环糊精聚合物微球及球形聚电解质刷选择性吸附苯酚和重金属离子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水污染是人类面临的主要环境污染问题之一。含环糊精的多功能材料是一种可选择性吸附苯酚的理想材料,而含巯基的纳米球形聚电解质刷则能选择性吸附重金属离子,能为吸附废水中的有害重金属开辟一条新的道路。
     本文以反相悬浮聚合的方法合成了α-,β-和γ-环糊精聚合物微球,研究了其对苯酚等物质的选择性吸附、脱附及再生性能,并利用动力学及等温吸附模型对环糊精聚合物微球吸附苯酚的数据进行了拟合。球形环糊精聚合物颗粒由于其比表面积大,易于过滤分离的特点,有利于工业化生产和应用。为了增加环糊精聚合物的吸附能力,我们用光乳液聚合的方法制备了纳米球形环糊精刷,并研究了其对苯酚的选择性吸附、脱附及再生性能。为了提高吸附重金属离子的选择性,同样采用光乳液聚合的方法合成了含巯基的纳米球形聚电解质刷,并研究了其对有害重金属离子的选择性吸附、脱附及再生性能。具体研究内容和结果如下:
     (1)利用反相悬浮聚合的方法制备了α-,β-和γ-环糊精聚合物微球。三种球形环糊精聚合物颗粒的形状和大小可由反相悬浮聚合反应时加入水及交联剂环氧氯丙烷的量来控制,从而得到性状可控的理想球形环糊精聚合物颗粒。
     (2)由于环糊精内疏水空腔能与苯酚形成稳定的包合物,实验发现球形环糊精聚合物颗粒对苯酚表现出理想的选择性吸附性能。苯酚的吸附量可通过紫外-分光光度计测定吸附前后的浓度差来确定。球形环糊精聚合物颗粒吸附苯酚的能力主要是由环糊精的空腔大小与苯酚的匹配度来决定的,其中,β-环糊精球形聚合物颗粒吸附苯酚的效果最好。采用动力学和等温吸附平衡模型拟合了球形环糊精聚合物颗粒在水溶液中吸附苯酚的实验数据,发现其动力学符合Ho and Mckay方程,表明苯酚的吸附过程包括扩散过程和主客体的相互作用。而平衡等温数据可以用Freundlich方程很好地拟合。拟合结果表明:球形环糊精聚合物吸附苯酚的过程中,自由能变化为负值,说明α-,β-和γ-环糊精球形聚合物颗粒吸附苯酚均为自发过程。而其中p-环糊精球形聚合物颗粒的自由能最低,表明其吸附能力最好。还系统研究了α-,β-和γ-球形环糊精聚合物对苯酚、萘、对羟基苯甲酸和联苯胺的吸附,发现被吸附的有机小分子的结构尺寸与环糊精的疏水空腔的匹配度越高,其吸附效果越好。同时,氢键的存在能加强环糊精与苯酚等物质之间的作用,使吸附效果更好。球形环糊精聚合物吸附苯酚后能简单地利用乙醇在室温下进行脱附和再生,并且经过多次再生后,其吸附能力几乎不变。
     (3)采用磺酰化、胺化等方法合成了含双键的改性环糊精单体,通过光乳液聚合制备了以聚苯乙烯为核表面接枝环糊精聚合物的纳米球形聚合物刷。利用动态光散射(DLS)的方法测量发现制备的纳米球形环糊精聚合物刷的粒径比聚苯乙烯核明显增大,且粒径分布均匀。由于环糊精可以通过包合作用选择性地吸附苯酚,并能在乙醇中脱附再生,制得的纳米球形环糊精刷可以选择性地吸附和回收水中的苯酚。
     (4)纳米球形聚电解质刷由于存在强化的Donnan效应,可大量吸附和富集金属离子。为了提高纳米球形聚电解质刷吸附重金属离子的选择性,将巯基引入到纳米球形聚电解质刷中,采用光乳液聚合的方法合成了含巯基的多功能纳米球形聚电解质刷。利用动态光散射(DLS)和透射电镜(TEM)表征了纳米球形聚电解质巯基刷的核壳结构。吸附前后水中重金属的浓度由电感偶合等离子体原子发射光谱法(ICP-AES)测定。实验结果表明,巯基的加入不但可以提高对金属离子的吸附能力,同时还显著提高了其选择性,其对金、汞离子的吸附性比对铜、镍离子的吸附性更强。因此纳米球形共聚巯基刷可通过Donnnan效应和巯基与重金属离子的协同作用选择性吸附水中的重金属。在酸性溶液中,纳米球形共聚巯基刷吸附重金属离子后可再生,因而也可实现对贵金属离子的回收利用。含巯基的纳米球形聚电解质刷将是选择性吸附回收废水中重金属离子的理想材料。
Water pollution is one of the most serious environmental pollution problems. Cyclodextrin multifunctional materials have been widely used in the phenols adsorption and for the adsorption of heavy metal ions. Nano-sized spherical polyelectrolyte brushes containing mercapto group have opened a new path to selectively remove heavy metal ions,
     a-, β-and y-Cyclodextrin (CD) spherical polymer particles were prepared by suspension polymerization. The selective adsorption and recovery of phenol and aromatic compounds by these CD spherical polymer particles were studied. The kinetics and isothermal equilibrium models were used to fit the experimental data of phenol removal. Due to the large specific surface area and ease to be separated of the CD polymer particles by filtration, they were conducive to the industrial production and application. To improve the adsorption capacity of phenol, the nano-sized spherical cyclodextrin brushes were synthesized by photo-emulsion polymerization. The selective adsorption and recovery of phenol by nano-sized spherical cyclodextrin brushes were studied. For selective removal of heavy metal ions, the nano-sized spherical thiol polyelectrolyte brushes were prepared by photo-emulsion polymerization. The selective adsorption and recovery of heavy metal ions by the nano-sized spherical thiol polyelectrolyte brushes were studied. Details for this thesis are listed as follows:
     (1) Spherical particles of a-,β-and γ-CD polymers were prepared by suspension polymerization in liquid paraffin using epichlorohydrin as crosslinker. The shape and size of the polymerized CD particles were controlled by the amounts of water and crosslinker.
     (2) Due to the selective inclusion associations between CDs and phenol, these CD polymer particles are suitable for phenol removal. The adsorption amount of phenol by CD polymers was determined by the UV spectrum. The phenol adsorption capacity of CD polymers was found to depend on host-guest interactions and the size match of the inner cavity of CD molecular. The β-CD polymer particles showed the best result to adsorb phenol, attributed to the best size matching. The kinetics and isothermal equilibrium models were used to fit the experimental data of phenol removal from aqueous solution using these CD polymer particles. It was found that kinetics followed the Ho and Mckay equation, suggesting that the adsorption process of phenol controlled by diffusion and the host-guest interaction between CD and phenol. Equilibrium isothermal data can be well fitted by Freundlich equation. The negative free energy change indicated the spontaneous nature of adsorption of phenol by a-, β-and y-CD spherical polymer particles, while the lowest one for β-CD polymer reflected its best adsorption ability, compared to a-and γ-CD polymer particles. The adsorption results of phenol, naphthalene, hydroxy benzoic acid and benzidine by a-,(3-and y-CD spherical polymer particles are quite different. The better size match between the structure of aromatic compounds and the cavity of the cyclodextrin match better, the higher adsorption results. The CD polymer particles can be easily recovered by extraction with ethanol at room temperature. The adsorption abilities keep almost unchanged after several cycles of regeneration.
     (3) The6A-(methacryloyl)-6A-1,6-ethylenediamine-6A-deoxy-β-cylcodextrin was prepared and the nano-sized spherical β-cyclodextrin (β-CD) brushes were synthesized by photo-emulsion polymerization. The nano-sized spherical P-CD brushes were with narrow size distribution were prepared and confirmed by monitoring the size increase of polymer particles using dynamic light scattering (DLS). Since β-CD can selectively form host-guest association with phenol, the obtained nano-sized spherical brushes contain β-CD should be ideal candidate for removal or recovery of phenols from wastewater.
     (4) Nano-sized spherical polyelectrolyte brush has a well-defined core-shell structure. It can absorb and concentrate heavy metals from aqueous solutions due to the enhanced Donnan effect, which is thus suitable for removing heavy metal ions in wastewater. In order to improve the selectivity of absorption of heavy metal ions by the nano-sized spherical polyelectrolyte brushes, the mercapto groups were introduced in the nano-sized spherical polyelectrolyte brushes. The nano-sized spherical thiol polyelectrolymte brushes consisting of a polystyrene core and a poly(N-acrylcysteamine-co-acrylic acid) brush shell were prepared by photo-emulsion polymerization. They have well defined core-shell structure as determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The amount of heavy metal ions absorbed by these thiol brushes were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Nano-sized spherical polyelectrolyte thiol brushes showed the higher adsorption capacity to gold and mercury ions, compared to copper and nickel ions. Due to the selective coordination of mercapto group with heavy metal ions and electrostatic interactions, they were used to adsorb and concentrate heavy metal ions from aqueous solutions. They can be easily regenerated and the adsorption abilities keep almost unchanged after several cycles of regeneration. The adsorbed heavy metal ions can be recovered. Therefore, the nano-sized spherical polyelectrolyte thiol brushes are ideal candidates for selective remove heavy metal ions from wastewater.
引文
[1]E. E. Obasohan, D. E. Agbonlahor, E. E. Obano. Water pollution:A review of microbial quality and health concerns of water, sediment and fish in the aquatic ecosystem[J]. African Journal of Biotechnology,2010,9(4):423-427.
    [2]W. S. Al-Rekabi, H. Qiang, W. W. Qiang. Improvements in Wastewater Treatment Technology[J]. Pakistan Journal of Nutrition,2007,6(2):104-110.
    [3]J. Michalowicz, W. Duda. Phenols-Sources and ToxicityfJ]. Polish Journal of Environment Standard,2007,16(3):347-362.
    [4]M. D. Ford, K. A. Delany, L. J. Ling, N. Erickso. Clinical Toxicology[M]. Saunders Company:Philadelphia,2001,753.
    [5]Muna Ali, T. R. Sreekrishnan. Aquatic toxicity from pulp and paper mill effluents:a review[J]. Advances in Environmental Research,2001,5(2):175-196.
    [6]Integrated wastewater discharge Standard. GB 89781996,1996.
    [7]Xin Zhou. Water Pollution Control in China:Review of laws, regulations and policies and their implementation[M]. Economic Analysis Team Institute for Global Environmental Strategies (IGES),2009.
    [8]B. T. Abraham, T. S. Anirudhan. Sorption recovery of metal ions from aqueous solution using humus-boehmite complex[J]. Indian journal of chemical technology,2001,8:286-292.
    [9]M. M. Islam, M. A. Halim, S. Safiullah, S. A. M. W. Hoque, M. S. Islam. Heavy metal (Pb, Cd, Zn, Cu, Cr, Fe and Mn) content in textile sludge in Gazipur, Bangladesh[J]. Journal Research Journal of Environmental Sciences,2009,3:311-315.
    [10]A. Malik, Metal bioremediation through growing cells[J]. Environment International, 2004,30:261-278.
    [11]K. K. Sivakumar, M. S. Dheenadayalan. C. Balamurugan, R. Kalaivani, D. Ramakrishnan, L. Leena Hebsibai. Environmental Water pollution:A Review of Physicochemical and Heavy metal Quality of Water and Soil[J]. Journal of Chemical, Biological and Physical Sciences,2012,2:1079-1090.
    [12]Mohammed Asef Iqbal, S.G. Gupta. Studies on Heavy Metal Ion Pollution of Ground Water Sources as an Effect of Municipal Solid Waste Dumping[J]. African Journal of Basic and Applied Sciences,2009,1(5-6):117-122.
    [13]Jung D. Park, Yaping Liu, Curtis D. Klaassen. Protective effect of metallothionein against the toxicity of cadmium and other metals[J]. Toxicology,2001,163:93-100.
    [14]N. C. Papanikolaou, E. G. Hatzidaki, S. Belivanis, G. N. Tzanakakis, M. Aristidis. Lead toxicity update.:A brief review[J]. Medical science monitor,2005,11:329-336.
    [15]Shalini Verma, R.S. Dubey. Leadtoxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants[J]. Plant Science,2003,163(4): 645-655.
    [16]Parag R. Gogate, Aniruddha B. Pandit. A review of imperative technologies for wastewatertreatment I:oxidation technologies at ambient conditions[J]. Advances in Environmental Research,2004,8:501-551.
    [17]Parag R. Gogate, Aniruddha B. Pandit. A review of imperative technologies for wastewatertreatment II:hybrid methods[J]. Advances in Environmental Research,2004,8: 553-597.
    [18]T. C. Lo, M. H. I. Baird, C. Hanson. Handbook of Solvent Extraction[M]. New York: Wiley Inter Scinece,1983.
    [19]A. Dabrowski, P. Podkoscielny, Z. Hubicki, M. Barczak. Adsorption of phenolic compounds by activatedcarbon-a critical review[J]. Chemosphere,2005,58(8):1049-1071
    [20]Baojiao Gao, Pengfei Jiang, Fuqiang An, Shuying Zhao, Zhen Ge. Studies on the surface modification of diatomite with polyethyleneimine and trapping effect of the modified diatomite for phenol[J]. Applied Surface Science,2005,250:273-279.
    [21]Linan Zhu, Jun Ma, Shidong Yang. Removal of phenol by activated alumina bed in pulsed high-voltage electric field[J]. Journal of Environmental Sciences,2007,19(4): 409-415.
    [22]SuHsia Lin, RueyShin Juang. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents:A review[J]. Journal of Environmental Management,2009,90(3):1336-1349.
    [23]Zhen Li, Minghong Wu, Zheng Jiao, Borong Bao, Senlin Lu. Extraction of phenol from wastewater by N-octanoylpyrrolidine[J]. Journal of Hazardous Materials,2004,114:111-114.
    [24]Maryam Takht Ravanchi, Tahereh Kaghazchi, Ali Kargari. Application of membrane separation processes in petrochemical industry:a review[J], Desalination,2009,235: 199-244.
    [25]S. E. Kentish, G. W. Stevens. Innovations in separations technology for the recycling and re-use of liquid waste streams[J]. Chemical Engineering Journal,2001,84(2):149-159.
    [26]Martin Sjodin, Tania Irebo, Josefin E. Utas, Johan Lind, Gabor Merenyi, Bjorn Akermark. Kinetic Effects of Hydrogen Bonds on Proton-Coupled Electron Transfer from Phenols[J]. Journal of the American Chemical Society,2006,128(40):13076-13083.
    [27]Kaili Lin, Jiayong Pan, Yiwei Chen, Rongming Cheng, Xuecheng Xu. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders[J]. Journal of Hazardous Materials,2009,161(1):231-240.
    [28]K. Benrachedi, A. Mekarzia, M.Z. Boureghda. Adsorption Study of Phenol on Activated Carbon Made from Coffee Grounds Determination of Adsorption Capacity[J]. European Journal of Scientific Research,2007,18:360-368.
    [29]Zucheng Wu, Yanqing Cong, Minghua Zhou, Qian Ye, Tianen Tan. Removal of phenolic compounds by electroassisted advanced process for wastewater purification[J]. Korean Journal of Chemical Engineering,2002,19:866-870.
    [30]Rogerio Jose Araujo L'Amour, Eduardo Bessa Azevedo, Selma Gomes Ferreira Leite, Marcia Dezotti. Removal of phenol in high salinity media by a hybrid process (activated sludge+photocatalysis)[J]. Separation and Purification Technology,2008,60(2):142-146.
    [31]Bhargavi Subramanian, Vasudevan Namboodiri, Amid P. Khodadoust, Dionysios D. Dionysiou. Extraction of pentachlorophenol from soils using environmentally benign lactic acid solutions[J]. Journal of Hazardous Materials,2010,174:263-269.
    [32]Sami Sarfaraz, Swapna Thomas, U.K Tewari, Leela Iyengar. Anoxic treatment of phenolic wastewater in sequencing batch reactor[J]. Water Research,2004,38(4):965-971.
    [33]M. S. Fountoulakis, S. N. Dokianakis, M. E. Kornaros, G. G. Aggelis, G. Lyberatos. Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus[J]. Water Research,2002,36(19):4735-4744.
    [34]Beatriz Alonso, Pilar Garcia Armada, Jose Losada, Isabel Cuadrado, Blanca Gonzalez, Carmen M. Casado. Amperometric enzyme electrodes for aerobic and anaerobic glucose monitoring prepared by glucose oxidase immobilized in mixed ferrocene-cobaltocenium dendrimers[J]. Biosensors and Bioelectronics,2004,19(2):1617-1625.
    [35]Bin Cao, Karthiga Nagarajan, KaiChee Loh. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches[J]. Applied Microbiology and Biotechnology,2009,85(2):207-228.
    [36]S. Chakraborty, H. Veeramani. Effect of HRT and recycle ratio on removal of cyanide, phenol, thiocyanate and ammonia in an anaerobic-anoxic-aerobic continuous system[J]. Process Biochemistry,2006,41(1):96-105.
    [37]Songhun Yoon, SongYi Kwon, Chul Wee Lee. An efficient and cost-effective solvent extraction for recovery of phenol and its hydroxy derivatives from aqueous medium[J]. Korean Journal of Chemical Engineering,2011,28(1):71-78.
    [38]N. F. Gray. Water Technology[M]. New York:Wiley Inter science,1999,473-474.
    [39]Tonni Agustiono Kurniawan, Gilbert Y. S. Chan, WaiHung Lo, Sandhya Babel. Physico-chemical treatment techniques for wastewater laden with heavymetals[J]. Chemical Engineering Journal,2006,118(1):83-98.
    [40]Matthew M Matlock, Kevin R Henke, David A Atwood. Effectiveness of commercial reagents for heavymetal removal from water with new insights for future chelate designs[J]. Journal of Hazardous Materials,2002,92(2):129-142.
    [41]PaiHaung Shih, JuuEn Chang, HsingCheng Lu, LiChoung Chiang. Reuse of heavymetal-containing sludges in cement production[J]. Cement and Concrete Research, 2005,35(11):2110-2115.
    [42]F. Veglio, R. Quaresima, P. Fornari, S. Ubaldini. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning[J]. Waste Management,2003,23(3):245-252.
    [43]Isik Kabdasli, Tulin Arslan, Tugba Olmez-Hanci, Idil Arslan-Alaton, Olcay Tynay. Complexing agent and heavymetal removals from metal plating effluent by electrocoagulation with stainless steel electrodes[J]. Journal of Hazardous Materials,2009,165:838-845.
    [44]Bin Yu, Y. Zhang, Alka Shukla, Shyam S. Shukla, Kenneth L. Dorris. The removal of heavy metal from aqueous solutions by sawdust adsorption removal of copper[J]. Journal of Hazardous Materials,2000,80:33-42.
    [45]GuorTzo Wei, Zusing Yang, ChaoJung Chen. Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions[J]. Analytica Chimica Acta,2003,488(2): 183-192.
    [46]A. Dabrowski, Z. Hubicki, P. Podkoscielny, E. Robens. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004,56(2):91-106.
    [47]M. Muthukrishnan, B.K. Guha. Heavy metal separation by using surface modified nanofiltration membrane[J]. Desalination,2006,200:351-353.
    [48]Hiroaki Ozaki, Kusumakar Sharma, Wilasinee Saktaywin. Performance of an ultra-low-pressure reverseosmosis membrane (ULPROM) for separating heavymetal:effects of interference parameters[J]. Desalination,2002,144:287-294.
    [49]Henrik K. Hansen, Lisbeth M. Ottosen, Bodil K. Kliem, Arne Villumsen. Electrodialytic remediation of soils polluted with Cu, Cr, Hg, Pb and Zn[J]. Journal of Chemical Technology and Biotechnology,1997,70(1):67-73.
    [50]M. Kobya, E. Demirbas, E. Senturk, M. Ince. Adsorption of heavy metal ions from aqueous solution by activated carbon prepared from apricot stone[J]. Bioresource Technology, 2005,96:1518-1521.
    [51]M. Kobya, E. Demirbas, E. Senturk, M. Ince. Adsorption of heavymetal ions from aqueous solutions by activated carbon prepared from apricot stone[J]. Bioresource Technology,2005,96(13):1518-1521.
    [52]RueyShin Juang, HueyJen Shao. A simplified equilibrium model for sorption of heavymetal ions from aqueous solutions on chitosan[J]. Water Research,2002,36(12): 2999-3008.
    [53]M. F. Brigatti, C. Lugli, L. Poppi. Kinetics of heavy-metal removal and recovery in sepiolite[J]. Applied Clay Science,2000,16:45-57.
    [54]SuHsia Lin, RueyShin Juang. Heavymetal removal from water by sorption using surfactant-modified montmorillonite[J]. Journal of Hazardous Materials,2002,92(3): 315-326.
    [55]N. Joshi, S. S. Ahluwalia, D. Goyal. Removal of heavy metals from aqueous solution by different bio-waste materials[J]. Research Journal Chemistry and Environment,2003,7(4): 26-30.
    [56]D. Aderhold, C. J. Williams, R. G. Edyean. The removal of heavy metals ions by seaweeds and their derivatives[J]. Bioresource Technology,1996,58:16-20.
    [57]Hamdy A. A. Biosorption of heavy metals by marine algae[J]. Current Microbiology, 2000,41:232-238.
    [58]R. Gupta, P. Ahuja, S. Khan, R. K. Saxena, M. Mohapatra. Microbial biosorbents: meetings challenges of heavy metals pollution in aqueous solution[J]. Current Science,2000, 78(8):967-973.
    [59]S. S. Ahluwalia, D. Goyal. Removal of lead from aqueous solution by different fungi[J]. Indian Journal of Microbiology,2003,43(4):237-241.
    [60]J. L. Zhou, R. J. Kiff. The uptake of copper from aqueous solution immobilized fungal biomass[J]. Journal of Chemical Technology Biotechnology,1991,52:317-330.
    [61]T. J. Butter, L. M. Evison, I. C. Hancock, F. S. Holland. Removal and recovery of Cd from dilute aqueous streams by biosorption, elution and electrolysis[J]. Forum for Applied Biotechnology,1996,2:2581-2584.
    [62]M. M. Figueira, D. Volesky, H. J. Mathieu. Instrumental analysis study of iron species biosorption by Sargassum biomass[J]. Environmental Science and Technology,1996,33(11): 1840-1846.
    [63]G. M. Gadd, C. White. Removal of Thorium from stimulated acid process stream by fungal biomass[J]. Biotechnology and Bioengineering,1989,33:592-597.
    [64]B. Greene, M. Hosea, R. McPherson, M. Henzl, M. D. Alexander, D. W. Darnall. Interaction of gold(I) and gold(Ⅲ) complexes with algal biomass[J]. Environmental Science Technology,1986,20:627-632.
    [65]V. K. Gupta, A. K. Shrivastava, N. Jain. Biosorption of chromium(VI) from aqueous solutions by green algae Spirogyra species[J]. Water Research,2001,35(17):4079-4085.
    [66]P. F. Li, Z. Y. Mao, S. J. Rao, X. M. Wang, M. Z. Min, L. W. Qiu, et al. Biosorption of uranium by lake harvested biomass from cyanobacterium bloom[J]. Bioresource Technology, 2004,94:193-195.
    [67]G. M. Gadd, C. White. Removal of Thorium from stimulated acid process stream by fungal biomass[J]. Biotechnology and Bioengineering,1989,33:592-597.
    [68]F. Baillet, J. P. Magnin, A. Cheruy, P. Ozil. Chromium precipitation by the acidophilic bacterium Thiobacillus ferrooxidans[J]. Biotechnology Letters,1998,20 (1):95-99.
    [69]T. C. Beveridge, R. J. Doyle. Metal Ions and Bacteria[M]. New York:Wiley Inter science, 1989.
    [70]T. J. Beveridge, R. G. E. Murray. Sites of metal deposition in the cell walls of Bacillus subtilis[J]. Journal of Biotechnology,1980,141:876-887.
    [71]G. M. Gadd, C. White, L. de Rome. Heavy metals and radionuclide uptake by fungi and yeast [J]. Biohydrometallurgy Science and Technology Letters.1988,421-435.
    [72]C. P. Huang, A. L. Morehart. The removal of Cu(II) from dilute aqueous solutions by Saccharomyces cerevisiae[J]. Water Research,1990,24:433-439.
    [73]S. S. Ahluwalia, D. Goyal. Removal of heavy metals by waste tealeaves from aqueous solution[J]. Engineering in life Sciences,2005,5:158-162.
    [74]D. Kratochvil, B. Volesky. Advances in the biosorption of heavy metals[J]. Tibtech,1998, 16:291-299.
    [75]B. Volesky, Z. Holan. Biosorption of heavy metals [J]. Biotechnology Progress,1995,11: 235-250.
    [76]D. DuchTne. New trends in cyclodextrins and derivatives[M], Paris:Editions de Sant, 1991.
    [77]K. H. Frimming, J. Szejtli, Cyclodextrins in Pharmacy[M]. Dordrecht:Kluwer Academic Publishers,1994.
    [78]S. Li, W. C. Purdy. Cyclodextrins and their applications in analytical chemistry[J]. Chemical Review,1992,92:1457-1470.
    [79]K. A. Connors. The Stability of Cyclodextrin Complexes in Solution[J]. Chemical Review,1997,97:1325-1357.
    [80]T. W. Mu, L. Liu, X. S. Li, Q. X. Guo. A theoretical study on the inclusion complexation of cyclodextrins with radical cations and anions[J]. Journal of Physical Organic Chemistry, 2001,14(8):559-565.
    [81]A. Berthod, L. He, D. W. Armstrong. Ionic liquids as stationary phase solvents for methylated cyclodextrins in gas chromatography[J]. Chromatographia,2001,53:63-68.
    [82]YanAn Gao, ZhongHao Li, JiMin Du, BuXing Han, GanZuo Li, WanGuo Hou, et al. Preparation and Characterization of Inclusion Complexes of (3-Cyclodextrin with Ionic Liquid[J]. Chemistry-A European Journal,2005,11(20):5875-5880.
    [83]ShihChi Chan, ShiaoWei Kuo, Feng-Chih Chang. Synthesis of the Organic/Inorganic Hybrid Star Polymers and Their Inclusion Complexes with Cyclodextrins[J]. Macromolecules, 2005,38(8):3099-3107.
    [84]J. Pozuelo, F. Mendicuti, W. L. Mattice. Inclusion Complexes of Chain Molecules with Cycloamyloses.2. Molecular Dynamics Simulations of Polyrotaxanes Formed by Polyethylene glycol) and a-Cyclodextrins[J]. Macromolecules,1997,30:3685-3690.
    [85]M. Ceccato, P. Lo Nostro, P. Baglioni. a-Cyclodextrin/Polyethylene Glycol Polyrotaxane:A Study of the Threading Process[J]. Langmuir,1997,13:2436-2439.
    [86]H. Okumura, M. Okada, Y. Kawaguchi, A. Harada. Complex Formation between Poly(dimethylsiloxane) and Cyclodextrins:New Pseudo-Polyrotaxanes Containing Inorganic Polymers[J]. Macromolecules,2000,33:4297-4298.
    [87]Hirohito Yamasaki, Yousuke Makihatal, Kimitoshi Fukunaga. Efficient phenol removal of wastewater from phenolic polymer plants using crosslinked cyclodextrin particles[J]. Journal of Chemical Technology and Biotechnology,2006,81:1271-1276.
    [88]Inigo X. Garcia-Zubiri, Gustavo Gonzalez-Gaitano, Jose Ramon Isasi. Isosteric heats of sorption of 1-naphthol and phenol from aqueous solutions by β-cyclodextrin polymers[J]. Journal of Colloid and Interface Science,2007,307:64-70.
    [89]G. Crini, S. Bertini, G. Torri. Sorption of Aromatic Compounds in Water Using Insoluble Cyclodextrin Polymers[J]. Journal of Applied Polymer Science,1998,68:1973-1978.
    [90]Gregorio Crini, Ludovic Janus, Michel Morcellet, Giangiacomo Torri, Nadia Morin. Sorption Properties Toward Substituted Phenolic Derivatives in Water Using Macroporous Polyamines Containing [3-Cyclodextrin[J]. Journal of Applied Polymer Science,1999,73: 2903-2910.
    [91]Robert Langer, David A. Tirrell. Designing materials for biology and medicine[J]. Nature, 2004,428:487-492.
    [92]E. Larrucea, A. Arellano, S. Santoyo, P. Ygartua. Interaction of Tenoxicam with Cyclodextrins and Its Influence on the In Vitro Percutaneous Penetration of the Drug[J]. Drug Development and Industrial Pharmacy,2001,27(3):251-260.
    [93]AiDi Qi, Li Li, Yu Liu. Molecular Binding Ability and Selectivity of Natural a-, β-, y-Cyclodextrins and Oligo(ethylenediamino) Modified β-Cyclodextrins with Chinese Traditional Medicines[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2003, 45:69-72.
    [94]G. Astray, C. Gonzalez-Barreiro, J.C. Mejuto, R. Rial-Otero, J. Simal-Gandara. A review on the use of cyclodextrins in foods[J]. Food Hydrocolloids,2009,23(7):1631-1640.
    [95]Lajos Szente, Jozsef Szejtli. Cyclodextrins as food ingredients[J]. Trends in Food Science and Technology,2004,15:137-142.
    [96]Wenjin Ma. Application of β-CD in analytical chemistry[J]. Physical Testing and Chemical Analysis Part B Chemical Analysis,2002,6:4010-4020.
    [97]Jozsef Szejtli. Introduction and General Overview of Cyclodextrin Chemistry[J]. Chemical Review,1998,98(5):1743-1754.
    [98]E. M. Martin, Del Valle. Cyclodextrins and their uses:a review[J]. Process Biochemistry, 2004,39(9):1033-1046.
    [99]Gregorio Crinia, Michel Morcellet. Synthesis and applications of adsorbents containing cyclodextrins[J]. Journal of Separation Science,2002,25:789-813.
    [100]Zhengyu Jin, Xueming Xu, Hanqing Chen, Xuehong Li. Cyclodextrin Chemistry: Prepartion and Application[M]. Beijing:Chemical Press.2009.
    [101]Linhui Tong. Cyclodextrin Chemistry:Basic and Application[M]. Beijing:Science Press.2001.
    [102]K. M. Lasen. Large Cyclodextrin[J]. Journal of Inclusion Phenomema and Macrocyclic Chemistry,2002,43:1-13.
    [103]Ueda H. Physicochemical Properties and Complex Formation Abilities of Large-ring Cyclodextrins[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2002,44: 53-56.
    [104]Ueda H, Wakisaka M, Takaha T, Okada S. Physicochemical Properties of Large-ring Cyclodextrin (CD18-CD21)[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002,44:403-405.
    [105]X. H. Guo, A. A. Abdala, B. L. May, S. F. Lincoln, S. A. Khan, R. K. Prud'homme. Novel Associative Polymer Networks Based on Cyclodextrin Inclusion Compounds[J]. Macromolecules,2005,38:3037-3040.
    [106]L. Li, X. H. Guo, L. Fu, R. K. Prud'homme, S. F. Lincoln. Complexation Behavior of α-β-, and γ-Cyclodextrin in Modulating and Constructing Polymer Networks[J]. Langmuir, 2008,24:8290-8296.
    [107]L. Li, X. H. Guo, J. Wang, P. Liu, R. K. Prud'homme, B. L. May, S. F. Lincoln. Polymer Networks Assembled by Host-Guest Inclusion between Adamantyl and β-Cyclodextrin Substituents on Poly(acrylic acid) in Aqueous Solution[J]. Macromolecules,2008,41: 8677-8681.
    [108]X. H. Guo, J. Wang, L. Li, Q. C. Chen, L. Zheng, D. T. Pham. Tunable polymeric hydrogels assembled by competitive complexation between cyclodextrin dimers and adamantyl substituted poly(acrylate)s[J]. AIChE Journal,2010,56:3021-3024.
    [109]J. Wang, D. T. Pham, X. H. Guo, L. Li, S. F. Lincoln, Z. F. Luo, et al. Polymeric Networks Assembled by Adamantyl and β-Cyclodextrin Substituted Poly(acrylate)s: Host-Guest Interactions, and the Effects of Ionic Strength and Extent of Substitution[J]. Industrial and Engineering Chemistry Research,2010,49:609-612.
    [110]J. Wang, L. Li, X. H. Guo, L. Zheng, D. T. Pham, S. F. Lincoln. Aggregation of Hydrophobic Substituents of Poly(acrylate)s and Their Competitive Complexation by β-and y-Cyclodextrins and Their Linked Dimers in Aqueous Solution[J]. Industrial and Engineering Chemistry Research,2011,50:7566-7571.
    [111]Jian Liu, Winston Ong, Esteban Roman, Matthew J. Lynn, Angel E. Kaifer. Cyclodextrin-Modified Gold Nanospheres[J]. Langmuir,2000,16 (7):3000-3002.
    [112]M. T. Rojas, R. Koniger, J. F. Stoddart, A. E. Kaiffer. Supported Monolayers Containing Preformed Binding Sites Synthesis and Interfacial Binding Properties of a Thiolated beta-Cyclodextrin Derivative[J]. Journal of the American Chemical Society,1995,117: 336-343.
    [113]Gabriele Nelles, Michael Weisser, Roberta Back, Peter Wohlfart, Gerhard Wenz, Silvia Mittler-Neher. Controlled Orientation of Cyclodextrin Derivatives Immobilized on Gold Surfaces[J]. Journal of the American Chemical Society,1996,118(21):5039-5046.
    [114]V. Vrkoslav, I. Jelinek, T. Trojan, J. Jindrich, J. Dian. Porous silicon with (3-cyclodextrin modified surface for photoluminescence sensing of organic molecules in gas and liquid phase[J]. Physica E,2007,38:200-204.
    [115]Janet T. F. Lau, PuiChi Lo, YeeMan Tsang, Wing-Ping Fong, Dennis K. P. Ng. Unsymmetrical (3-cyclodextrin-conjugated silicon(IV) phthalocyanines as highly potent photosensitisers for photodynamic therapy[J]. Chemical Communication,2011,47: 9657-9659.
    [116]B. Sebille, M. Guillaume, C. Vidal-Madjar, N. Thuaud. Retention and enantioselectivity properties of (3-cyclodextrin polymers and derivatives on porous silica for reverse-phase liquid chromatographic separation of enantiomers[J]. Chromatographia,1997,45(1):383-389.
    [117]Liu Tao, Fan Xiaodong, Tian Wei, Huang Yi, Jiang Min. Synthesis and characterization of AB2 an type functional β-cyclodextrin monomer and its water-soluble hyperbranched polymer[J]. Acta Polymerica Sinica,2008,10:1020-1024.
    [118]Zhonglin Cao, Xiaodong Fan, Le Sun. Synthesis and Characterization of Novel Polyamidoamine Dendrimer with (3-Cyclodextrin on Their Periphery[J]. Polymer Materials Science and Engineering,2007,23(5):53-56.
    [119]Wei Tian, Xiaodong Fan, Min Jiang, Shengjie Wang, Yuyang Liu, Yu Yu. Synthesis and characterization of hyperbranched polycarbosilane-g-cyclodextrin polymer brushes[J]. Acta Polymerica Sinica,2007,11:1080-1087.
    [120]C. L. P. Shan, J. B. P. Soares, A. Pendilis. Ethylene/1-octene copolymerization studies with in situ supported metallocene catalysts:Effect of polymerization parameters on the catalyst activity and polymer microstructure[J]. Journal of Polymer Science Part A,2002, 40(24),4426-4451.
    [121]C. H. Chen. Application of factorial experimental design to study the influence of polymerization conditions on the yield of polyaniline powder[J]. Journal of Applied Polymer Science,2002,85(7):1571-1580.
    [122]D. De Wet-Roos, J. H. Knoetze, B. Cooray, R. D. Sanderson. Emulsion polymerization of an epoxy-acrylate emulsion stabilized with polyacrylate. Ⅱ. Using the results of statistically designed experiments to deduce a possible polymerization mechanism[J]. Journal of Applied Polymer Science,2000,76(3):368-381.
    [123]Hirohito Yamasaki, Yousuke Makihata, Kimitoshi Fukunaga. Efficient phenol removal of wastewater from phenolic resin plants using crosslinked cyclodextrin particles[J]. Journal of Chemical Technology and Biotechnology,2006,81:1271-1276.
    [124]Decher G. Fuzzy. Nanoasemblies:Toward layered polymeric multicomoposites[J]. Science,1997,277:1232-1237.
    [125]G. Decher, J. B. Schlenoff. Muhilayer thin films[M]. Weinheim:Wiley,2003.
    [126]I. Borukhov, D. Andelman, H. E. Orland. Effect of polyelectrolyte adsorption on intercolloidal forces[J]. Journal of physical chemistry B,1999,103(24):5042-5057.
    [127]T. L. Pugh, W. Heller. Coagulation and stabilization of colloidal solutions with polyelectrolytes[J]. Journal of polymer science,1960,47(149):219-227.
    [129]Jurgen Ruhe, Matthias Ballauff, Markus Biesalski, Peter Dziezok, Franziska Gruhn, Diethelm Johannsmann, et al. Polyelectrolyte Brushes[J]. Advances in Polymer Science,2004, 165:79-150.
    [130]Y. Mei, M. Ballauff. Effect of counterions on the swelling of spherical polyelectrolyte brushes[J]. The European Physical Journal E,2005,1-9.
    [131]Z. Shen, Z. G. Zhao, G. T. Wang. Colloid and Surfate Chemistry[M]. Beijing: Chemistry Industry Press,2004,96-98.
    [132]F. S. Li. Ultrafine Powder Technology[M]. Beijing:National Defense Industry Press. 2000,284-287.
    [133]Xuhong Guo. Synthesis and Study of the Colloidal Polyelectrolyte Brushes Prepared by Photo-emulsion Polymerization[D], Logos Press Berlin, Berlin,2001.
    [134]Christina Graf, Alfons van Blaaderen. Metallodielectric Colloidal Core-Shell Particles for Photonic Applications[J]. Langmuir,2002,18(2),524-534.
    [135]V. G. Pol, A. Gedanken, J. Calderon-Moreno. Deposition of Gold Nanoparticles on Silica Spheres:A Sonochemical Approach[J]. Chemistry of Materials 2003,15,1111-1118.
    [136]A. Ghosh, C. R. Patra, P. Mukherjee, M. Sastry, R. Kumar. Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica[J]. Microporous and Mesoporous Materials,2003,58, 201-211.
    [137]Z. Liang, A. S. Susha, F. Caruso. Metallodielectric Opals of Layer-by-Layer Processed Coated Colloids[J]. Advanced Materials,2002,14(16):1160-1164.
    [138]Joachim P. Spatz, Stefan Mossmer, Christoph Hartmann, Martin Moller, Thomas Herzog, Michael Krieger, Hans-Gerd Boyen, et al. Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films[J]. Langmuir,2000,16(2):407-415.
    [139]R. West, Y. Wang, T. Goodson III. Nonlinear Absorption Properties in Novel Gold Nanostructured Topologies[J]. The Journal of Physical Chemistry B,2003,107(15): 3419-3426.
    [140]R. Djalali, S. Y. Li, M. Schmidt. Amphipolar Core-Shell Cylindrical Brushes as Templates for the Formation of Gold Clusters and Nanowires[J]. Macromolecules,2002, 35(11),4282-4288.
    [141]S. Liu, J. V. M. Weaver, M. Save, S. P. Armes. Synthesis of pH-Responsive Shell Cross-Linked Micelles and Their Use as Nanoreactors for the Preparation of Gold Nanoparticles[J]. Langmuir,2002,18(22),8350-8357.
    [142]J. H. Youk. Preparation of gold nanoparticles on poly (methyl methacrylate) nanospheres with surface-grafted poly (allylamine)[J]. Polymer,2003,44(18):5053-5056.
    [143]X. Guo, A. Weiss, M. Ballauff. Synthesis of Spherical Polyelectrolyte Brushes by Photoemulsion Polymerization [J]. Macromolecules,1999,32(19):6043-6046.
    [144]Y. Mei, A. Wittemann, G. Sharma, M. Ballauff, Th. Koch, H. Gliemann, J. Horbach, Th. Schimmel. Engineering the Interaction of Latex Spheres with Charged Surfaces:AFM Investigation of Spherical Polyelectrolyte Brushes on Mica[J]. Macromolecules,2003,36(10): 3452-3456.
    [145]Geeta Sharma, Matthias Ballauff. Cationic Spherical Polyelectrolyte Brushes as Nanoreactors for the Generation of Gold Particles[J]. Macromolecular Rapid Communication, 2004,25:547-552.
    [146]J. Zhang, S. Xu, E. Kumacheva. Polymer Microgels:Reactors for Semiconductor, Metal, and Magnetic Nanoparticles[J]. Journal of the American Chemical Society,2004, 126(25):7908-7914.
    [147]J. Zhang, S. Xu, E. Kumacheva. Photogeneration of Fluorescent Silver Nanoclusters in Polymer Microgels[J]. Advanced Materials,2005,17(19):2336-2340.
    [148]Yan Lu, Sebastian Proch, Marc Schrinner, Markus Drechsler, Rhett Kempc, Matthias Ballauff. Thermosensitive core-shell microgel as a nanoreactor for catalytic active metal nanoparticles[J]. Journal of Materials Chemistry,2009,19:3955-3961.
    [149]Reece Urry, et al. Campbell Biology[M]. New York:Pearson Benjamin Cummings, 2011,65-83.
    [150]Isabellel Lagadic, Mollyk Mitchell, Bryand Payne. Highly Effective Adsorption of Heavy Metal Ions by a Thiol-Functionalized Magnesium Phyllosilicate Clay[J]. Environmental science and technology,2001,35:984-990.
    [151]Nobuharu Hisano, Noriyuki Morikawa, Hiroo Iwata, Yoshito Ikada. Entrapment of islets into reversible disulfide hydrogels[J]. Journal of Biomedical Materials Research,1998, 40:115-123.
    [152]Makoto Kato, Kazunobu Toshima, Shuichi Matsumura. Direct Enzymatic Synthesis of a Polyester with Free Pendant Mercapto Groups[J]. Biomacromolecules,2009,10:366-373.
    [153]W. S. Wan Ngah, M. A. K. M. Hanafiah. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents:A review[J]. Bioresource Technology, 2008,99:3935-3948.
    [154]Matthew D. Cathell, Janah C. Szewczyk, Frances A. Bui, Carrie A. Weber, Jessica D. Wolever, Jennifer Kang, Caroline L. Schauer. Structurally Colored Thiol Chitosan Thin Films as a Platform for Aqueous Heavy Metal Ion Detection[J]. Biomacromolecules,2008,9: 289-295.
    [155]John D. Merrifield, William G. Davids, Jean D. MacRae, Aria Amirbahman. Uptake of mercury by thiol-graftedchitosan gel beads[J]. Water Research,2004,38:3132-3138.
    [156]Edward G. Stets, Mark E. Hines, Ronald P. Kiene. Thiol methylation potential in anoxic, low-pH wetland sediments and its relationship with dimethylsulfide production and organic carbon cycling[J]. FEMS Microbiology Ecology,2004,47:1-11.
    [157]Ana M. Lauricella, Irene L. Quintana, Lucia C. Kordich. Effects of homocysteine thiol group on fibrin networks:another possible mechanism of harm[J]. Thrombosis Research, 2002,107:75-79.
    [158]Bing Wang, Xipeng Jiang, Feng Xiao, Lei Huang. Preparation of thiohydroxy modified polysulfone chelating afinity membrane chromatogram and its removal properties for Hg2+[J]. Journal of Tianjin Polytechnic University,2004,23(4):1-5.
    [159]Jianming Pan, Xiaohua Zou, Xue Wang, Wei Guan, Chunxiang Li, Yongsheng Yan, Xiangyang Wu. Adsorptive removal of 2,4-didichlorophenol and 2,6-didichlorophenol from aqueous solution by β-cyclodextrin/attapulgite composites:Equilibrium, kinetics and thermodynamics[J]. Chemical Engineering Journal,2011,166:40-48.
    [160]Jun Wu, Zhengwen Xu, Weiming Zhang, Lu Lv, Bingcai Pan, Guangze Nie, Minghui Li, Qiong Du. Application of Heterogeneous Adsorbents in Removal of Dimethyl Phthalate: Equilibrium and Heat[J]. AIChE Journal,2010,56(10):2699-2705.
    [161]Y. S. HO. Citation review of Lagergren kinetic rate equation on adsorption reactions[J]. Scientometrics,2004,59(1):171-177.
    [162]Y. S. Ho, G. McKay. Pseudo-second order model for sorption processes[J]. Process Biochemistry,1999,34:451-465.
    [163]Y. S. Ho, G. McKay. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J]. Trans IChemE,1998,76(Part B):332-340.
    [164]Tien C. Adsorption calculations and modeling[M]. Newton:Boston, Butterworth-Heinemann,1994.
    [165]J. M. Chern, C. Y. Wu. Desorption of dye from activated carbonbeds:effects of temperature, pH, and alcohol[J]. Water Research,2001,35:4159-4165.
    [166]Gregorio Crini. Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer[J]. Dyes and Pigments,2008,77: 415-426.
    [167]Eti Baruch-Teblum, Yitzhak Mastai, Katharina Landfester. Miniemulsion polymerization of cyclodextrin nanospheres for water purification from organic pollutants[J]. European Polymer Journal,2010,46:1671-1678.
    [168]Hirohito Yamasaki, Yousuke Makihatal, Kimitoshi Fukunaga. Efficient phenol removal of wastewater from phenolic resin plants using crosslinked cyclodextrin particles[J]. Journal of Chemical Technology and Biotechnology,2006,81:1271-1276.
    [169]Y. S. Ho, G. Me Kay. Kinetic of sorption of basic dyes from aqueous solution by sphagnum moss peat[J]. Canadian Journal of Chemical Engineering,1998,76:822-827.
    [170]Zhu Zhongming, Guo Xuhong, Wu Shuang, Rui Zhang, Jie Wang, Li Li. Preparation of nickel nanoparticles in spherical polyelectrolyte brush nanoreactor and their catalytic activity[J]. Industrial and Engineering Chemistry Research,2011,50:13848-13853.
    [171]Shuang Wu, Joachim Dzubiella, Julian Kaiser, Markus Drechsler, Xuhong Guo, Matthias Ballauff, Yan Lu. Thennosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis[J]. Angewandte Chemie International Edition,2012,51:2229-2233.
    [172]Meng Chen, Wuge H. Briscoe, Steve P. Armes, Hagai Cohen, Jacob Klein. Robust, biomimetic polymer brush layers grown directly from a planar mica surface[J]. Journal of Physical Chemistry Letters,2007,8:1303-1306.
    [173]Jie Wang, Duc-Truc Pham, Tak W. Kee, Scott N. Clafton, Xuhong Guo, Philip Clement et al. Aggregation and host-guest interactions in dansyl-substituted poly(acrylate)s in the presence of β-cyclodextrin and a β-cyclodextrin dimer in aqueous solution:A UV-vis, fluorescence,'H NMR, and rheological study[J]. Macromolecules,2011,44:9782-9791.
    [174]Liu Qiong, Fan Xiaodong. Cyclodextrin macromolecule[J]. Polymer Bulletin,2002,5: 41-48.
    [175]David C. Bibby, Nigel M. Davies, Ian G. Tucker. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems[J]. International Journal of Pharmaceutics,2000,197:1-11.
    [176]Juan M. Benito, Marta G. Garcia, Carmen O. Mellet, Isabelle Baussanne, Jacques Defaye, Jose M. Garcia Fernandez. Optimizing saccharide-directed molecular delivery to biological receptors:design, synthesis, and biological evaluation of glycodendrimer-cyclodextrin conjugates[J]. Journal of the American Chemical Society,2004, 126:10355-10363.
    [177]Xinyuan Zhu, Liang Chen, Deyue Yan, Qun Chen, Yefeng Yao, Yan Xiao, et al. Supramolecular self-assembly of inclusion complexes of a multiarm hyperbranched polyether with cyclodextrins[J]. Langmuir,2004,20:484-490.
    [178]Christian A Nijhuis, Fang Yu, Wolfgang Knoll, Jurriaan Huskens, David N. Reinhoudt. Multivalent dendrimers at molecular printboards:influence of dendrimer structure on binding strength and stoichiometry and their electrochemically induced desorption[J]. Langmuir,2005, 21:7866-7876.
    [179]J. Kopecek. Hydrogel biomaterials:A smart future[J]. Biomaterials,2007,28(34): 5185-5192.
    [180]M. Chen, L. Lin, X. Q. Li. Preparation and characterization of a photochromic hydrogel[J]. Advanced Materials Letters,2011,2(6):415-418.
    [181]J. Kopecek. Hydrogels:From soft contact lenses and implants to self-assembled nanomaterials[J]. Journal of Polymer Science Part A-Polymer Chemistry,2009,47(22): 5929-5946.
    [182]D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels[J]. Nature 2000; 404:588-590.
    [183]V. A. Liu, S. N. Bhatia. Three-Dimensional Photopatterning of Hydrogels Containing Living Cells[J]. Biomedical Microdevices,2002,4:257-266.
    [184]B. Jeong, A. Gutowska. Lessons from nature:stimuli-responsive polymers and their biomedical applications[J]. Trends in Biotechnology,2002,20(7):305-311.
    [185]B. Ziaie, A. Baldi, M. Lei, Y. D. Gu, R. A. Siegel. Hard and soft micromachining for BioMEMS:review of techniques and examples of applications in microfluidics and drug delivery[J]. Advanced Drug Delivery Reviews,2004,56(2):145-172.
    [186]J. A. Burdick, A. Khademhosseini, R. Langer. Fabrication of Gradient Hydrogels Using a Microfluidics/Photopolymerization Process[J]. Langmuir,2004,20(13):5153-5156.
    [187]A. T. Woolley. Biomedical microdevices and nanotechnology[J]. Trends in Biotechnology,2001,19(2):38-39.
    [188]YouXiong Wang, John L. Robertson, William B. Spillman, Richard O. Claus. Effects of the Chemical Structure and the Surface Properties of Polymeric Biomaterials on Their Biocompatibility[J]. Pharmaceutical Research,2004,21(8):1362-1373.
    [189]Jean Francois Lutz.1,3-Dipolar Cycloadditions of Azides and Alkynes:A Universal Ligation Tool in Polymer and Materials Science[J]. Angewandte Chemie International Edition,2007,46(7):1018-1025.
    [190]Michel Wathier, C. Starck Johnson, Terry Kim, Mark W. Grinstaff. Hydrogels Formed by Multiple Peptide Ligation Reactions To Fasten Corneal Transplants[J]. Bioconjugate Chemistry,2006,17(4):873-876.
    [191]Liyuan Chai, Qingzhu Li, Yonghua Zhu, Zhiyuan Zhang, Qingwei Wang, Yunyan Wang, Zhihui Yang. Synthesis of thiol-functionalized spent grain as a novel adsorbent for divalent metal ions[J]. Bioresource Technology,2010,10(15):6269-6272.
    [192]Violeta Neagu, Cornelia Luca, Simina Stefan, M. Stefan, I. Untea. Unconventional ion exchange resins and their retention properties for Hg2+ions[J]. Reactive and Functional Polymers,2007,67(12):1433-1439.
    [193]Bing Wang, Xinlin Yang, Wenqiang Huang. Preparation and recovery of polysulfone affinity membrane with mercapto as chelating group for Hg2+cations[J]. Journal of Applied Polymer Science,2007,103(4):2514-2522.
    [194]Artem I. Vedernikov, Evgeny N. Ushakov, Lyudmila G. Kuzmina, Andrei V. Churakov, Yuri A. Strelenko, Michael Worner, et al. New dithiacrown-ether butadienyl dyes:synthesis, structure, and complex formation with heavy metal cations[J]. Journal of Physical Organic Chemistry,2010,23(3):195-206.
    [195]Aymeric Nion, Peng Jiang, Alexandre Popoff, Denis Fichou. Rectangular Nanostructuring of Au(Ⅲ) Surfaces by Self-Assembly of Size-Selected Thiacrown Ether Macrocycles[J]. Journal of the American Chemical Society,2007,129(9):2450-2451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700