们通过腐蚀金银合金的方法制备了两种不同厚度的纳米多孔金,一种为非负载型的多孔金(us-NPG),一种为负载在玻碳电极上的多孔金(NPG/GC),纳米多孔金对硝基酚异构体表现出了良好的催化效果。然而,研究发现邻硝基酚和间硝基酚在两种多孔电极上表现出不同的电化学循环伏安行为,邻硝基酚和间硝基酚在us-NPG电极上出现了一对新的氧化还原峰,而这对峰在NPG/GC和Au(111)电极上并没有出现。由于这对峰与对硝基酚在us-NPG上的一对氧化还原峰之间的电位差很大,邻硝基酚和间硝基酚的存在对对硝基酚的选择性检测不会带来干扰,因此,利用在us-NPG的独特电化学信号可以选择性检测对硝基酚的含量。经过一系列机理研究得出,邻硝基酚和间硝基酚在us-NPG电极上出现的一对新的氧化还原峰对应着其在us-NPG电极的内部孔洞内分子间及分子内通过氢键形成的中间体。纳米多孔金不同的厚度及其负载方式造成的分子的反应过程和机理的不同,该研究对于多孔电极微环境内的分子间的反应有了进一步的理解。
     (3)石墨烯是由单层碳原子以正六边形紧密排列成蜂窝状的二维平面结构,在二维平面上,碳原子之间以杂化轨道sp2相连,即每个碳原子通过很强的σ键与相邻的3个碳原子连接。由于石墨烯具有独特的纳米结构以及超高的比表面积,在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出许多优良性能,迅速成为近年来科学界关注的焦点,具有广阔的应用前景。然而,石墨烯表面呈现惰性状态,与其他溶剂的相互作用力较弱,在水中的溶解度较小,在某些方面限制了其应用。而表面具有缺陷的石墨烯或者对石墨烯进行表面功能化,可以大大提高石墨烯的水溶性,从而可以得到在水溶液中稳定分散的悬浮液。
     环糊精是一种外缘亲水而内腔疏水的化合物,它能够提供一个疏水的结合部位,由于环糊精在水中的溶解度和包结能力,使环糊精成为化学修饰电极的重要分子。另外,环糊精作为重要的主体分子能够与许多客体分子形成主客体包合物,而选择性的包合作用即分子识别。我们利用硼氢化钠同时还原石墨烯氧化物和环糊精的方法将环糊精修饰在石墨烯的表面上,一方面提高了石墨烯的溶解性,另一方面利用石墨烯的优良性能和环糊精的超分子包合能力,来实现对硝基酚异构体的识别和检测。石墨烯(RGO)对硝基酚异构体表现出很好的催化效果,而当其表面修饰上环糊精后,硝基酚在其上的还原峰迅速增大,这表明环糊精与硝基酚分子之间产生了主客体的包合作用。环糊精修饰的石墨烯(CD-RGO)对硝基酚异构体表现出非常好的催化效果,这归因于RGO的强的吸附能力、大的比表面积以及CD的超分子包合能力。由于三种硝基酚在CD-RGO/GCE分别有三对位于不同电位下的可逆的氧化还原峰,对应着羟胺酚和亚硝基酚之间的相互转化。由于相互之间的氧化峰的电位差非常大,两种硝基酚异构体的存在不会影响另外一种的检测。并且,CD-RGO修饰电极具有较宽的线性范围和较低的检测限,可以应用于环境检测控制中硝基酚异构体的识别和检测,这一研究进一步拓展了石墨烯在分子异构体方面的识别与检测方面的应用。
Nanomaterials are the materials possessing one or more dimensional features having a length on the order of1nm to less than100nm, exhibiting new or enhanced size-dependent properties compared with larger particles of the same material. Studies of novel materials on the nanometer scale have been the most important and challenging topics in modern materials science, which involve nanoparticles, nanowires, nanotubes and their potential applications in catalytic, microelectronics devices, magnetic materials, new energy materials and sensors.
     Today's human health management requires to be dealt with from a holistic "One Health" perspective that acknowledges the systemic interconnections of human, animal and environmental health in close relation with food safety and security. However, the environmental pollution is becoming worse and worse. Therefore, developing simple and effective methods for trace analysis of environmental pollutants is of great significance in both clinical and industrial applications. Among a variety of analytical methods, electrochemical methods have received considerable attentions due to unique advantages, e.g., simple operation, fast response, low cost and high detection sensitivity. The nanostructures with large specific surface area can provide an important and feasible platform for separation and sensing. Therefore, the fabrication of a new platform of miniaturized devices for high sensitive analyses is a great challenge that will be applied in diverse fields including clinical diagnosis, food analysis, process control and environmental monitoring in the near future.
     In this paper, we aim at utilizing simple and novel methods to fabricate novel nanostructured materials and and studying their applications in electrochemical sensors. The main contents of this paper include:
     (1) S-containing amino acids, e.g., L-cysteine (CySH), homocysteine and methionine have played a crucial role in both bio-and environmental chemistry, and can be applied to many biochemical processes and to diagnosis of disease states, for example, as prospective radiation protector and cancer indicator. In particular, CySH provides a modality for the intramolecular crosslinking of proteins through disulfide bonds to support their secondary structures and functions. Therefore, developing simple and effective methods for trace analyzing CySH is of great significance in both clinical and industrial applications.
     Nanoporous gold (NPG), simply prepared by selective dissolution of Ag from Au42Ag58alloy samples in HNO3solutions, possesses uniform pore sizes and ligaments, open bicontinuous metal-void phase, high surface-to-volume ratio and great porosity, which are suitable for acting as a electrochemical sensor material. NPG electrodes exhibit a higher electrocatalytic activity towards the oxidation of CySH than other electrodes. The mechanism for the electrochemical reaction of CySH at the modified electrode has been discussed. Interestingly, if the operating potential is fixed at0.65V, a strong current is observed and the interferences by tryptophan and tyrosine are avoided. The calibration plot is linear in the concentration range from1μM to400μM (R2=0.994), and the quantification limit is as low as50nM.
     (2) Nitrophenols are widely used in some manufacturing industries (e.g., dyes, pesticides, wood preservatives, explosives and leather treatments) and known to be seriously toxic to humans, animals and plants. In particular, p-NP is a toxic derivative of the parathion insecticide and among the priority toxic pollutants'list given by US Environmental Protection Agency (EPA). Therefore, monitoring and selectively determining p-NP in environmental samples are extremely significant. Many analytical methods, such as UV-visible spectroscopy and liquid chromatography, have been employed to detect p-NP. Due to the great advantages, e.g. simple operation, good selectivity and sensitivity, electrochemical methods have received considerable attention in the determination of p-NP.
     An unsupported nanoporous gold (us-NPG) was applied as a novel electrochemical sensor material for the selective detection of p-nitrophenol (p-NP) among its isomers in acid solution based on the distinct cyclic voltammetric behavior. To ascertain the ascription of each peak in cyclic voltammograms (CVs) of three nitrophenol isomers (NPs) on the us-NPG, contrast voltammetric studies of NPs were conducted at an ultrathin NPG film supported on glassy carbon substrate (NPG/GC) and a well-defined Au(111) electrode, respectively. Effects of potential scan rate and rotation speed of the electrode on the redox reaction of NPs were investigated to further confirm the reaction mechanisms. Interestingly, unlike those obtained on NPG/GC and Au(111) electrodes, the CVs of both o-nitrophenol (o-NP) and m-nitrophenol (m-NP) on us-NPG presented a new pair of redox waves separated very well with the redox waves of p-NP, indicating an obviously different mechanism involved in the redox process. Based on the voltammetric behavior, trace level determination of p-NP can be achieved on us-NPG electrode in the presence of o-NP and m-NP. Thus, the fast electron transfer, high selectivity and good sensitivity make us-NPG act as an ideal electrochemical sensor material in the selective determination of p-NP in aqueous solutions.
     (3) Graphene sheet, a two-dimensional monolayer graphite, has attracted enormous attentions in recent years not only for its scientific significance but also for its applicable future. Large specific surface area, good electrocatalytic activity and excellent electrical conductivity make graphene as a good choice for electrode materials in electrochemical super-capacitors, fuel cells and field-effect transistors. Particularly, graphene is an ideal candidate as chemical sensors, and has been used to fabricate pH sensors, gas sensors and biosensors. However, the lack of functional groups on surface leads to the poor dispersion of graphene in solvent and narrows its application areas. In order to overcome these shortcomings, some functional groups have been employed to modify the surfaces of graphene, for example, sulfonates and cyclomaltoheptaose. All the functionalized and defective graphene sheets are more hydrophilic and can be easily dispersed in solvents with long-term stability.
     Cyclodextrins (CDs), as an important host in supramolecular chemistry, are oligosaccharides composed of six, seven or eight glucose units, which are toroidal in shape with a hydrophobic inner cavity and a hydrophilic exterior. CDs can be attached on the surface of graphene sheet by the strong hydrogen bonding to make graphene more hydrophilic. As a result, CDs-functionalized graphene sheets can be used as electrochemical sensor.
     β-CD modified reduced graphene oxide (RGO) sheets have been prepared and characterized by TEM, AFM, IR, EIS and CVs. In comparison with bare glass carbon electrode (GCE) and RGO modified GCE, CD-RGO/GCE showed much higher peak currents to the reduction of nitrophenol isomers (NPs), attributed to the larger specific surface area of RGO and high quantities of host-guest recognition sites. Three pairs of redox peaks are observed on the CVs of CD-RGO for p-NP (0.3V), o-NP (-0.2V) and m-NP (0.05V), separating well with each other. Under the optimized condition, the anodic peak currents were linear over ranges around1-10mg dm-3for p-NP,1-9mg dm-3for o-NP and1-6mg dm-3for m-NP, with the detection limits of0.05mg dm-3,0.02mg dm-3and0.1mg dm-3, respectively. Thus, the CD-RGO modified electrode is a kind of promising electrochemical sensor material for detecting trace NPs in waste water.
引文
[1]张立德,纳米材料.北京:化学工业出版社,2000.
    [2]王永康,王立等,纳米材料科学与技术.杭州:浙江大学出版社,2002.
    [3]李群,纳米材料的制备与应用技术.北京:化学工业出版社,2008.
    [4]Liang, M.; Guo, L. Application of Nanomaterials in Environmental Analysis and Monitoring. J. Nanosci. Nanotechno.2009,9,2283-2289.
    [5]Guo, S.; Wang, E. Noble metal nanomaterials:Controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011,6,240-264.
    [6]Ding, Y; Erlebacher, J. Nanoporous Metals with Controlled Multimodal Pore Size Distribution.J. Am. Chem. Soc.2003,125,7772-7773.
    [7]Dresselhaus, M. S. Recent Advances in Carbon Nanotube Science and Applications. ACS Nano 2010,4,4344-4349.
    [8]Gowda, S. R.; Reddy, A. L. M.; Zhan, X.; Jafry, H. R.; Ajayan, P. M.3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries. Nano Lett. 2012,12,1198-1202.
    [9]Terrones, M. Sharpening the Chemical Scissors to Unzlp Carbon Nanotubes: Crystalline Graphene Nanoribbons. ACS Nano 2010,4,1775-1781.
    [10]Velev,0. D.; Tessier, P. M; Lenhoff, A. M.; Kaler, E. W. A class of porous metallic nanostructures. Nature 1999,401,548-548.
    [11]Kulinowski, K. M; Jiang, P.; Vaswani, H.; Colvin, V. L. Porous metals from colloidal templates. Adv. Mater.2000,12,833-838.
    [12]Walsh, D.; Arcelli, L.; Ikoma, T.; Tanaka, J.; Mann, S. Dextran templating for the synthesis of metallic and metal oxide sponges. Nature Mater.2003,2,386-390.
    [13]Soler-illia, G,; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials:from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev.2002,102,4093-4138.
    [14]Jang, S. G.; Yu, H. K.; Choi, D.-G.; Yang, S.-M. Controlled Fabrication of Hollow Metal Pillar Arrays Using Colloidal Masks. Chem. Mater.2006,18,6103-6105.
    [15]Ji, T. H.; Lirtsman, V.; Avny, Y.; Davidov, D. Preparation, characterization, and application of Au-Shell/polystyrene beads and Au—shell/magnetic beads. Adv. Mater. 2001,13,1253-1256.
    [16]Velevu, O. D.; Lenhoff, A. M. Colloidal crystals as templates for porous materials. Curr. Opin. Collolid. In.2000,5,56-63.
    [17]Velev, O. D.; Tessier, P. M.; Lenhoff, A. M.; Kaler, E. W. A class of porous metallic nanostructures. Nature 1999,401,548.
    [18]Zhang, G; Wang, D.; Mohwald, H. Patterning Microsphere Surfaces by Templating Colloidal Crystals. Nano Lett.2005,5,143-146.
    [19]Wang, Q.; Sun, X.; Luo, S.; Sun, L.; Wu, X.; Cao, M.; Hu, C. Controllable Synthesis of PbO Nano/Microstructures Using a Porous Alumina Template. Cryst. Growth. Des.2007,7,2665-2669.
    [20]Sander, M. S.; Tan, L.-S. Nanoparticles Arrays on Surface Fabricated Using Anodic Alumina Films as Templates. Adv. Funct. Mater.2003,13,393-397.
    [21]Shukla, S.; Kim, K.-T.; Baev, A.; Yoon, Y. K.; Litchinitser, N. M.; Prasad, P. N. Fabrication and Characterization of Gold Polymer Nanocomposite Plasmonic Nanoarrays in a Porous Alumina Template. ACS nano.2010,4,2249-2255.
    [22]Sulka, G D.; Brzozka, A.; Liu, L. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates. Electrochim. Acta 2011,56,4972-4979.
    [23]Dickey, M. D.; Weiss, E. A.; Smythe, E. J.; Chiechi, R. C.; Capasso, F.; Whitesides, G M. Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation. ACS nano 2008,2,800-808.
    [24]Meldrum, F. C.;Seshadri, R. Porous gold structures through templating by echinoid skeletal plates. Chem. Commun.2000,29-30.
    [25]Seshadri, R.; Meldrum, F. C. Bioskeletons as templates for ordered, Macroporous structures. Adv. Mater.2000,12,1149-1151.
    [26]Basheer, C.; Swaminathan, S.; Lee, H. K.; Valiyaveettil, S. Development and application of a simple capillary-microreactor for oxidation of glucose with a porous gold catalyst. Chem. Commun.2005,409-410.
    [27]Attard, G. S.; Bartlett, P. N.; Coleman, N.R.B.; Elliot, J.M.; Owen, J.R.; Wang, J. H. Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases. Science 1997,278,838-840.
    [28]Attard, G S.; Leclerc, S. A. A.; Maniguet, S.; Russell, A. E.; Nandhakumar, I.; Gollas, B. R.; Bartlett, P. N. Liquid crystal phase templated mesoporous platinum alloy. Micropor Mesopor Mater 2001,44-45,159-163.
    [29]Newman, R.; Sieradzki, K., Metallic corrosion. Science 1994,263,1708-1709.
    [30]Tian, B. Z.; Liu, X. Y.; Tu, B.;Yu, C.; Fan, J.; Xie, S.; Stucky, G D.; Zhao, D.Y. Self-adjusted general synthesis of ordered stable mesoporous minerals via acid-base pairs. Nat. Mater.2003,2,159-163.
    [31]Swann, P. R. Mechanism of corrosion tunneling with special reference to Cu3Au. Corrosion.1969,25,869.
    [32]Forty, A. J. Corrosion micromorphology of noble metal alloys and depletion. Nature 1979,282,597-598.
    [33]Picketing, H. W. Characteristic features of alloy polarization curves. Corros. Sci 1983,23,1107-1120.
    [34]Li, R.; Sieradzki, K. Ductile-brittle transition in random porous Au. Phys. Rev. Lett.1992,68,1168-1171.
    [35]Stratmann, M.; Rohwerder, M. Materials science. A pore view of corrosion. Nature 2001,410,420-423.
    [36]Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001,410,450-453.
    [37]Ding, Y.; Erlebacher, J. Nanoporous Metals with Controlled Multimodal Pore Size Distribution J. Am. Chem. Soc.2003,125,7772-7773.
    [38]Huang, J. F.; Sun, I. W. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid,and the self-assembly of L-cysteine monolayers. Adv.Fimct.Mater.2005,15,989-994.
    [39]Hoshi, Y.; Yoshida, T.; Nishikata, A.; Tsuru, T. Dissolution of Pt-M (M:Cu, Co, Ni, Fe) binary alloys in sulfuric acid solution. Electrochim. Acta 2011,56,5302-5309.
    [40]Li, W.; Ma, H.; Huang, L.; Ding, Y Well-defined nanoporous palladium for electrochemical reductive dechlorination. Phys. Chem. Chem. Phys.2011,13, 5565-5568.
    [41]Ding, Y.; Kim, J. Y.; Erlebacher, J., Nanoporous Gold Leaf:"Ancient Technology"/Advanced Material. Adv. Mater.2004,16,1897-1900.
    [42]Qian, L. H.; Chen, M. W. Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett.2007,91,083105-3.
    [43]Qian, L. H.; Yan, X. Q.; Fujita, T.; Inoue, A.; Chen, M. W. Surface enhanced Raman scattering of nanoporous gold:Smaller pore sizes stronger enhancements. Appl. Phys. Lett.2007,90,153120-3.
    [44]Xu, C; Su, J.; Xu, X.; Pengpeng Liu, Zhao, H.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J Am Chem Soc.2007, 129,42-43.
    [45]Yin, H.; Zhou, C.; Xu, C.; Liu, P.; Xu, X.; Ding, Y. Aerobic Oxidation of D-Glucose on Support-Free Nanoporous Gold. J. Phys. Chem. C 2008,112, 9673-9678.
    [46]Snyder, J.; Livi, K.; Erlebacher, J. Dealloying silver/gold alloys in neutral silver nitrate solution:porosity evolution, surface composition, and surface oxides. J Electrochem Soc 2008, 155, C464-C473.
    [47]Zhang, J.; Ma, H.; Zhang, D.; Liu, P.; Tian, F.; Ding, Y. Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold. Phys. Chem. Chem. Phys.2008,10,3250-3255.
    [48]Ge, X.; Wang, R.; Liu, P.; Ding, Y. Platinum-Decorated Nanoporous Gold Leaf for Methanol Electrooxidation. Chem. Mater.2007,19,5827-5829.
    [49]Zhang, J.; Liu, P.; Ma, H.; Ding, Y. Nanostructured Porous Gold for Methanol Electro-Oxidation. J. Phys. Chem. C2007,111,10382-10388.
    [50]Ge, X.; Wang, R.; Cui, S.; Tian, F.; Xu, L.; Ding, Y. Structure dependent electrooxidation of small organic molecules on Pt-decorated nanoporous gold membrane catalysts. Electrochem. Commun.2008,10,1494-1497.
    [51]Kazemi, R.; Kiani, A. Deposition of palladium submonolayer on nanoporous gold film and investigation of its performance for the methanol electrooxidation reaction. Int. J. Hydrogen. Energ.2012,37,4098-4106.
    [52]Wang, R.; Wang, C.; Cai, W.; Ding, Y. Ultralow-Platinum-Loading High-Performance Nanoporous Electrocatalysts with Nanoengineered Surface Structures. Adv. Mater.2010,22,1845-1848.
    [53]Xu, C.; Wang, R.; Chen M.; Zhang, Y.; Ding, Y. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Phys Chem Chem Phys. 2010,12,239-246.
    [54]Xu, C.; Wang L.; Mu, X.; Ding, Y. Nanoporous PtRu alloys for electrocatalysis. Langmuir 2010,26,7437-7443.
    [55]Xu, C.; Li, Q.; Liu, Y.; Wang, J.; Geng, H. Hierarchical Nanoporous PtFe Alloy with Multimodal Size Distributions and Its Catalytic Performance toward Methanol Electrooxidation. Langmuir 2012,28,1886-1892.
    [56]Xu, C.; Su, J.; Xu, X.; Liu, P.; Zhao, H.; Tian, F.; Ding, Y. Low Temperature CO Oxidation over Unsupported Nanoporous Gold. J. Am. Chem. Soc.2007,129,42-43.
    [57]Zeis, R.; Mathur, A.; Fritz, G.; Lee, J.; Erlebacher, J. Platinum-plated nanoporous gold:An efficient, low Pt loading electrocatalyst for PEM fuel cells. J. Power Sources, 2007,165,65-72.
    [58]Zeis, R.; Lei, T.; Sieradzki, K.; Snyder, J.; Erlebacher, J. Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J. Catal.2008,253,132-138.
    [59]丁轶,纳米多孔金属:一种新型能源纳米材料,山东大学学报,2011,46,121-133.
    [60]Liu, Z.; Du, J.; Qiu, C.; Huang, L.; Ma, H.; Shen, D.; Ding, Y. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem. Commun.2009,11,1365-1368.
    [61]Qiu, H.; Zhou, G; Ji, G.; Zhang, Y.; Huang, X.; Ding, Y. Anovel nanoporous gold modified electrode for the selective determination of dopamine in the presence of ascorbic acid. Colloids Surf. B,2009,69,105-108.
    [62]Qiu, H.; Xue, L.; Ji, G.; Zhou, G.; Huang, X.; Qu, Y.; Gao, P. Enzyme-modified nanoporous gold-based electrochemical biosensors. Biosen. Bioelectron.,2009,24, 3014-3018.
    [63]Hu, K.; Lan, D.; Li, X.; Zhang, S. Electrochemical DNA Biosensor Based on Nanoporous Gold Electrode and Multifunctional Encoded DNA-Au Bio Bar Codes. Anal. Chem.2008,80,9124-9130.
    [64]Hu, X.; Wang, R.; Ding, Y.; Zhang, X.; Jin, W. Electrochemiluminescence of CdTe quantum dots as labels at nanoporous gold leaf electrodes for ultrasensitive DNA analysis. Talanta 2010,80,1737-1743.
    [65]Ding, C.; Li,H.; Hu, K.; Lin, J. Electrochemical immunoassay of hepatitis B surface antigen by the amplification of gold nanoparticles based on the nanoporous gold electrode. Talanta 2010,80,1385-1391.
    [66]刘吉平,孙洪强.碳纳米材料.北京科学出版社,2004:17-21.
    [67]Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991,354,56-58.
    [68]Jacobs, C. B.; Peairs, M. J.; Venton, B. J. Review:Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010,662,105-127.
    [69]Coleman, J. N.; Khan, U.; Blau, W. J.; Gun'ko, Y K. Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44,1624-1652.
    [70]Li, S.; Yu, Z.; Yen, S.; Tang, W. C.; Burke, P. J. Carbon Nanotube Transistor Operation at 2.6 GHz. Nano Lett.2004,4, 753-756.
    [71]Jensen, K.; Weldon,J.; Garcia, H.; Zettl, A. Nanotube Radio. Nano Lett.2007,7, 3508-3511.
    [71]Dresselhaus, M. S. NT10:Recent Advances in Carbon Nanotube Science and Applications. ACS Nano 2010,4,4344-4349.
    [72]Brunel, D.; Mayer, A.; Melin, T. Imaging the Operation of a Carbon Nanotube Charge Sensor at the Nanoscale. ACS Nano 2010,4,5978-5984.
    [73]Xu, Y.; Rosa, A.; Liu, X.; Su. D. Characterization and use of functionalized carbon nanotubes for the adsorption of heavy metal anions. New Carbon Mater.2011, 26,57-62.
    [74]Gao, G.; Vecitis, C. D. Electrochemical Carbon Nanotube Filter Oxidative Performance as a Function of Surface Chemistry. Environ. Sci. Technol.2011,45, 9726-9734.
    [75]Figueiredo, J. L.; Pereira, M. F. R.; Serp, P.; Kalck, P.; Samant, P. V.; Fernandes, J. B. Development of carbon nanotube and carbon xerogel supported catalysts for the electro-oxidation of methanol in fuel cells. Carbon 2006,44,2516-2522.
    [76]Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004,306,666-669.
    [77]Mermin, N. D. Crystalline order in two dimensions. Phys. Rev.1968,176, 250-254.
    [78]Stolyarova, E.; Rim, K. T.; Ryu, S.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G. W. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc.Natl. Acad. Sci. U.S.A.2007,104,9209-9212.
    [79]Geim, A. K., Novoselov, K. S. The rise of graphene. Nat. Mater.2007,6, 183-191.
    [80]Novoselov, K. S.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005,438,197-200.
    [81]Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater.2007,6,198-201.
    [82]Zhang, Y.; Tan, Y.; Stormer, H. L.; Kim, P.Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005,438,201-204.
    [83]Lee,C.;Wei,x.;Kysar J.W.;Hone,J.Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene.Science.2008,321,385-388.
    [84]Chae,H.K.; Siberio-P6rez,D.Y;Kim,J.;Go,Y.;Eddaoudi,M.;Matzger,A.J.; O'Keeffe,M.;Yaghi,O.M.A route to high surface area,porosity and inclusion of large molecules in crystals.Nature 2004,427,523-527.
    [85]Katsnelson,M.I.;Novoselov,K.S.;Geim,A.K.Chiral tunnelling and the Klein paradox in graphene.Nat.Phy. 2006,2,620-625.
    [86]Novoselov,K.S.;Jiang,D.;Schedin,F.;Booth,T.J.;Khotkevich,V V; Morozov,S.V,;Geim,A.K.Two-dimensional atomic crystals.Proc.Natl.Acad.Sci. 2005,102,10451-10453.
    [87]Meyer,J.C.;Geim,A.K.;Katsnelson,M.I.;Novoselov K.S.;Booth,T.J.;Roth, S.The structure of suspended graphene sheets.Nature 2007,446,60-63.
    [88]Reina,A.;Jia,x.;Ho,J,;Nezich,D.;Son,H,;Bulovic,V,;Dresselhaus,M.S.; Kong,J.Large Area,Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition.Nano Lett.2009,9,30-35.
    [89]Kim,K.S.;Lee,H.J.;Lee,C,;Lee,S.-K.;Jang,H.;Ahn,J.H.;Kim,J.-H.;Lee, H.J.Chemical Vapor Deposition-Grown Graphene:The Thinnest Solid Lubricant. ACS nano 2011,5,5107-5114.
    [90]Wang,X.;You,H.;Liu,F.;Li,M.;Wan,L.;Li,S.;Li,Q.;Xu,Y;Tian,R.;Yu,Z.; Xiang,D.;Cheng,J.Large-scale Synthesis of Few-Layered Graphene using CVD. Chem.Vapor Depos.2009,15,53-56.
    [91]Starr,D.E.;Pazhetnov, E.M.;Stadnichenko,A.I.;Boronin,A.I.;Shaikhutdinov, S.K.Carbon films grown on Pt(111)as supports for model gold catalysts.Surf Sci. 2006,6Do,2688-2695.
    [92]Coraux,J.;Ndiaye,A.T.;Busse,C.;Michely,T. Structural Coherency of Graphene on Ir(111).Nano Lett.2008,8,565-570.
    [93]Hummers,W.S.;Offeman,R.E.Preparation of Graphitic Oxide.J.Am.Chem. Soc.1958,80,1339-1339.
    [94]Brodie,B.C.Surle poids atomique du graphite.Anm.Chim.Phys.1860,59, 466-472.
    [95]Staudenmaier,L.Verfahren zur darstellung der graphitsaure.Ber.Dtsch.Chem. Ges.1898,31,1481-1487.
    [96]Zhang,L.;Liang,J.;Huang,Y.;Ma,Y.;Wang,Y.;Chen,Y.Size-controlled synthesis of graphene Oxide sheets on a large scale using chemical exfoli ation. Carbon 2009,47,3365-3380.
    [97]Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc. 2008,130,5856-5857.
    [98]Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007,45,1558-1565.
    [99]Chen, C.; Chen, T.; Wang, H.; Sun, G.; Yang, X. A rapid, one-step, variable-valence metal ion assisted reduction method for graphene oxide. Nanotechnology 2011,22,405602-6.
    [100]Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G G Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol.2008,3,101-105.
    [101]Gao, W.; Alemanyl, L. B.; Ci, L.; Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nat. Chem.2009,1,403-408.
    [102]Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. J. Am. Chem. Soc.2009,131,9910-9911.
    [103]Guo, H.; Wang, X.; Qian, Q.; Wang, F.; Xia, X. A Green Approach to the Synthesis Graphene Nanosheets. ACS nano.2009,3,2653-2659.
    [104]Du, X.; Guo, P.; Song, H.; Chen, X. Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochim. Acta 2010,55,4812-4819.
    [105]Guo, P.; Song, H.; Chen, X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem. Commun.2009, 11,1320-1324
    [106]Dong, L.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 2010,48,781-787.
    [107]Guo, H.; Wang, X.; Qian, Q.; Wang, F.; Xia, X. Graphene Decorated with PtAu Alloy Nanoparticles:Facile Synthesis and Promising Application for Formic Acid Oxidation. Chem. Mater.2011,23,1079-1081.
    [108]Wang, Y.; Lu. J.; Tang, L. H.; Chang, H. X.; Li, J. H. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal.Chem.2009,81,9710-9715.
    [109]Wang, Y; Li, Y.; Tang, L.; Lu, J.; Li, J. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun.2009,11, 889-892.
    [110]Wu, P.; Shao, Q.; Hu, Y; Jin,J.; Yin,Y.; Zhang, H.; Cai, C. Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim. Ada 2010,55,8606-8614.
    [111]Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y Graphene Based Electrochemical Sensors and Biosensors:A Review. Electroanal.2010,22, 1027-1036.
    [112]Bakker, E. Electrochemical Sensors. Anal. Chem.2004,76,3285-3298
    [113]Luo, X.; Morrin, A.; Killard, A. J.; Smyth, M. R. Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanal.2006,18, No.4,319-326.
    [114]Deng, Y.; Huang, W.; Chen, X.; Li, Z. Facile fabrication of nanoporous gold film electrodes. Electrochem. Commun.2008,10,810-813.
    [115]Meng, F.; Yan, X.; Liu, J.; Gu, J.; Zou, Z. Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim. Acta,2011,56,4657-4662.
    [116]Cheng, T.; Huang, T.; Lin, H.; Tung, S.; Chen, Y; Lee, C.; Chiu, H. 110)-Exposed Gold Nanocoral Electrode as Low Onset Potential Selective Glucose Sensor. ACSAppl. Mater. Inter.2010,2,2773-2780.
    [117]Qiu, H.; Huang, X. Effects of Pt decoration on the electrocatalytic activity of nanoporous gold electrode toward glucose and its potential application for constructing a nonenzymatic glucose sensor. J. Electroanal. Chem.2010,643,39-45.
    [118]Yang, Q.; Liang, Y.; Zhou, T.; Shi, G.; Jin, L. Electrochemical investigation of platinum-coated gold nanoporous film and its application for Escherichia coli rapid measurement. Electrochem. Commun.2009,11,893-896.
    [119]Qiu, H.; Xu, C.; Huang, X.; Ding, Y.; Qu, Y.; Gao, P. Adsorption of Laccase on the Surface of Nanoporous Gold and the Direct Electron Transfer between Them. J. Phys. Chem. C,2008,112,14781-14785.
    [120]Qiu, H.; Xu, C.; Huang, X.; Ding, Y.; Qu, Y.; Gao, P. Immobilization of Laccase on Nanoporous Gold:Comparative Studies on the Immobilization Strategies and the Particle Size Effects. J. Phys. Chem. C 2009,113,2521-2525.
    [121]Qiu, H.; Li, Y; Ji, G.; Zhou, G.; Huang, X.; Qu, Y.; Gao, P. Immobilization of lignin peroxidase on nanoporous gold:Enzymatic properties and in situ release of H2O2 by co-immobilized glucose oxidase. Bioresource Technol.2009,100, 3837-3842.
    [122]Chen, L. Y.; Fujita, T.; Chen, M. W. Biofunctionalized nanoporous gold for electrochemical biosensors. Electrochim. Acta 2012,67,1-5.
    [123]Hu, K.; Lan, D.; Li, X.; Zhang, S. Electrochemical DNA Biosensor Based on Nanoporous Gold Electrode and Multifunctional Encoded DNA-Au Bio Bar Codes. Anal. Chem.2008,80,9124-9130.
    [124]Hu, K.; Liu, P.; Ye, S.; Zhang, S. Ultrasensitive electrochemical detection of DNA based on PbS nanoparticle tags and nanoporous gold electrode. Biosens. Bioelectron.2009,24, 3113-3119.
    [125]Hu, X.; Wang, R.; Ding, Y.; Zhang, X.; Jin, W. Electrochemiluminescence of CdTe quantum dots as labels at nanoporous gold leaf electrodes for ultrasensitive DNA analysis. Talanta 2010,80,1737-1743.
    [126]He, X.; Yuan, R.; Chai, Y.; Shi, Y. A sensitive amperometric immunosensor for carcinoembryonic antigen detection with porous nanogold film and nano-Au/chitosan composite as immobilization matrix. J. Biochem. Biophys. Meth.2008,70,823-829.
    [127]Huang, J. F. Silver UPD ultra-thin film modified nanoporous gold electrode with applications in the electrochemical detection of chloride. Talanta 2009,77, 1694-1700.
    [128]Huang, J. F.; Sun, I. Adv. Fabrication and Surface Functionalization of Nanoporous Gold by Electrochemical Alloying/Dealloying of Au-Zn in an Ionic Liquid, and the Self-Assembly of L-Cysteine Monolayers. Funct. Mater.2005,15, 989-994.
    [129]Huang, J. F.; Lin, B. T. Application of a nanoporous gold electrode for the sensitive detection of copper via mercury-free anodic strIping voltammetry. Analyst 2009,134,2306-2313.
    [130]Kim, H.; Kim, Y.; Joo, J. B.; Ko, J. W.; Yi, J. Preparation of coral-like porous gold for metal ion detection. Micropor. Mesopor. Mat.2009,122,283-287.
    [131]Yang, W.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon Nanomaterials in Biosensors:Should You Use Nanotubes or Graphene? Angew. Chem. Int. Ed.2010,49,2114-2138.
    [132]Zhou, M.; Zhai, Y.; Dong, S. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Anal. Chem.2009,81,5603-5613.
    [133]Shang, N.; Papakonstantinou, P.; McMullan, M.; Chu, M.; Stamboulis, A.; Potenza, A.; Dhesi, S. S.; Marchetto, H. Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Adv. Funct. Mater.2008,18,3506-3514.
    [134]Wang, Y; Li, Y. M.; Tang, L. H.; Lu, J.; Li, J. H. Application of graphene-modified electrode for selective detection of dopamine. Electrochem.Commun.2009,11,889-892.
    [135]Wu, J; Xu, M.; Zhao, G. Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing. Electrochem. Commun.2010,12, 175-177.
    [136]Kang, X.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 2010,81, 754-759.
    [137]Guo, C; Lu, Z.; Lei, Y.; Li, C. Ionic liquid-graphene composite for ultratrace explosive trinitrotoluene detection. Electrochem. Commun.2010,12,1237-1240.
    [138]Mani, V,; Periasamy, A.; Chen, S. Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochem. Commun.2012,17,75-78.
    [139]Guo, J.; Wen, D.; Zhai, Y M.; Dong, S. J.; Wang, E. K. Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet:One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing. ACS Nano.2010,4,3959-3968.
    [140]Chen, Y.; Li, Y.; Sun, D.; Tian, D.; Zhang, J.; Zhu, J. Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J. Mater. Chem.2011,21,7604-7611.
    [141]Huang, K. J.; Niu, D. J.; Sun, J. Y.; Han, C. H.; Wu, Z. W.; Li, Y. L.; Xiong, X. Q. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf. B 2011,82,543-549.
    [142]Zhao,1.; Chen, G. F.; Zhu, L.; Li, G. X. Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem. Commun.2011,13, 31-33.
    [143]Li, J.; Guo, S. J.; Zhai, Y. M.; Wang, E. K. Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem. Commun.2009,11,1085-1088.
    [144]Li, J.; Guo, S. J.; Zhai, Y. M.; Wang, E. K. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal. Chim. Acta. 2009,649,196-201.
    [145]Wei, Y.; Gao, C.; Meng, F.; Li, H.; Wang, L.; Liu, J.; Huang, X. SnO2/Reduced Graphene Oxide Nanocomposite for the Simultaneous Electrochemical Detection of Cadmium(Ⅱ), Lead(Ⅱ), Copper(Ⅱ), and Mercury(II):An Interesting Favorable Mutual Interference.J. Phys. Chem. C2012,116,1034-1041.
    [1]Buritis, C. A.; Ashwood, E. R. Tietz Fundamentals of Clinical Chemistry.1996, 4th ed., WB Saunders Co, New York.
    [2]Hao, W. H.; McBride, A.; McBride, S.; Gao, J. P.; Wang, Z. Y. Colorimetric and near-infrared fluorescence turn-on molecular probe for direct and highly selective detection of cysteine in human plasma. J. Mater. Chem.2011,21,1040-1048.
    [3]Shang, L.; Qin, C.; Wang, T.; Wang, M.; Wang, L.; Dong, S. Fluorescent Conjugated Polymer-Stabilized Gold Nanoparticles for Sensitive and Selective Detection of Cysteine. J. Phys. Chem. C2007,111,13414-13417.
    [4]Pu, F.; Huang, Z.; Ren, J.; Qu, X. DNA/Ligand/Ion-Based Ensemble for Fluorescence Turn on Detection of Cysteine and Histidine with Tunable Dynamic Range. Anal. Chem.2010,82,8211-8216.
    [5]Guan, X.; Hoffman, B.; Dwivedi, C.; Matthees, D. P. A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples. J. Pharm. Biomed.Anal.2003,31,251-261.
    [6]Ballin, N. Z. Estimation of Whey Protein in Casein Copreclpitate and Milk Powder by High-Performance Liquid Chromatography Quantification of Cysteine. J. Agric. Food Chem.2006,54,4131-4135.
    [7]Kusmierek, K.; Bald, E. Reduced and total glutathione and cysteine profiles of citrus fruit juices using liquid chromatography. Food Chem.2008,106,340-344.
    [8]Tu, X.; Xie, Q.; Huang, Z.; Jia, X.; Ye, M. Electrocatalytic oxidation and sensitive determination of L-cysteine at a poly(aminoquinone)-carbon nanotubes hybrid film modified glassy carbon electrode. Microchim. Acta 2008,162,219-225.
    [9]Sattarahmady, N.; Heli, H. An electrocatalytic transducer for 1-cysteine detection based on cobalt hexacyanoferrate nanoparticles with a core-shell structure. Anal. Biochem.2011,409,74-80.
    [10]Liu, L.; Yin, Z.; Yang, Z. A 1-cysteine sensor based on Pt nanoparticles/poly(o-aminophenol) film on glassy carbon electrode. Bioelectrochemistry 2010,79,84-89.
    [11]Lai, Y.; Ganguly, A.; Chen, L.; Chen, K. Direct voltammetric sensing of 1-Cysteine at pristine GaN nanowires electrode. Biosens. Bioelectron.2010,26, 1688-1691.
    [12]Hsiao, Y.; Su, W.; Cheng, J.; Cheng, S. Electrochemical determination of cysteine based on conducting polymers/gold nanoparticles hybrid nanocomposites. Electrochim Acta 2011,56,6887-6895.
    [13]Ziyatdinova, G.; Grigor'eva, L.; Morozov, M.; Gilmutdinov, A.; Budnikov, H. Electrochemical oxidation of sulfur-containing amino acids on an electrode modified with multi-walled carbon nanotubes. Microchim. Acta 2009,165,353-359
    [14]Ojani, R.; Raoof, J. B.; Zarei, E. Preparation of poly N,N-dimethylaniline/ferrocyanide film modified carbon paste electrode:Application to electrocatalytic oxidation of 1-cysteine. J. Electroanal. Chem.2010,638,241-245.
    [15]Chen, Z.; Zheng, H.; Lu, C.; Zu, Y. Oxidation of 1-Cysteine at a Fluorosurfactant-Modified Gold Electrode: Lower Overpotential and Higher Selectivity. Langmuir 2007,23,10816-10822.
    [16]Wang, W.; Li, L.; Liu, S.; Ma, C.; Zhang, S. Determination of Physiological Thiols by Electrochemical Detection with Piazselenole and Its Application in Rat Breast Cancer Cells 4T-1. J. Am. Chem. Soc.2008,130,10846-10847.
    [17]Kannan, P.; John, S. A. Ultrasensitive detection of 1-cysteine using gold-5-amino-2-mercapto-1,3,4-thiadiazole core-shell nanoparticles film modified electrode. Biosens. Bioelectron.2011,30,276-281.
    [18]Possari, R.; Carvalhal, R. F.; Mendes, R. K.; Kubota, L. T. Electrochemical detection of cysteine in a flow system based on reductive desorption of thiols from gold. Anal. Chim. Acta 2006,575,172-179.
    [19]Samec, Z.; Malysheva, Z.; Koryta, J.; Pradac, J. A contribution to the voltammetric study of cystine and cysteine at Pt electrodes in 0.5 M H2SO4. J. Electroanal. Chem.1975,65,573-586.
    [20]Koryta, J.; Pradac, J. Electrode processes of the sulfhydryl-disulfide system:III. Cysteine at platinum and gold electrodes. J. Electroanal. Chem.1968,17,185-189.
    [21]Fawcett, W. R.; Fedurco, M.; Kovacova, Z.; Borkowska, Z. Oxidation of cysteine, cysteinesulfinic acid and cysteic acid on a polycrystalline gold electrode. J. Electroanal. Chem.1994,368,265-274.
    [22]Koryta, J.; Pradac, J. Electrode processes of the sulfhydryl-disulfide system:II. Cystine at a gold electrode. J. Electroanal. Chem.1968,17,177-183.
    [23]Ralph, T. R.; Hitchman, M. L.; Millington, J. P.; Walsh, F. C. The electrochemistry of 1-cystine and 1-cysteine:Part 1:Thermodynamic and kinetic studies.J. Electroanal. Chem.1994,375,1-15.
    [24]Reynaud, J. A.; Malfoy, B. Electrochemical investigations of amino acids at solid electrodes:Part I. Sulfur components:Cystine, cysteine, methionine. J. Electroanal. Chem.1980,114,195-211.
    [25]Xiao, C.; Chen, J.; Liu, B.; Chu, X.; Wu, L.; Yao, S. Sensitive and selective electrochemical sensing of L-cysteine based on a, caterpillar-like manganese dioxide-carbon nanocompositew. Phys. Chem. Chem. Phys.2011,13,1568-1574.
    [26]Lai, Y.; Ganguly, A.; Chen, L.; Chen, K. Direct voltammetric sensing of 1-Cysteine at pristine GaN nanowires electrode. Biosens. Bioelectron.2010,26, 1688-1691.
    [27]Kafi, A. K. M.; Yin, F.; Shin, H.-K.; Kwon, Y.-S. Amperometric thiol sensor based on Prussian blue-modified glassy carbon electrode. Curr. Appl. Phys.2007,7, 496-499.
    [28]Santhiago, M.; Lima, P. R.; Santos, W.; Kubot, L. T. An amperometric sensor for 1-cysteine based on nanostructured platform modified with 5,5-dithiobis-2-nitrobenzoic acid (DTNB). Sen. Actuators B 2010,146,213-220.
    [29]Agui, L.; Pena-Farfal, C.; Yanez-Sedeno, P.; Pingarron, J. M. Electrochemical determination of homocysteine at a gold nanoparticle-modified electrode. Talanta 2007,74,412-420.
    [30]Abbaspour, A.; Ghaffarinejad, A. Electrocatalytic oxidation of 1-cysteine with a stable copper-cobalt hexacyanoferrate electrochemically modified carbon paste electrode. Electrochim. Acta 2008,53,6643-6650.
    [31]Kissinger, P. T.; Heineman, W. R. Laboratory Techniques in Electroanalytical Chemistry,1984, Marcel Dekker, New York.
    [32]Deng, C; Chen, J.; Chen, X.; Wang, M.; Nie, Z.; Yao, S. Electrochemical detection of 1-cysteine using a boron-doped carbon nanotube-modified electrode. Electrochim. Acta 2009,54,3298-3302.
    [33]Laviron, E.; Roullier, L. General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules:Applications to modified electrodes. J. Electroanal. Chem.1980,115, 65-74.
    [34]Bard, A J, Faulkner, L R (1980) Electrochemical Methods, Fundamentals and Applications, Wiley, New York,226-236
    [35]Qua, L.; Yang, S.; Li, G.; Yang, R.; Li, J.; Yu, L. Preparation of yttrium hexacyanoferrate/carbon nanotube/Nafion nanocomposite film-modified electrode: Application to the electrocatalytic oxidation of 1-cysteine. Electrochim Acta 2011,56, 2934-2940.
    [36]Tang, X.; Liu, Y.; Hou, H.; You, T. Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. Talanta 2010,80,2182-2186.
    [1]Gatermann, R.; Hohnerfuss, H.; Rimkus, G.; Wolf, M.; Franke, S. Mar. Pollut. Bull.1995,30,221.
    [2]US Environmental Protection Agency,4-Nitrophenol, Health and Environmental Effects Profile, No.135, Washington, DC,1980.
    [3]Tian, M.; Bakovic, L.; Chen, A. Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics. Electrochim. Acta 2007,52,6517-6524.
    [4]Niazi, A.; YazdanIpour, A. Spectrophotometric simultaneous determination of nitrophenol isomers by orthogonal signal correction and partial least squares. J. Hazard. Mater.2007,146,421-427.
    [5]Scalon, J. J.; Flaquer, P. A.; Robinson, G. W.; O'Brien, G. E.; Sturrock, P. E. High-performance liquid chromatography of nitrophenols with a swept-potential electrochemical detector. Anal. Chim. Acta 1984,158,169-177.
    [6]Kim, K. R.; Kim, H. Gas chromatographic profiling and screening for phenols as isobutoxycarbonyl derivatives in aqueous samples. J. Chromatogr. A 2000,866, 87-96.
    [7]Bhatti, Z. I.; Toda, H.; Furukawa, K. p-Nitrophenol degradation by activated sludge attached on nonwovens. Water Res.2002,36,1135-1142.
    [8]Mishra, K. P.; Gogate, P. R. Intensification of sonophotocatalytic degradation of p-nitrophenol at pilot scale capacity. Ultrason. Sonochem.2011,18,739-744.
    [9]Cotoruelo, L. M.; Marques, M. D.; Diaz, F.J.; Rodriguez-Mirasol, J.; Rodriguez, J. J.; Cordero, T. Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions. Chem. Eng. J.2012,184,176-183.
    [10]Zaggout, F. R.; Ghalwa, N. A. Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode. J. Environ. Manage.2008,86,291-296.
    [11]Luo, L.; Zou, X.; Ding, Y.; Wu, Q. Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sens. Actuators B 2008,135,61-65.
    [12]Chen, J. C.; Shih, J. L.; Liu, C. H.; Kuo, M. Y.; Zen, J. M. Disposable Electrochemical Sensor for Determination of Nitroaromatic Compounds by a Single-Run Approach. Anal. Chem.2006,78,3752-3757.
    [13]Zhu, S.; Niu, W.; Li, H.; Han, S.; Xu, G. Single-walled carbon nanohorn as new solid-phase extraction adsorbent for determination of 4-nitrophenol in water sample. Talanta 2009,79,1441-1445.
    [14]Bebeselea, A.; Manea, F.; Burtica, G.; Nagy, L.; Nagy, G. The electrochemical determination of phenolic derivates using multiple pulsed amperometry with graphite based electrodes. Talanta 2010,80,1068-1072.
    [15]Mulchandani, P.; Hangarter, C. M.; Lei, Y.; Chen, W.; Mulchandani, A. Amperometric microbial biosensor for p-nitrophenol using Moraxella sp.-modified carbon paste electrode. Biosens. Bioelectron.2005,27,523-527.
    [16]Liu, Z.; Du, J.; Qiu, C.; Huang, L.; Ma, H.; Shen, D.; Ding, Y. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem. Commun.2009,11,1365-1368.
    [17]Kokkinidis, G.; Papoutsis, A.; Papanastasiou, G. Electrocatalytic reduction of nitrocompounds on gold UPD modified electrodes:Part 1. Reduction of nitrobenzene and 3-nitro-1,2,4-triazole on Au and Au/M(UPD) (M = Pb, T1). J. Electroanal. Chem. 1993,359,253-271.
    [18]Papoutsis, A.; Kokkinidis, G. Electrocatalytic reduction of nitro compounds on gold UPD modified electrodes:Part 2. Reduction of 2-nitro-and 4-nitroimidazole and 4-nitropyridine-N-oxide on Au and Au/M(UPD) (M = Pb, T1). J. Electroanal. Chem. 1994,371,231-239.
    [19]Hu, S.; Xu, C.; Wang, G.; Cui, D. Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 2001,54,115-123.
    [20]Mhammedi, M.; Achak, M.; Bakasse, M.; Chtaini, A. Electrochemical determination of para-nitrophenol at apatite-modified carbon paste electrode: Application in river water samples. J. Hazard. Mater.2009,163,323-328.
    [21]Li, M.; Wu, H.; Hu, J.; Ma, C. Electroreduction Mechanismof p-Nitrophenol in Sulfuric Acid. Acta Phys. Chim. Sin.2008,24,1937-1940.
    [22]Ding, Y.; Liu, W.; Wu, Q.; Wang, X. Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J. Electroanal. Chem.2005,575,275-280.
    [23]Luz, R. C. S.; Damos, F. S.; Oliveira, A. B.; Beck, J.; Kubota, L.T. Voltammetric determination of 4-nitrophenol at a lithium tetracyanoethylenide (LiTCNE) modified glassy carbon electrode. Talanta 2004,64,935-942.
    [24]Liu, N.; Cai, X.; Zhang, Q.; Lei, Y.; Chan-Park, M. B. Real-Time Nitrophenol Detection Using Single-Walled Carbon Nanotube Based Devices. Electroanal.2008, 20,558-562.
    [25]Alizadeh, T.; Ganjali, M. R.; Norouzi, P.; Zare, M.; Zeraatkar, A. A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer-carbon paste electrode. Talanta 2009,79,1197-1203.
    [26]Cordero-Rando, M.; Naranjo-Rodrguez, I.; Palacios-Santander, J.; Cubillana-Aguilera, L.; Hidalgo-Hidalgo-de-Cisneros, J. Study of the Responses of a Sonogel-Carbon Electrode Towards Phenolic Compounds. Electroanal. 2005,17, 806-814.
    [27]Zhou, C.; Liu, Z.; Dong, Y.; Li, D. Electrochemical Behavior of o-Nitrophenol at Hexagonal Mesoporous Silica Modified Carbon Paste Electrodes. Electroanal.2009, 21,853-858.
    [28]Wei,Y.; Kong, L.; Yang, R.; Wang, L.; Liu, J.; Huang, X. Single-Walled Carbon Nanotube/Pyrenecyclodextrin Nanohybrids for Ultrahighly Sensitive and Selective Detection of p-Nitrophenol. Langnmuir 2011,27,10295-10301.
    [29]Banik, R. M.; Prakash, R.; Upadhyay, S. N. Microbial biosensor based on whole cell of Pseudomonas sp. for online measurement of p-Nitrophenol. Sens. Actuators B 2008,131,295-300.
    [30]Kafi, A. K. M.; Chen, A. A novel amperometric biosensor for the detection of nitrophenol. Talanta 2009,79,97-102.
    [31]Galus, Z. Fundamentals of Electrochemical Analysis, Ellis Horwood, Chichester, 1976, p.233.
    [32]Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem.1979,101, 19-28.
    [33]Wopschall, R. H.; Shah, I. Effects of adsorption of electroactive species in stationary electrode polarography. Anal. Chem.1967,39,1514-1527.
    [34]Kissinger, P. T.; Heineman, W. R. Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker, New York,1984.
    [35]Baeza, A.; Ortiz, J. L.; Gonzalez, I. Control of the electrochemical reduction of o-nitrophenol by pH imposition in acetonitrile. J. Electroanal. Chem.1997,429, 121-127.
    [36]Takahashi, T.; Shirai, H. Study of the reduction waves of the isomers of nitrophenol by means of the alternating current polarograph. Talanta 1961,8, 177-186.
    [37]Testa, C.; Reinmuth, W. H. Mechanism of o-Nitrophenol Reduction by Chronopotentiometry. J. Am. Chem. Soc.1961,83,784-786.
    [38]Shamsuddin, K. M.; Ali, S. Specific solid-state detection and semiquantitative determination of catechol and o-nitrophenol and some of their kinetic parameters. Talanta 1991,38,1041-1045.
    [39]Britz, D.; Bauer, H. H. Adsorption and reduction of m-nitrophenol at the dropping mercury electrode. Electrochim. Acta 1968,13,347-359.
    [40]Wen, R.; Pan, G.; Wan, L. Oriented Organic Islands and One-Dimensional Chains on a Au(111) Surface Fabricated by Electrodeposition:An STM Study. J. Am. Chem. Soc.2008,130,12123-12127.
    [41]Noh, J.; Ito, E.; Hara, M. J. Self-assembled monolayers of benzenethiol and benzenemethanethiol on Au(111):Influence of an alkyl spacer on the structure and thermal desorption behavior. Colloid. Interf. Sci.2010,342,513-517.
    [42]Lauffer, P.; Graupner, R.; Jung, A.; Hirsch, A.; Ley, L. Ordered arrangement of 9-aminoanthracene on Au(111) surfaces:A scanning tunneling microscopy study. Surf. Sci.2007,601,5533-5539.
    [1]Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon:A Review of Graphene. Chem. Rev.2010,110,132-145.
    [2]黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学(B辑:化学.2009,9,887-896.
    [3]Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem.2006,16, 155-158.
    [4]Liang, Y.; Wu, D.; Feng, X.; Mullen, K. Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions. Adv. Mater.2009,21,1679-1683.
    [5]Si, Y.; Samulski, E. T. Synthesis of Water Soluble Graphene. Nano Lett.2008,8, 1679-1682.
    [6]Das, S.; Wajid, A. S.; Shelburne, J. L.; Liao, Y-C.; Green, M. J. Localized In situ Polymerization on Graphene Surfaces for Stabilized Graphene Dispersions. ACS Appl. Mater. Interfaces 2011,3,1844-1851.
    [7]Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G S.; Coleman J. N. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc.2009,131,3611-3620.
    [8]Hamilton, C. E.; Lomeda, J. R.; Sun, Z.; Tour, J. M.; Barron, A. R. High-Yield Organic Dispersions of Unfunctionalized Graphene. Nano Lett.,2009,9,3460-3462.
    [9]Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M. Synthesis of Amphlphilic Graphene Nanoplatelets. Small 2009,5,82-85.
    [10]Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Lett.2009,9,1593-1597.
    [11]Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 2008, 46,1994-1998.
    [12]Chen, G.; Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev.2011, 40,2254-2266.
    [13]Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev.1998,98,1743-1754.
    [14]金征宇,徐学明,陈寒青等.环糊精化学(Cyclodextrins Chemistry)北京:化学工业出版社(Beijing:Chemical Industry Press),2009.
    [15]刘育,张衡益,李莉等.纳米超分子化学(Nano-supramolecular Chemistry).北京:化学工业出版社(Beijing:Chemical Industry Press),2004.
    [16]Guo, Y.; Guo, S.; Ren, J.; Zhai, Y.; Dong, S.; Wang, E. Cyclodextrin Functionalized Graphene Nanosheets with High Supramolecular Recognition Capability:Synthesis and Host-Guest Inclusion for Enhanced Electrochemical Performance. ACS nano 2010,4,4001-4010.
    [17]Singh, R.; Bharti, N.; Madan, J.; Hiremath, S. N. Characterization of Cyclodextrin Inclusion Complexes-AReview. J. Pharm. Sci. Tec.2010,2,171-183.
    [18]Manunza, B.; Deiana, S.; Pintore, M.; Gessa, C. A molecular dynamics study of the inclusion of mono-and disubstituted benzenes in P-cyclodextrin. J. Mol. Graphics Mod.1997,15,79-81.
    [19]张华承,辛飞飞,李月明,郝爱友,安伟,孙涛.超分子环糊精两亲分子化学进展,2010,22,2276-2281.
    [20]Ariga, K.; Kunitake, T. Supramolecular Chemistry-Fundamentals and Applications. Berlin Heidelberg:Springer-Verlag,2006.
    [21]张华承,郝爱友,申健,安伟.分子印刷板.化学通报,2009,2,105-111.
    [22]Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc.1958,80,1339-1339.
    [23]Chen, C.; Chen, T.; Wang, H.; Sun, G.; Yang, X. A rapid, one-step, variable-valence metal ion assisted reduction method for graphene oxide. Nanotechnology 2011,22,405602-6.
    [24]Ogoshi, T.; Ichihara, Y.; Yamagishi, T.; Nakamoto, Y Supramolecular polymer networks from hybrid between graphene oxide and per-6-amino-β-cyclodextrin. Chem. Commun.2010,46,6087-6089.
    [25]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004,306,666-669.
    [26]Zhao, M.; Hao, A.; Li, J.; Wei, Y.; Guo, P. New cyclomaltoheptaose (beta-cyclodextrin) derivative 2-O-(2-hydroxybutyl)cyclomaltoheptaose:preparation and its application for the separation of enantiomers of drugs by capillary electrophoresis. Carbohyd. Res.2005,340,1563-5.
    [27]Yin, H.; Zhou, Y.; Ma, Q.; Ai, S.; Ju, P.; Zhu, L., Lu, L. Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochem.2010,45,1707-1712.
    [28]Hu, S.; Xu, C.; Wang, G.; Cui, D. Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 2001,54,115-123.
    [29]Liu, Z.; Du, J.; Qiu, C.; Huang, L.; Ma, H.; Shen, D.; Ding, Y Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem. Commun.2009,11,1365-1368.
    [30]Mhammedi, M.; Achak, M.; Bakasse, M.; Chtaini, A. Electrochemical determination of para-nitrophenol at apatite-modified carbon paste electrode: application in river water samples. J. Hazard. Mater.2009,163,323-328.
    [31]Perez-Cruz, F.; Jullian, C.; Rodriguez, J.; Aran, V. J.; Olea-Azar, C. Molecular encapsulation of 5-nitroindazole derivatives in 2,6-dimethyl-beta-cyclodextrin: electrochemical and spectroscopic studies. Bioorgan. Med. Chem.2009,17, 4604-4611.
    [32]Chen, M.; Diao, G.; Zhang, E. Study of inclusion complex of (3-cyclodextrin and nitrobenzene. Chemosphere 2006,63,522-529.
    [33]Sokolova, R.; Hromadova, M.; Ludvik, J.; Pospisil, L.; Giannarelli, S. The autoprotonation in reduction mechanism of pesticide ioxynil. Electrochim. Acta 2010, 55,8336-8340.
    [34]Laviron, E.; Roullier, L. General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules:Applications to modified electrodes. J. Electroanal. Chem.1980,115, 65-74.
    [35]Bard, A. J.; Faulkner, L. R. Fundamentals and Applications, Wiley, New York, 1980,226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700