新型纤维素荧光材料的合成、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子荧光材料是一种新型功能材料,具有独特的光物理化学性质,在荧光探针、化学传感器、非线性光学装置、荧光成像、微电子等领域有广泛的应用前景。随着可持续发展的战略要求,以天然高分子为原料的荧光材料迅速崛起,并成为高分子科学的前沿领域之一。纤维素是地球上最丰富的可再生资源,它经化学改性后能以不同形式出现,提高了功能化的灵活性及其材料应用的广泛性。目前,荧光纤维素材料的研究正处于起步阶段,开发不同种类且具有特殊应用价值的纤维素荧光材料已引起了科技工作者的高度重视。本工作通过物理、化学改性方法合成基于纤维素的荧光材料,并对产物的结构、性质和应用进行深入研究。
     本论文的主要创新有以下几点:1)通过均相醚化、表面修饰、化学交联制备多种新型荧光纤维素材料,并对其结构与性能进行表征;2)通过疏水相互作用和主客体相互作用制备荧光纤维素纳米胶束和荧光增强的纤维素水凝胶,并表征其结构与性能;3)系统研究荧光纤维素材料的荧光性质,考察其在pH、温度、爆炸物分子和重金属离子等的传感检测和荧光增强作用。
     本论文的主要研究内容和结论包括以下几个部分。首先,在NaOH/尿素水体系均相合成羟乙基纤维素(HEC),进一步与N-3'-溴丙基咔唑在DMSO体系中合成咔唑基羟乙基纤维素(Cz-HEC)。通过红外、核磁共振、元素分析等对其结构进行表征,利用荧光光谱考察Cz-HEC在DMSO中的荧光性质。研究表明,咔唑基接至HEC后荧光寿命增加、荧光增强,但均出现浓度自猝灭现象。电子受体丙烯腈的加入对Cz-HEC有荧光猝灭作用,且随丙烯腈加入,猝灭符合Stern-Volmer方程,所得猝灭常数及荧光寿命变化表明是一个动态猝灭的过程。
     通过两步反应,首先咔唑与环氧氯丙烷反应合成9-(2,3-环氧丙基)-咔唑,再与甲基纤维素(MC)反应成功合成咔哗基取代的甲基纤维素(Cz-MC)。红外和核磁共振确定其结构,元素分析和紫外光谱确定咔唑基的取代度。通过动态光散射研究不同温度下Cz-MC稀溶液的聚集行为。研究表明,Cz-MC在较低温度下单链和聚集体共存;随着温度升高单链逐渐消失,形成大的聚集体且聚集体的流体力学半径减小;且随着咔唑基取代度增加聚集行为更明显,聚集体的流体力学半径亦更小。Cz-MC具有浓度自猝灭的荧光性质。Cz-MC荧光性质对温度的依赖关系表明,Cz-MC的热聚集行为改变了咔唑基团的微环境,在发生荧光自猝灭的浓度前后,溶液的荧光强度发生温度响应性改变。
     以HEC为原料,在DMSO体系以二月桂酸二丁基锡作催化剂,与异硫氰酸荧光素反应合成了荧光素标记的羟乙基纤维素(FITC-HEC)。通过红外和核磁共振确定其结构。利用荧光光谱研究其溶液、固体和膜的荧光性质,发现FITC在固态时基团之间互相影响形成激基缔合物,导致荧光增强且发生红移。此外,还探讨了pH和温度对FITC-HEC水溶液荧光性质的影响。研究表明,pH升高,FITC电离形式不同,溶液的荧光强度先增加后降低;温度升高,溶液发生荧光猝灭现象。由此说明FITC-HEC可作为pH和温度的传感器。
     通过对纤维素进行季铵化和不同疏水长链的烷基化制备两亲性纤维素衍生物(HMQC)。 HMQC能在水中自组装形成纳米胶束,FTIR、NMR、元素分析、ζ电位、DLS和TEM研究了HMQC和胶束的结构和形貌。将该胶束用于疏水荧光染料BTPETD的包覆制备了一种基于荧光纤维素胶束的化学传感体系。该体系具有优异的荧光性质,可用于爆炸物分子的痕量检测。研究表明,2,4-二硝基苯酚(DNP)和2,4,6-三硝基苯酚(PA)会导致较高的荧光猝灭,DNP对荧光的猝灭具有良好的Stern-Volmer线性关系,而PA在浓度大于6μM时显示超线性的关系,但都能实现对DNP和PA的定量检测,检测限分别达到200nM和50nM,可作为水环境下稳定、高灵敏的化学传感材料。
     将纤维素纳米晶须反应上环氧基团,然后开环引入伯胺基,伯胺基再与溴芘进行反应合成了表面芘标记的荧光纤维素纳米晶须(Py-CNC)。固体核磁确定其结构。荧光测试表明芘标记到CNC上对其荧光有显著增强。Py-CNC水分散液对不同金属离子具有不同的荧光响应,其中Fe3+的荧光猝灭效果最好,Fe3+与Py-CNC上N、O的配位作用是导致荧光猝灭的原因。Py-CNC对Fe3+有较高灵敏度和选择性,检测限达1μM,可用于环境体系中Fe3+的传感检测。
     以环氧氯丙烷为交联剂,在NaOH/尿素水体系中合成β-环糊精/纤维素水凝胶。以β-环糊精疏水空腔的包合作用研究了水凝胶对5-FU和BSA的释放行为,显示β-环糊精对5-FU的包合抑制了其释放。同时还研究水凝胶对苯胺蓝的吸附行为。结果表明,由于β-环糊精与苯胺蓝的1:1包合作用,使得水凝胶对苯胺蓝的吸附量随环糊精的含量增加而增加,且该水凝胶吸附苯胺蓝后荧光增强。
     本论文为基于纤维素的新型荧光材料的制备提供新的途径和方法。同时,还研究了荧光纤维素材料对pH、温度、重金属离子、爆炸物分子等的传感检测以及荧光增强。这些成果将为新型纤维素功能材料的制备与应用提供科学依据,具有重要的学术价值和应用前景。
Fluorescence polymer, as a new functional material, has its unique photophysical and photochemical properties. It has many potential applications such as fluorescent probes, chemical sensors, nonlinear optical devices, fluorescence imaging, microelectronics, and so on. Nowadays, with the strategic requirements of sustainable development, research and development of fluorescent materials based on the natural polymers has been one of the superior areas of polymer science. As the most abundant renewable resources on the earth, cellulose could be chemically or physically modified into many forms, such as films, fibers and hydrogels. Thus the functionalization and the extension of cellulose applications could be improved. So far, cellulose-based fluorescent materials are in their infancy, and how to develop novel fluorescent materials and convert cellulose into high value-added products have attracted a worldwide attention. In this thesis, we tried to prepare novel cellulose-based fluorescent materials via physical and chemical methods, and the structure, properties and their potential applications were investigated.
     The novel creations of this work are as follows.(1) Novel cellulose-based fluorescent materials were prepared by homogeneously etherification, surface modification, and chemical crosslinking, and their structure and properties were investigated.(2) Cellulose-based fluorescent micelles and enhanced fluorescent cellulose-based hydrogels were obtained by hydrophobic interactions and host-guest complexion, respectively.(3) The fluorescence properties of the cellulose-based fluorescent materials were investigated, and their applications in chemosensors for pH, temperature, metal ions and explosives were studied.
     The main content and conclusions in this thesis are divided into the following part. Firstly, carbazole-substituted hydroxyethylcelluloses (Cz-HECs) were homogeneously synthesized by reacting HEC with N-3'-bromopropyl carbazole in DMSO. The structure was characterized with element analysis, FTIR and NMR. Fluorescent properties of Cz-HECs in DMSO were syudied by a spectrofluorimeter. The results showed that the fluorescence lifetime increased with increasing DS of carbazole, and the fluorescent intensity of Cz-HECs was enhanced than that of Br-Cz. All samples exhibited concentration self-quenching properties. The addition of acrylonitrile, as an electron-accepter, quenched the emission spectra of Cz-HECs, and the fluorescence quenching was found to be a dynamic quenching by analyzing with the Stern-Volmer equation and fluorescent lifetime.
     Carbazole-substituted methylcelluloses (Cz-MCs) were synthesized through a two-step reaction by firstly introducing epoxy group to carbazole, and then reacting with MC. The structure was characterized by FTIR, NMR, elemental analysis and UV-vis spectroscopy. Aggregation behavior of Cz-MCs in dilute aqueous solution was investigated by a thermotropic study performed with dynamic laser light scattering. Fluorescent properties of Cz-MCs were measured by a spectrofluorimeter and results showed that Cz-MCs displayed concentration self-quenching properties of fluorescence spectra both in H2O and DMSO. The temperature effect on the fluorescent emission in dilute aqueous solution was explored. The results showed that the DS of carbazole and thermal aggregation of Cz-MC contributed to the formation of network structure between the molecules, consequently leading to the enhancement or quenching in fluorescence intensity.
     Fluorescein-labeled hydroxyethylcellulose (FITC-HEC) was synthesized by reacting HEC with fluorescein isothiocyanate in DMSO, and dibutyltin dilaurate was used as a catalyst. The structure was characterized by FTIR and NMR. Fluorescent properties of FITC-HEC in solution, solid state and film were investigated, and the fluorescence emission in solid state appeared an enhanced and red shift fluorescence compared to that in solution because of the formation of excimers in solid state. The effect of pH and temperature on the fluorescence intensity of FITC-HEC solution was explored. The results indicated that increasing pH could cause an increasing and then decreasing fluorescent intensity by different forms of FITC. Increasing temperature would cause a fluorescent quenching. This novel fluorescent material could be used as chemosensors for pH and temperature.
     Amphiphilic cationic cellulose derivatives with different long alkyl chains as hydrophobic segments (HMQC) were synthesized. They can self-assemble into cationic micelles in distilled water. Structure and properties of HMQC and micelles were characterized by element analysis, FT-IR,1H NMR, ξ-potential measurements, DLS, TEM, and fluorescence spectroscopy. The hydrophobic cores of micelles were used to load hydrophobic dye, BTPETD, to obtain fluorescent micelles which exhibiting stable photoluminescence. Fluorescence quenching was used to detect explosives, and found that the fluorescent intensity had highly sensitive respond to2,4-dinitrophenol (DNP) and picric acid (PA). It has a good linear relationship to DNP detection, while having a superlinear for c>6μM to PA, and both of them can be quantitatively detected. The limit of detection could reach to200and50nM, respectively. This novel fluorescent cellulose micelle is potential to prepare feasible, sensitive and stable sensor systems for detecting explosives in aqueous solutions.
     Cellulose nanocrystals were converted into pyrene labeling nanoparticles (Py-CNC) by a three-step procedure. The fluorescence emission of pyrene was enhanced after the modification to CNC. Py-CNC was evaluated for its sensing ability towards metal ions and exhibited high selectivity towards Fe3+among other screened metal ions with good discrimination between Fe2+and Fe+. The excellent selectivity for Fe+over a wide linear concentration range was observed through changes in the emission spectra. Spectroscopic analyses proved that the coordination interaction between Fe3+and Py-CNC led to the recognition process. This sensing nanomaterial can be employed as a chemosensor for Fe3+and promoted for many applications in chemical, environmental, and biological systems.
     β-cyclodextrin ((3-CD)/cellulose hydrogels were prepared in NaOH/urea aqueous solutions by crosslinking with epichlorohydrin. The structure and morphology of the hydrogels were characterized with FTIR, XRD, and SEM. The swelling test,5-fluorouracil (5-FU) and BSA, and aniline blue (AnB) were used to investigate the swelling capability, drug release behavior, and the fluorescent property of hydrogels. The results indicated that the swelling degree and water uptake of the hydrogels decreased with an increase of the β-CD content. The in vitro release showed an inclusion complex was formed for5-FU with β-CD to inhibit the controlled release. P-CD/cellulose hydrogels adsorbed aniline blue lead to a fluorescence enhancement attributing to the1:1host-guest complex between (3-CD and AnB.
     The thesis provided a new pathway for the synthesis of novel cellulose-based fluorescent materials. Meanwhile, this work has explored the potential applications in chemosensors for pH, temperature, metal ions, explosives, and so on. This thesis provided important information and scientific evidence for the preparation and utilization of cellulose-based fluorescent materials. Therefore, there are great scientific significance and prospects of applications.
引文
[1]Wolff N. E., Pressley R. J., Maser optical action in an Eu3+-containing organic matrix, Appl. Phys. Lett.,1963,2,152-154.
    [2]洪瀚,刘向前,杜福胜,周鹏,李福绵,含C60聚乙基乙烯基醚的合成及其荧光行为,高分子学报,1999,1,123-125。
    [3]Ken K., Yasuhiro K., Yoshi O., Plastic optical fiber lasers and amplifiers containing lanthanide complexes, Chem. Rev.,2002,102,2347-2356.
    [4]马建标,功能高分子材料,北京:化学工业出版社,2010。
    [5]Feng X. L., Liu L. B., Wang S., Zhu D. B., Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors, Chem. Soc. Rev.,2010,39,2411-2419.
    [6]黄翠华,徐伟箭,荧光高分子应用研究进展,应用化工,2001,30,9-12。
    [7]Pokhrel M. R., Bossman S. H., Synthesis, characterization, and first application of high molecular weight polyacrylic acid derivatives possessing perfluorinated side chains and chemically linked pyrene labels, J. Phys. Chem. B,2000,104, 2215-2223.
    [8]Katsumoto Y, Tsunomori F., Ushiki H., Letamendia L., Rouch J., Local motions of polystyrene chain in semi-concentrated polymer solutions, Eur. Polym. J.,2001, 37,475-483.
    [9]Jiang M., Li M., Xiang M. L., Zhou H., Interpolymer complexation and miscibility enhancement by hydrogen bonding, Adv. Polym. Sci.,1999,146, 121-196.
    [10]张俐娜,基于生物质的环境友好材料,北京:化学工业出版社,2011。
    [11]Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W., Comprehensive cellulose chemistry, Wiley-VCH Verlag Gmbh,1998.
    [12]Klemm D., Heublein B., Fink H. P., Bohn A., Cellulose:Fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed.,2005,44,3358-3393.
    [13]Jones G, Qian X. H., Emission quenching via intramolecular electron transfer for fluorescein conjugates. Dependences on driving force and medium, J. Photo. Chem. Photobiol. A:Chem.,1998,113,125-134.
    [14]郭沛瑛,王山峰,雷晖,吴平平,韩哲文,共扼刚性苯并二噁唑类聚合物的合成及其光物理性能研究,高分子学报,2005,1,86-92。
    [15]Rodriguez J. G, Martin-Villamil R., Lafuente A., π-Extended conjugate phenylacetylenes. Synthesis of 4-[(E) and (Z)-2-(4-ethenylphenyl)ethenyl] pyridine. Dimerization, quaternation and formation of charge-transfer complexes, Tetrahedron,2003,59,1021-1032.
    [16]Huang J. W., Bai S. J. Layer effects of photovoltaic heterojunction of fully conjugated heteroeyclic aromatic rigid-rod polymer poly-P-phenylenebenzobisoxazole, J. Polym. Sci. B:Polym. Phys.,2007,45,988-993.
    [17]Su Y. L., Xu Y. Z., Yang L. M., Yang J., Weng S. F., Yu Z. W., Wu J. G., New, rapid fluorescence stain method for histologic sections using lanthanide complexes, Anal. Biochem.,2005,347,89-93.
    [18]Balaji T., Buddhudu S., Fluorescence spectra of Eu3+ ions in dual lanthanide oxyhalide power phosphors, Mater. Chem. Phys.,1993,36,194-197.
    [19]Lakowicz J. R., Principles of Fluorescence Spectroscopy,2nd ed.; Plenum Press: New York,1999.
    [20]吴世康,高分子光化学导论-基础和应用,北京:科学出版社,2003。
    [21]陈国珍,黄贤智,郑朱梓,许金钩,王尊本,荧光分析法,北京:科学出版社,1990。
    [22]张俐娜,薛奇,莫志深,金熹高,高分子物理近代研究方法,武汉:武汉大学出版社,2006。
    [23]Martinez-Manez R., Sancenon F., Fluorogenic and chromogenic chemosensors and reagents for anions, Chem. Rev.,2003,103,4419-4476.
    [24]Michelman-Ribeiro A., Boukari H., Nossal R., Horkay F., Fluorescence correlation spectroscopy study of probe diffusion in poly(vinyl alcohol) solutions and gels, Macromol. Symp.,2005,227,221-230.
    [25]Wang L., Chen H. Q., Wang L., Wang G. F., Xu F. G, Determination of proteins at nanogram levels by synchronous fluorescence scan technique with a novel composite nanoparticle as a fluorescence probe, Spectrochim. Acta, A:Mol. Biomol. Spectro.,2004,60,2469-2473.
    [26]Situma C., Moehring A. J., Noor M. A. F., Soper S. A., Immobilized molecular beacons:A new strategy using UV-activated poly(methyl methacrylate) surfaces to provide large fluorescence sensitivities for reporting on molecular association events, Anal. Biochem.,2007,363,35-45.
    [27]刘兴妤,关晓琳,苏致兴,聚合物对Eu(TTA)3-2NMP发光性能的影响,高等学校化学学报,2005,4,769-772。
    [28]Ahmad M., Chang K.-P., King T. A., Hench L. L., A compact fibre-based fluorescence sensor, Sens. Actuat. A:Phys.,2005,119,84-89.
    [29]Atvars T. D. Z., Bortolato C. A., Dibbern-Brunelli D., Electronic absorption and fluorescence spectra of xanthene dyes in polymers, J. Photochem. Photobiol. A: Chem.,1992,68,41-50.
    [30]Dibbern-Brunelli D., de Oliveira M. G., Atvars T. D. Z., Temperature dependence of the photobleaching process of fluorescein in poly(vinyl alcohol), J. Photochem. Photobiol. A:Chem.,1995,85,285-289.
    [31]Taihavini M., Atvars T. D. Z., Dye-polymer interactions controlling the kinetics of fluorescein photobleaching reactions in poly(vinyl alcohol), J. Photochem. Photobiol. A:Chem.,1998,114,65-73.
    [32]Taihavini M., Atvars T. D. Z., Photostability of xanthene molecules trapped in poly(vinyl alcohol)(PVA) matrices, J. Photochem. Photobiol. A:Chem.,1999, 120,141-149.
    [33]Taihavini M., Corradini W., Atvars T. D. Z., The role of the triplet state on the photobleaching processes of xanthene dyes in a poly(vinyl alcohol) matrix, J. Photochem. Photobiol. A:Chem.,2001,139,187-197.
    [34]张其锦,王品,王大志,C60掺杂聚苯乙烯薄膜的荧光发射,功能高分子学报,1997,10,18-22。
    [35]张国斌,陈彪,戚泽明,陈永虎,梁浩,张其锦,施朝淑,Eu3+掺杂的PMMA- 络合物体系的发光特性,发光学报,2003,24,616-619。
    [36]Sukumaran V. S., Ramalingam A., Spectral characteristics and nonlinear studies of acridine orange dye, Phys. Lett. A,2005,341,454-458.
    [37]闫晓莉,徐朝俦,郑敏,白凤莲,两种萘酰亚胺类化合物及其聚合物荧光性质的研究,感光科学与光化学2000,18,112-120。
    [38]杜福胜,洪薇,李福绵,含咔唑生色基团的甲基丙烯酸酯类单体及其聚合物的荧光行为,高分子学按,1999,2,236-239。
    [39]杜福胜,李子臣,李福绵,含荧光生色基团烯类单体及其聚合物的光化学行为,高分子通报,1999,3,99-106。
    [40]Kraft A., Grimsdale A. C., Holmes A. B., Electroluminescent conjugated polymers-Seeing polymers in a new light, Angew. Chem. Int. Ed.,1998,37, 402-428.
    [41]Wen Q. S., Zhu C. L., Liu L. B., Yang Q., Wang S., Zhu D. B., Synthesis of a bifunctional fluorescent polymer for cell imaging and enzyme detection, Macromol. Chem. Phys.,2012,213,2486-2491.
    [42]Tang F., He F., Cheng H. C., Li L. D., Self-assembly of conjugated polymer-Ag@SiO2 hybrid fluorescent nanoparticles for application to cellular imaging, Langmuir,2010,26,11774-11778.
    [43]Thomas S. W., Joly G. D., Swager T. M., Chemical sensors based on amplifying fluorescent conjugated polymers, Chem. Rev.,2007,107,1339-1386.
    [44]Kim H. N., Guo Z. Q., Zhu W. H., Yoon J., Tian H., Recent progress on polymer-based fluorescent and colorimetric chemosensors, Chem. Soc. Rev.,2011, 40,79-93.
    [45]Sun L. L., Hao D., Shen W. L., Qian Z. S., Zhu C. Z., Highly sensitive fluorescent sensor for copper (Ⅱ) based on amplified fluorescence quenching of a water-soluble NIR emitting conjugated polymer, Microchim. Acta,2012,177, 357-364.
    [46]Kwon N. Y, Kim D., Son J. H., Jang G. S., Lee J. H., Lee T. S., Simultaneous detection and removal of mercury ions in aqueous solution with fluorescent conjugated polymer-based sensor ensemble, Macromol. Rapid Commun.,2011, 32,1061-1065.
    [47]Allard E., Larpent C., Core-shell type dually fluorescent polymer nanoparticles for ratiometric pH-sensing, J. Polym. Sci. A:Polym. Chem.,2008,46,6206-6213.
    [48]Rose A., Zhu Z. G, Madigan C. F., Swager T. M., Bulovic V., Sensitivity gains in chemosensing by lasing action in organic polymers, Nature,2005,434,876-879.
    [49]Swager T. M., Yang J.-S., Porous shape persistent fluorescent polymer films:An approach to TNT sensory materials, J. Am. Chem. Soc.,1998,120,5321-5322.
    [50]Toal S. J., Sohn H., Zakarov L. N., Kassel W. S., Golen J. A., Rheingold A. L Trogler W. C., Syntheses of oligometalloles by catalytic dehydrocoupling, Organometallics,2005,24,3081-3087.
    [51]Toal S. J., Trogler W. C., Polymer sensors for nitroaromatic explosives detection, J. Mater. Chem.,2006,16,2871-2883.
    [52]You C. C., Miranda O. R., Gider B., Ghosh P. S., Kim I. B., Erdogan B., Krovi S. A., Bunz U. H. F., Rotello V. M., Detection and identification of proteins using nanoparticle-fluorescent polymer'chemical nose'sensors, Nat. Technol.,2007,2, 318-323.
    [53]He X. L., Tan L. F., Wu X. L., Yan C. M., Chen D., Meng X. M., Tang F. Q., Electrospun quantum dots/polymer composite porous fibers for turn-on fluorescent detection of lactate dehydrogenase, J. Mater. Chem.,2012,22, 18471-18478.
    [54]Kushon S. A., Ley K. D., Bradford K., Jones R. M., McBranch D., Whitten D., Detection of DNA hybridization via fluorescent polymer superquenching, Langmuir,2002,18,7245-7249.
    [55]Kushon S. A., Bradford K., Marin V., Suhrada C., Armitage B. A., McBranch D., Whitten D., Detection of single nucleotide mismatches via fluorescent Polymer superquenching, Langmuir,2003,19,6456-6464.
    [56]Mansur H. S., Mansur A. A. P., Fluorescent nanohybrids:Quantum dots coupled to polymer recombinant protein conjugates for the recognition of biological hazards, J. Mater. Chem.,2012,22,9006-9018.
    [57]Disney M. D., Zheng J., Swager T. M., Seeberger P. H., Detection of bacteria with carbohydrate-functionalized fluorescent polymers, J. Am. Chem. Soc,2004,126, 13343-13346.
    [58]Yanai N., Kitayama K., Hijikata Y, Sato H., Matsuda R., Kubota Y, Takata M., Mizuno M., Uemura T., Kitagawa S., Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer, Nat. Mater.,2011,10,787-793.
    [59]Wu C. F., Bull B., Szymanski C., Christensen K., McNeill J., Multicolor conjugated polymer dots for biological fluorescence imaging, ACS Nano.,2008,2, 2415-2423.
    [60]Tian H., Gan J., Chen K., He J., Song Q. L., Hou X. Y., Positive and negative fluorescent imaging induced by naphthalimide polymers, J. Mater. Chem.,2002, 12,1262-1267.
    [61]Mulder W. J. M., Griffioen A. W., Cormode D. P., Nicolay K., Fayad Z., Magnetic and fluorescent nanoparticles for multimodality imaging, Nanomedicine,2007,2,307-324.
    [62]Kim J., Lee J. E., Lee S. H., Yu J. H., Lee J. H., Park T. G., Hyeon T., Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery, Adv. Mater.,2008, 20,478-483.
    [63]Mahmoud K. A., Mena J. A., Male K. B., Hrapovic S., Kamen A., Luong H. T., Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals, ACSAppl. Mater. Inter.,2010,2,2924-2932.
    [64]Wu Q., Sakabe H., Isobe S., Processing and properties of low cost corn gluten meal/woodfiber composite, Ind. Eng. Chem. Res.,2003,42,6765-6773.
    [65]Schurz J.,'Trends in polymer science':A bright future for cellulose, Prog. Polym. Sci.,1999,24,481-483.
    [66]张俐娜,天然高分子改性材料及应用,北京:化学工业出版社,2006。
    [67]张金明,张军,基于纤维素的先进功能材料,高分子学报,2010,12,1376-1398。
    [68]Agrawal P., Strijkers G. J., Nicolay K., Chitosan-based systems for molecular imaging, Adv. Drug Deliv. Rev.,2010,62,42-58.
    [69]Jung S., Angerer B., Loscher F., Niehren S., Winkle J., Seeger S., Biotin-functionalized cellulose-based monolayers as sensitive interfaces for the detection of single molecules, ChemBioChem,2006,7,900-903.
    [70]Hendrick E., Frey M., Herz E., Wiesner U., Cellulose acetate fibers with fluorescing nanoparticles for anti-counterfeiting and pH-sensing applications, J. Eng. Fibers Fabrics,2010,5,21-30.
    [71]Wang F., Zhang Y, Fan X. P., Wang M. Q., One-pot synthesis of chitosan/LaF3: Eu3+nanocrystals for bio-applications, Nanotechnology,2006,17,1527-1532.
    [72]Pinkert A., Marsh K. N., Pang S., Staiger M. P., Ionic liquids and their interaction with cellulose, Chem. Rev.,2009,109,6712-6728.
    [73]Khalil H. P. S. A., Bhat A. H., Yusra A. F. I., Green composites from sustainable cellulose nanofibrils:A review, Carbohydr. Polym.,2012,87,963-979.
    [74]宋贤良,温其标,郭桦,以纤维素为基础的功能材料,高分子通报,2002,4,47-60。
    [75]Qi H. S., Chang C. Y., Zhang L. N., Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process, Green Chem.,2009,11,177-184.
    [76]Sarrazin P., Valecce L., Beneventi D., Chaussy D., Vurth L., Stephan O., Photoluminescent paper based on poly(fluorene-co-fluorenone) particles adsorption on modified cellulose fibers, Adv. Mater.,2007,19,3291-3294.
    [77]Ruan D., Huang Q. L., Zhang L. N., Structure and properties of CdS/regenerated cellulose nanocomposites, Macromol. Mater. Eng.,2005,290,1017-1024.
    [78]Ke D., Liu S. L., Zhang L. N., CdS/Regenerated cellulose nanocomposite films for highly efficient photocatalytic H2 production under visible light irradiation, J. Phys. Chem. C,2009,113,16021-16026.
    [79]Hwang S.H., Moorefield C. N., Wang P. S., Jeong K. U., Cheng S. Z. D., Kotta K. K., Newkome G. R., Construction of CdS quantum dots via a regioselective dendritic functionalized cellulose template, Chem. Commun.,2006,33, 3495.3497.
    [80]Small, A. C., Johnston J. H., Novel hybrid materials of cellulose fibres and doped ZnS nanocrystals, Curr. Appl. Phys.,2008,8,512-515.
    [81]Abitbol T., Gray D., CdSe/ZnS QDs embedded in cellulose triacetate films with hydrophilic surfaces, Chem. Mater.,2007,19,4270-4276.
    [82]Chang C. Y., Peng J., Zhang L. N., Pang D. W., Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices, J. Mater. Chem.,2009,19, 7771-7776.
    [83]Karakawa M., Chikamatsu M., Yoshida Y., Azumi R., Yase K., Naknmoto C., Organic memory device based on carbazole-substituted cellulose, Macromol. Rapid Commun.,2007,28,1479-1484.
    [84]Karakawa M., Chikamatsu M., Nakamoto C., Maeda Y, Kubota S., Yase K. Organic light-emitting diode application of fluorescent cellulose as a natural polymer, Macromol. Chem. Phys.,2007,208,2000-2006.
    [85]Sakakibar K., Ogawa Y, Nakatsubo F., First cellulose Langmuir-Blodgett films towards photocurrent generation systems, Macromol. Rapid Commun.,2007,28, 1270-1275.
    [86]Krouit M., Granet R., Krausz P., Photobactericidal films from porphyrins grafted to alkylated cellulose-Synthesis and bactericidal properties, Eur. Polym.J.,2009, 45,1250-1259.
    [87]Qu J. Q., Liao W. B., Chen H. Q., Masuda T., Cellulose derivatives carrying triphenylamine (TPA) moieties:Synthesis and electro-optical properties, Macromol. Biosci.,2009,9,563-567.
    [88]Barazzouk S., Daneault C., Spectroscopic characterization of oxidized nanocellulose grafted with fluorescent amino acids, Cellulose,2011,18,643-653.
    [89]Helbert W., Chanzy H., Husum T. L., Schluein M., Ernst S., Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity, Biomacromolecules, 2003,4,481-487.
    [90]Dong S. P., Roman M., Fluorescently Labeled Cellulose Nanocrystals for bioimaging applications, J. Am. Chem. Soc.,2007,129,13810-13811.
    [91]Nielsen L. J., Eyley S., Thielemans W., Aylott J. W., Dual fluorescent labeling of cellulose nanocrystals for pH sensing, Chem. Commun.,2010,46,8929-8931.
    [92]Aider M., Chitosan application for active bio-based films production and potential in the food industry:Review, LWT-Food Sci. Technol.,2010,43, 837-842.
    [93]Dutta P. K., Tripathi S., Mehrotra G. K., Dutta J., Perspectives for chitosan based antimicrobial films in food applications, Food Chem.,2009,114,1173-1182.
    [94]Martins A. M., Alves C. M., Kasper F. K., Mikos A. G., Reis R. L., Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: An overview of the last decade, J. Mater. Chem.,2010,20,1638-1645.
    [95]Chung T. W., Yang J., Akaike T., Cho K. Y., Nah J. W., Kim S. I., Cho C. S., Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment, Biomaterials,2002,23,2827-2834.
    [96]T(?)mmeraas K., Strand S. P., Tian W., Kenne L., Varum K. M., Preparation and characterisation of fluorescent chitosans using 9-anthraldehyde as fluorophore, Carbohydr. Res.,2001,336,291-296.
    [97]Xie M., Liu H. H., Zhang Z. L., Wang X. H., Xie Z. X., Du Y. M., Pan B. Q., Pang D. W., CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging, Chem. Commun.,2005,0,5518-5520.
    [98]赵佳胤,邬建敏,壳聚糖纳米粒子荧光探针的制备和表征,分析化学2011,34,1555-1559。
    [99]Tikhonov V. E., Lopez-Llorca L. V., Salinas J., Monfort E., Endochitinase activity determination using N-fluorescein-labeled chitin, J. Biochem. Biophys. Methods, 2004,60,29-38.
    [100]Ge Y. Q., Zhang Y., He S. Y, Nie Y, Teng G J., Gu N., Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging, Nanoscale Res. Lett.,2009,4,287-295.
    [101]Michalet X., Pinaud F. F., Bentolila L. A., Tsay J. M., Doose S., Li J. J., Sundaresan G, Wu A. M., Gamnhir S. S., Weiss S., Quantum dots for live cells, in vivo imaging, and diagnostics, Science,2005,307,538-544.
    [102]Chan W. C. W., Maxwell D. J., Gao X. H., Bailey R. E., Han M., Nie S., Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol.,2002,13,40-46.
    [103]Li Y Q., Rizzo A., Mazzeo M., Carbone L., Manna L., Cingolani R., Gigli G, White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,J.Appl. Phys.,2005,97,1135011-4.
    [104]Xia H. Y, He G, Peng J. X., Li W., Fang Y., Preparation and fluorescent sensing applications of novel CdSe-chitosan hybrid films, Appl. Surf. Sci.,2010,256, 7270-7275.
    [105]Nie Q. L., Yan W. B., Zhang Y, Synthesis and characterization of monodisperse chitosan nanoparticles with embedded quantum dots, Nanotechnology,2006,17, 140-144.
    [106]Tan W. B., Huang N., Zhang Y, Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications, J. Colloid Interface Sci.,2007,310,464-470.
    [107]Tan W. B., Zhang Y, Multifunctional quantum-dot-based magnetic chitosan nanobeads, Adv. Mater.,2005,17,2375-2380.
    [108]Li L. L., Chen D., Zhang Y Q., Deng Z. T., Ren X. L., Meng X. W., Tang F. Q., Ren J., Zhang L., Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system, Nanotechnology,2007,18, 405102.
    [109]辛梅华,高伟,李明春,李莉,邱枫,新型壳聚糖荧光衍生物的制备、表征及性能初探,化工进展,2011,30,1290-1295。
    [110]Wu S. Z., Zeng F., Zhu H. P., Tong Z., Energy and electron transfers in photosensitive chitosan, J. Am. Chem. Soc.,2005,127,2048-2049.
    [111]He G., Peng H. N., Liu T. H., Yang M. N., Zhang Y, Fang Y., A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles, J. Mater. Chem.,2009,19, 7347-7353.
    [112]Lee J. I., Ha K.-S., Yoo H. S., Quantum-dot-assisted fluorescence resonance energy transfer approach for intracellular trafficking of chitosan/DNA complex, Acta Biomaterialia,2008,4,791-798.
    [113]Yang Q., Shuai L., Pan X., Synthesis of fluorescent chitosan and its application in noncovalent functionalization of carbon nanotubes, Biomacromolecules,2008, 9,4322-4326.
    [114]Wu L.-Q., Lee K., Wang X., English D. S., Losert W., Payne G. F., Chitosan-mediated and spatially selective electrodeposition of nanoscale particles, Langmuir,2005,21,3641-3646.
    [115]Morris E. R., Rees D. A., Thom D., Boyd J., Chiroptical and stoichiometric evidence of a specific, primary dimerization process in alginate gelation, Carbohydr. Res.,1978,66,145-154.
    [116]Gombotz W. R., Wee S. F., Protein release from alginate matrices, Adv. Drug Deliv. Rev.,1998,31,267-285.
    [117]Rowley J. A., Madlambayan G., Mooney D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials,1999,20,45-53.
    [118]Bonaventure J., Kadhom N., Cohen-Solal L., Ng K. H., Bourguignon J., Freisinger P., Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads, Exp. Cell Res.,1994,212, 97-104.
    [119]Choi Y. S., Hong S. R., Lee Y. M., Song K. W., Park M. H., Nam Y. S., Study on gelatin-containing artificial skin:I. Preparation and characteristics of novel gelatin-alginate sponge, Biomaterials,1999,20,409-417.
    [120]Kuo C. K., Ma P. X., Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering:Part 1. Structure, gelation rate and mechanical properties, Biomaterials,2001,22,511-521.
    [121]Prouse R. E., West A. A., King D. A., Poulson R., Method of making paper from water insoluble alginate fibers and the paper produced, US Patent 4104115,1987.
    [122]Al-Omari W. M., Jones J. C., Wood D. J., The effect of disinfecting alginate and addition cured silicone rubber impression materials on the physical properties of impressions and resultant casts, Eur. J. Prosthodont. Restor. Dent.,1998,6, 103-110.
    [123]Fei X. N., Gu Y. C., Progress in modifications and applications of fluorescent dye probe, Prog. Nat. Sci.,2009,19,1-7.
    [124]Liu F. Y., Carlos L. D., Ferreira R. A. S., Rocha J., Gaudino M. C, Robitzer M., Quignard F., Photoluminescent porous alginate hybrid materials containing lanthanide ions, Biomacromolecules,2008,9,1945-1950.
    [125]Liu J. W., Zhang Y, Yan C. Z., Wang C. Y., Xu. R. Z., Gu N., Synthesis of magnetic/luminescent alginate-templated composite microparticles with temperature-dependent photoluminescence under high-frequency magnetic field, Langmuir,2010,26,19066-19072.
    [126]Russell R., Pishko M., Gefrides C., Cote G., A fluorescent glucose assay using poly-L-lysine and calcium alginate microencapsulated tritc-succinyl-concanavalin A and FITC-dextran, The 20th Annual International Conference of the IEEE-Engineering in Medicine and Biology Society,1998,20,2858-2861.
    [127]Chaudhary A., Raina M., Harma H., Hanninen P., McShane M. J., Srivastava R., Evaluation of glucose sensitive affinity binding assay entrapped in fluorescent dissolved-core alginate microspheres, Biotechnol. Bioeng,2009,104,1075-1085.
    [128]Sakakibara A., A structural model of softwood lignin, Wood Sci. Technol.,1980, 14,89-100.
    [129]Castellan A., Davidson R. S., Steady-state and dynamic fluorescence emission from Abies wood, J. Photochem. Photobiol. A:Chem.,1994,78,275-279.
    [130]Albinsson B., Li S. M., Lundquist K., Stomberg R., The origin of lignin fluorescence,J. Mol. Struct.,1999,508,19-27.
    [131]Machado A. E. H., Nicodem D. E., Ruggiero R., Perez D. da S., Castlellan A. The use of fluorescent probes in the characterization of lignin:The distribution, by energy, of fluorophores in Eucalyptus grandis lignin, J. Photochem. Photobiol. A:Chem.,2001,138,253-259.
    [132]Li K. C., Reeve D. W., Fluorescent labeling of lignin in the wood pulp fiber wall, J. Wood Chem. Technol.,2004,24,169-181.
    [133]李洋,宁志刚,谭颖,孙淑苗,王丕新,淀粉基荧光微球的制备及其布洛芬包载和释放性能,应用化学,2011,28,1114-1121。
    [134]Mani R., Tang J., Bhattacharya M., Synthesis and characterization of starch-graft-polycaprolactone as compatibilizer for starch/polycarprolactone blends, Macromol. Rapid Commun.,1998,19,283-286.
    [135]Li Y., Vries R., Kleijin M., Slaghek T., Timmermans J., Stuart M. C., Norde W., Lysozyme uptake by oxidized starch polymer microgels, Biomacromolecules, 2010,11,1754-1762.
    [136]Wang Y. X., Zhang L. N., High-strength waterborne polyurethane reinforced with waxy maize starch nanocrystals, J. Nanosci. Nanotechnol.,2008,8, 5831-5838.
    [137]Li Y., Tan Y, Ning Z. G, Sun S. M., Gao Y, Wang P. X., Design and fabrication of fluorescein-labeled starch-based nanospheres, Carbohydr. Polym.,2011,86, 291-295.
    [138]Guan X. L., Su Z. X., Synthesis and characterization of fluorescent starch using fluorescein as fluorophore:Potential polymeric temperature/pH indicators, Polym. Adv. Technol.,2008,19,385-392.
    [139]Mehltretter C. L., Fluorescent compounds and azo dyes from starch anthranilates, Ind. Eng. Chem. Prod. Res. Dev.,1969,8,77-79.
    [140]Alissandratos A., Baudendistel N., Hauer B., Baldenius K., Flitsch S., Halling P., Biocompatible functionalisation of starch, Chem. Commun.,2011,47,683-685.
    [141]Garrett R. H., Grisham C. M., Biochemistry. Third edition. Saunders College Publishing,2005.
    [142]Pauling L., Corey R. B., The pleated sheet, a new layer configuration of polypeptide chains, Proc. Nat. Acad. Sci. USA,1951,37,251-256.
    [143]Perutz M. F., New X-ray evidence on the configuration of polypeptide chains: Polypeptide chains in poly-y-benzyl-L-glutamate, keratin and haemoglobin, Nature,1951,167,1053-1054.
    [144]Kendrew J. C., Structure and function in myoglobin and other proteins, Fed. Proc,1959,18,740-751.
    [145]Shimomura O., Johnson F. H., Saiga Y., Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, aequorea, J. Cell. Comp. Physiol.,1962,59,223-239.
    [146]Morise H., Shimomura O., Johnson F. H., Winant J., Intermolecular energy transfer in the bioluminescent system of Aequorea, Biochemistry,1974,13, 2656-2662.
    [147]Chalfie M., Tu Y, Euskirchen G, Ward W. W., Prasher D. C., Green fluorescent protein as a marker for gene expression, Science,1994,263,802-805.
    [148]Chalfie M., Green fluorescent protein, Photochem. Photobio.,1995,62, 651-656.
    [149]Miyawaki A., Llopis J. Heim R., McCaffery J. M., Adams J. A., Ikura M, Tsien R. Y., Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature,1997,388,882-887.
    [150]Shaner N. C., Campbell R. E., Steinbach P. A., Giepmans B. N. G, Palmer A. E., Tsien R. Y., Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp.red fluorescent protein, Nat. Biotechnol.,2004,22, 1567-1572.
    [151]Heim R., Cubitt A. B., Tsien R. Y., Improved green fluorescence, Nature,1995, 373,663-664.
    [152]Kauffman G. B., Adloff J. P., The 2008 Nobel Prize in chemistry:Osamu Shimomura, Martin Chalfie, and Roger Y. Tsien:The green fluorescent protein, Chem. Educator,2009,14,70-78.
    [153]Romay C., Armesto J., Remirez D., Gonzalez R.,, Ledon N., Garcia I., Antioxidant and anti-inflammatory properties of C-phycocyaninfrom blue-green algae, Inflamm. Res.,1998,47,36-41.
    [154]White J.C., Stryer L., Photostability studies of phycobiliprotein fluorescent labels, Anal. Biochem.,1987,161,442-452.
    [155]Zhang J., Campbell R. E., Ting A. Y., Tsien R. Y, Creating new fluorescent probes for cell biology, Nat. Rev. Mol. Cell Bio.,2002,3,906-918.
    [156]Guo C. L., Irudayaraj J., Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor, Anal. Chem.,2011,83,2883-2889.
    [157]Lin Y. H., Tseng W. L., Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type Ⅵ-stabilized gold nanoclusters, Anal. Chem.,2010,82,9194-9200.
    [158]Durgadas C. V., Sreenivasan K., Fluorescent gold clusters as nanosensors for copper ions in live cells, Analyst,2011,136,933-940.
    [159]Retnakumari A., Setua S., Menon D.,Ravindran P., Muhammed H., Pradeep T. Nair S., Koyakutty M., Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging, Nanotechnology,2010,21,0551031-12.
    [160]Xavier P. L., Chaudhari K., Verma P. K., Pal S. M., Pradeep T., Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET, Nanoscale,2010,2,2769-2776.
    [161]Relf O.-W., Lausch R., Scheper T., Freltag R., Fluorescein isothiocyanate-labeled protein G as an affinity ligand in affinity/immunocapillary electrophoresis with fluorescence detection, Anal. Chem.,1994,66,4027-4033.
    [162]EvangelistaR. A., Pollak A., Allore B., Templeton A. F., Morton R. C., DiamandisE. P., A new europium chelate for protein labeling and time-resolved fluorometric applications, Clin. Biochem.,1988,21,173-178.
    [163]Lin L. H., Chen K. M., Preparation and surface activity of modified soy protein, J. Appl. Polym. Sci.,2006,102,3498-3503.
    [164]陈怡,天然多糖的研究概况,世界科学技术:中药现代化,2000,2,52-55。
    [165]Stone B. A., Clarke A. E., Chemistry and biology of β-(1→3)-glucan. Australia: La Trobe University Press,1993,4.
    [166]省建辉,蒋侬辉,梁宗琦,食药用真菌多糖研究进展,生命化学,2002,15,107-113。
    [167]Whister R. L., Bushway A. A., Singh P. P., Nakamura W., Tokuzen R., Noncytotoxic, antitumor polysaccharides, Adv. Carbohydr. Chem. Biochem.,1976, 32,235-275.
    [168]Ma Y., Mizuno T. Ito H., Antitumor activity of some polysaccharides isolated from a Chinese mushroom, "huangmo", the fruiting body of Hohenbuehelia serotina, Agric. Biol. Chem.,1991,55,2701-2710.
    [169]Wanger H., Jurcic K., Assays for immunomodulation and effects on mediators of inflammation, Methods Plant. Biochem.,1991,6,195-217.
    [170]Madea H., Ishida N., Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener, J. Boichem.,1967,62,276-278.
    [171]Glabe C. G, Harty P. K., Rosen S. D., Preparation and properties of fluorescent polysaccharides, Anal. Biochem.,1983,287-294.
    [172]Kobayashi M., Urayama T., Ichishima E., Fluorescent derivatives of polysaccharide dialdehyde as substrates for glucanases (Biological Chemistry), Agric. Bio. Chem.,1990,54,1711-1718.
    [173]Meunier F., Wilkinson K. J., Nonperturbing fluorescent labeling of polysaccharides, Biomacromolecules,2002,3,857-864.
    [174]苏玲,胡静,李雨婷,金周雨,杨扬,杨颜铭,宋慧,树舌荧光多糖的制备及在小鼠脾淋巴细胞中的定位,中国农业大学学报,2013,18,147-152。
    [175]苏玲,李雨婷,王再林,宋慧,杜金,吴宗翰,张中北,树舌荧光多糖的制备及其在人大肠癌细胞SWWC1116的定位,吉林大学学报,2013,51, 140-144。
    [176]尹鸿萍,王旻,唐惠玲,王莹,凌云,一种具有荧光性质的虫草多糖及其制备方法,CN101503478,2009。
    [177]Liu J., Jo J.-I., Kawai Y., Aoki I., Tanaka C., Yamamoto M., Tabata Y., Preparation of polymer-based multimodal imaging agent to visualize the process of bone regeneration, J. Control. Release,2012,157,398-405.
    [178]Fukuhara G., Imai M., Yang C., Mori T., Inoeu Y, Enantiodifferentiating photoisomerization of (Z,Z)-1,3-cyclooctadiene included and sensitized by naphthoyl-curdlan, Org. Lett.,2011,13,1856-1859.
    [179]Wood P. J., Specific interaction of aniline blue with (1→3)-β-D-glucan, Carbohydr. Polym.,1984,4,49-72.
    [180]Hasegawa T., Umeda M., Numata M., Li C., Bae A. H., Fujisawa T., Haraguchi S., Sakurai K., Shinkai S.,'Click chemistry' on polysaccharides:A convenient, general, and monitorable approach to develop (1→3)-β-D-glucans with various functional appendages, Carbohydr. Res.,2006,341,35-40.
    [181]Schulz A., Hornig S., Liebert T., Birckner E., Heinze T., Mohr G. J., Evaluation of fluorescent polysaccharide nanoparticles for pH-sensing, Org. Biomol. Chem., 2009,7,1884-1889.
    [182]Qiu G. M., Xu Y. Y., Zhu B. K., Qiu G. L., Novel, fluorescent, magnetic, polysaccharide-based microsphere for orientation, tracing, and anticoagulation: Preparation and characterization, Biomacromolecules,2005,6,1041-1047.
    [183]Horning S., Schultz A., Mohr G. J., Heinze T., Fluorescent polysaccharide nanoparticles for pH-sensing, J. Photopolym. Sci. Technol.,2009,22,671-673.
    [184]Horning S., Biskup C., Grafe A., Wotschadlo J., Liebert T., Mohr G. J., Heinze T., Biocompatible fluorescent nanoparticles for pH-sensoring, Soft Matter,2008, 4,1169-1172.
    [1]Nielsen L. J., Eyley S., Thielemans W., Aylott J. W., Dual fluorescent labeling of cellulose nanocrystals for pH sensing, Chem. Commun.,2010,46,8929-8931.
    [2]Bosch P., Catalina F., Corrales T., Peinado C., Fluorescent probes for sensing processes in polymers, Chem. Eur. J.,2005,11,4314-4325.
    [3]Basabe-Desmonts L., Reinhoudt D. N., Crego-Calama M., Design of fluorescent materials for chemical sensing, Chem. Soc. Rev.,2007,36,993-1017.
    [4]Mori H., Tando I., Tanaka H., Synthesis and optoelectronic properties of alternating copolymers containing anthracene unit in the main chain by radical ring-opening polymerization, Macromolecules,2010,43,7011-7020.
    [5]Lai M. H., Tsai J. H., Chueh C. C., Wang C. F., Chen W. C, Syntheses of new 3,6-carbazole-based donor/acceptor conjugated copolymers for optoelectronic device applications, Macromol. Chem. Phys.,2010,211,2017-2025.
    [6]Dong S., Roman M., Fluorescently labeled cellulose nanocrystals for bioimaging applications,J. Am. Chem. Soc.,2007,129,13810-13811.
    [7]Jung S., Angerer B., Loscher F., Niehren S., Winkle J., Seeger S., Biotin-functionalized cellulose-based monolayers as sensitive interfaces for the detection of single molecules, ChemBioChem,2006,7,900-903.
    [8]Qu J. Q., Liu L. J., Chen H. Q., Ogata N., Masuda T., Synthesis and electro-optical properties of a novel NDA-lipid complex carrying carbazole moieties, Macromol. Chem. Phys.,2010,211,345-352.
    [9]Yang Q., Shuai L., Pan X., Synthesis of fluorescent chitosan and its application in noncovalent functionalization of carbon nanotubes, Biomacromolecules,2008,9, 3422-3426.
    [10]Helbert W., Chanzy H., Husum T. L., Schulein M., Ernst S., Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity, Biomacromolecules,2003,4,481-487.
    [11]Mahmoud K. A., Mena J. A., Male K. B., Hrapovic S., Kamen A., Luong J. H. T. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals, ACS Appl. Mater. Intefaces,2010,2,2924-2932.
    [12]Ferreira L. F. V., Cabral P. V., Almeida P., Oliveira A. S., Reis M. J., Botelho do Rego A. M., Ultraviolet/visible absorption, luminescence, and X-ray photoelectron spectroscopic studies of a rhodamine dye covalently bound to microcrystalline cellulose, Macromolecules,1998,31,3936-3944.
    [13]Sameiro M., Goncalves T., Fluorescent labeling of biomolecules with organic probes, Chem. Rev.,2009,109,190-212.
    [14]Medintz I. L., Uyeda H. T., Goldman E. R., Mattoussi H., Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater.,2005,4,435-446.
    [15]Roh Y., Bauld N. L., Block and random living, ring-opening metathesis copolymerization of functionally differentiated carbazole-containing norbornene monomers, Adv. Synth. Catal,2002,344,192-199.
    [16]Qu J., Shiotsuki M., Sanda F., Masuda T., Synthesis and electro-optical properties of helical polyacetylenes carrying carbazole and triphenylamine moieties, Polymer,2007,48,4628-4636.
    [17]Vetrichelvan M., Nagarajan R., Valiyaveettil S., Carbazole-containing conjugated copolymers as colorimetric/fluorimetric sensor for iodide anion, Macromolecules, 2006,39,8303-8310.
    [18]Mao L. J., Ritcey A. M. Langmuir-Blodgett films of cellulose ethers containing carbazole, Macromol. Chem. Phys.,2000,201,1718-1725.
    [19]Karakawa M., Chikamatsu M., Nakamoto C., Maeda Y., Kubota S., Yase K., Organic light-emitting diode application of fluorescent cellulose as a natural polymer, Macromol. Chem. Phys.,2007,208,2000-2006.
    [20]Zhou J. P., Qin Y., Liu S. L., Zhang L. N., Homogeneous synthesis of hydroxyethylcellulose in NaOH/urea aqueous solution, Macromol. Biosci.,2006, 6,84-89.
    [21]Mao L. J., Ritcey A. M., Preparation of cellulose derivatives containing carbazole chromophore, J. Appl. Polym. Sci.,1999,74,2764-2772.
    [22]Tezuka Y., Imai K., Oshima M., Chiba T., Determination of substituent distribution in cellulose ethers by 13C and 1H NMR studies of their acetylated derivatives:O-(2-hydroxypropyl)cellulose, Carbohydr. Res.,1990,196,1-10.
    [23]Kondo T., Gray D. G., Facile method for the preparation of tri-O-(alkyl)cellulose, J. Appl. Polym. Sci.,1992,45,417-423.
    [24]Breitmaier E., Haas G., Voelter W., Eds. Atlas of Carbon-13 NMR Data; Heyden: Philadelphia,1979; Vol.1.
    [25]Rutter W. J., The interaction of riboflavin, FMN and FAD with various metal ions: The riboflavin catalyzed photochemical reduction of FeⅢ and photooxidation of Fell, Acta Chem. Scand.,1958,12,438-446.
    [26]Hariharan C., Vijaysree V., Mishra A. K., Quenching of 2,5-diphenyloxazole (PPO) fluorescence by metal ions, J. Lumin.,1997,75,205-211.
    [27]Bregadze V., Khutsishvili I., Chkhaberidze J., Sologhashvili K. E., DNA as a mediator for proton, electron and energy transfer induced by metal ions, Inorg. Chim. Acta.,2002,339,145-159.
    [28]Kim J., McQuade D. T., Rose A., Zhu Z., Swager T. M., Directing energy transfer within conjugated polymer thin films, J. Am. Chem. Soc.,2001,123, 11488-11489.
    [29]Lower S. K., El-Sayed M. A., The triplet state and molecular electronic processes in organic molecules, Chem. Rev.,1966,66,199-241.
    [30]Lakowicz J. R., Principles of Fluorescence Spectroscopy,2nd ed.; Plenum Press: New York,1999.
    [31]Murphy C. B., Zhang Y., Troxler T., Ferry V., Martin J. J., Jr. Jones W. E., Probing foster and dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors, J. Phys. Chem. B,2004,108,1537-1543.
    [1]Li M. H., Keller P., Stimuli-responsive polymer vesicles, Soft Matter,2009,5, 927-937.
    [2]Atuart M. A. C., Huck W. T. S., Genzer J., Muller M., Ober C., Stamm M., Sukhorukov G. B., Szleifer I., Tsukruk V. V., Urban M., Winnik F., Zauscher S., Luzinov I., Minko S., Emerging applications of stimuli-responsive polymer materials, Nat. Mater.,2010,9,101-113.
    [3]Liu F., Urban M. W., Recent advances and challenges in designing stimuli-responsive polymers, Prog. Polym. Sci.,2010,35,3-23.
    [4]Ninawe P. R., Parulekar S. J., Drug delivery using stimuli-responsive polymer gel spheres, Ind. Eng. Chem. Res.,2012,51,1741-1755.
    [5]Lavric K. P., Warmoeskerken M. M. C. G., Jocic D., Functionalization of cotton with poly-NiPAAm/chitosan microgel:Part I. Stimuli-responsive moisture management properties, Cellulose,2012,19,257-271.
    [6]Tang L., Jin J., Qin A., Yuan W., Mao Y, Mei J., Sun J., Tang B., A fluorescent thermometer operating in aggregation-induced emission mechanism:probing thermal transitions of PNIPAM in water, Chem. Commun.,2009,4974-4976.
    [7]Lin S., Fuchise K., Chen Y., Sakai R., Satoh T., Kakuchi T., Chen W., Synthesis, thermomorphic characteristics, and fluorescent properties of poly[2,7-(9,9-dihexylfluorene)]-block-poly(N-isopropylacrylamide)-blockpoly(N -hydroxyethylacrylamide) rod-coil-coil triblock copolymers, Soft Matter,2009,5, 3761-3770.
    [8]Shiraishi Y., Miyamoto R., Hirai T., Temperature-driven on/off fluorescent indicator of pH window:An anthracene-conjugated thermoresponsive polymer, Tetrahedron Lett.,2007,48,6660-6664.
    [9]Abu-Lail N. I., Kaholek M., LaMattina B., Clark R. L., Zauscher S., Micro-cantilevers with end-grafted stimulus-responsive polymer brushes for actuation and sensing, Sensor. Actuat. B-Chem.,2006,114,371-378.
    [10]Hirrien M., Desbrieres J., Rinaudo M., Physical properties of methylcelluloses in relation with the conditions for cellulose modification, Carbohyd. Polym.,1996, 31,243-252.
    [11]Kobayashi K., Huang C., Lodge T. P., Thermoreversible gelation of aqueous methylcellulose solutions, Macromolecules,1999,32,7070-7077.
    [12]Li L., Thangamathesvaran P. M., Yue C. Y., Tam K. C., Hu X., Lam Y. C., Gel network structure of methylcellulose in water, Langmuir,2001,17,8062-8068.
    [13]Hirrien M., Hevillard C., Desbrieres J., Rinaudo M. A. V., Axelos M., Thermogelation of methylcelluloses:New evidence for understanding the gelation mechanism, Polymer,1998,39,6251-6259.
    [14]Li L., Liu E., Lim C. H., Micro-DSC and rheological studies of interactions between methylcellulose and surfactants, J. Phys. Chem. B,2007,111, 6410-6416.
    [15]Sekiguchi Y, Sawatari C., Kondo T., A gelation mechanism depending on hydrogen bond formation in regio selectively substitute O-methylcelluloses, Carbohydr. Polym.,2003,53,145-153.
    [16]Yang K., Liang H., Lu J., Multifunctional star polymer with reactive and thermosensitive arms and fluorescently labeled core:Synthesis and its protein conjugate.J. Mater. Chem.,2011,21,10390-10398.
    [17]Gota C., Uchiyama S., Ohwada T., Accurate fluorescent polymeric thermometers containing an ionic component, Analyst,2007,132,121-126.
    [18]Lai C., Chien R., Kuo S., Hong J., Tetraphenylthiophene-Functionalized Poly(N-isopropylacrylamide):Probing LCST with Aggregation-Induced Emission, Macromolecules,2011,44,6546-6556.
    [19]Balasubramaniam S., Pothayee N., Lin Y., House M., Woodward R. C., St. Pierre T. G., Davis R. M., Riffle J. S., Poly(N-isopropylacrylamide)-coated superparamagnetic iron oxide nanoparticles:Relaxometric and fluorescence behavior correlate to temperature-dependent aggregation, Chem. Mater.,2011,23, 3348-3356.
    [20]Dongers R., Non-ionic cellulose ethers, Brit. Polym. J.,1990,23,315-326.
    [21]Yin Y., Nishinari K., Zhang H., Funami T., A novel liquid-crystalline phase in dilute aqueous solution of methylcellulose, Macromol. Rapid Comm.,2006,27, 971-975.
    [22]Zhou J., Xu Y., Wang X., Qin Y, Zhang L., Microstructure and aggregation behavior of methylcelluloses prepared in NaOH/urea aqueous solutions, Carbohydr. Polym.,2008,74,901-906.
    [23]Kamitakahara H., Yoshinaga A., Aono H., Nakatsubo F., New approach to unravel the structure-property relationship of methylcellulose, Cellulose,2008,15, 797-801
    [24]Bosco S. J., Zettl H., Crassous J. J., Ballauff M., Krausch G, Interactions between methyl cellulose and sodium dodecyl sulfate in aqueous solution studied by single molecule fluorescence, correlation spectroscopy, Macromolecules,2006,39, 8793-8798.
    [25]Sakakibara K., Takano T., Nakatsubo F., Synthesis of methylcellulose model copolymers with heterogeneous distribution and their solution properties, Cellulose,2011,18,105-115.
    [26]Tezuka Y., Imai K., Oshima M., Chiba T., Determination of substituent distribution in cellulose ethers by means of a 13C NMR study on their acetylated derivatives 1. Methylcellulose, Macromolecules,1987,20,2413-2418.
    [27]McGrath J. E., Rasmussen L., Shultz A. R., Shobha H. K., Sankarapandian M., Glass T., Long T. E., Pasquale A. J., Novel carbazole phenoxy-based methacrylates to produce high refractive index polymers, Polymer,2006,47, 4042-4057.
    [28]Ke H., Zhou J. P., Zhang L. N., Structure and physical properties of methylcellulose synthesized in NaOH/urea solution, Polym. Bull.,2006,56, 349-357.
    [29]Mao L. J., Ritcey A. M., Preparation of cellulose derivatives containing carbazole chromophore, J. Appl. Polym. Set,1999,74,2764-2772.
    [30]Breitmaier E., Haas G., Voelter W., Eds. Atlas of Carbon-13 NMR Data; Heyden: Philadelphia,1979; Vol.1.
    [31]Qu J. Q., Liu L. J., Chen H. Q., Ogata N., Masuda T., Synthesis and electro-optical properties of a novel DNA-lipid complex carrying carbazole moieties, Macromol. Chem. Phys.,2011,345-352.
    [32]Haque A., Morris E. R., Thermogelation of methylcellulose, Part I:Molecular structures and processes, Carbohydr. Polym.,1993,22,161-173.
    [33]Lakowicz J. R., Principles of fluorescence spectroscopy,2nd ed. Plenum Press, New York,1999.
    [34]Rosenberg H. M., Eimutis E., Solvent shifts in electronic spectra, I:Stokes shift in a series of homologous aromatic amines, Spectrochim Acta,1966,22, 1751-1757.
    [1]Wolff N. E., Pressley R. J., Maser optical action in an Eu3+ -containing organic matrix, Appl. Phys. Lett.,1963,2,152-154.
    [2]Hargreaves J. S., Webber S. E., Water-soluble photon-harvesting polymers: Intracoil energy transfer in anthryl-and fluorescein-tagged poly(vinylpyrrolidinone), Macromolecules,1985,18,734-740.
    [3]Zondervan R., Kulzer F., Orlinskii S. B., Orrit M., Photoblinking of rhodamine 6G in poly(vinyl alcohol):Radical dark state formed through the triplet, J. Phys. Chem. A,2003,107,6770-6776.
    [4]Sukumaran V. S., Ramalingam A., Spectral characteristics and nonlinear studies of acridine orange dye, Phys. Lett. A,2005,341,454-458.
    [5]Tang F., He F., Cheng H. C., Li L. D., Self-sssembly of conjugated polymer-Ag@SiCO2 hybrid fluorescent nanoparticles for application to cellular imaging, Langmuir,2010,26,11774-11778.
    [6]Lee S. A., Yamashita T., Horie K., Photoconductivity of a polyimide with an alicyclic diamine:Chargee carrier photogeneration in the mixed layer packing arrangement,J. Polym. Sci. B:Polym. Phys.,1998,36,1433-1442.
    [7]Kraft A., Grimsdale A. C., Holmes A. B., Electroluminescent conjugated polymers-sensing polymers in a new light, Angew. Chem. Int. Ed.,1998,37, 402-428.
    [8]Toal S. J., Trogler W. C., Polymer sensors for nitroaromatic explosives detection, J. Mater. Chem.,2006,16,2871-2883.
    [9]Mahmoud K. A., Mena J. A., Male K. B., Hrapovic S., Kamen A., Luong H. T., Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals, ACS Appl. Mater. Inter.,2010,2,2924-2932.
    [10]Li L. L., Chen D., Zhang Y. Q., Deng Z. T., Ren X. L., Meng X. W., Tang F. Q., Ren J., Zhang L., Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system, Nanotechnology,2007,18, 405102.
    [11]Chaudhary A., Raina M., Harma H., Hanninen P., McShane M. J., Srivastava R., Evaluation of glucose sensitive affinity binding assay entrapped in fluorescent dissolved-core alginate microspheres, Biotechnol. Bioeng.,2009,104,1075-1085.
    [12]Klemm D., Hubletin B., Fink H. P., Bohn A., Cellulose:Fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed.,2005,44,3358-3393.
    [13]Schura J.,'Trends in Polymer Science':A bright future for cellulose, Prog. Polym. Sci.,1999,24,481-483.
    [14]Qi H. S., Chang C. Y., Zhang L. N., Properties and applications of biodegradable transparent and pgotoluminescent cellulose films prepared via a green process, Green Chem.,2009,11,177-184.
    [15]Chang C. Y., Peng J., Zhang L. N., Pang D. W., Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices, J. Mater. Chem.,2009,19, 7771-7776.
    [16]Barazzouk S., Daneault C., Spectroscopic characterization of oxidized nanocellulose grafted with fluorescent amino acids, Cellulose,2011,18,643-653.
    [17]Jung S., Angerer B., Loscher F., Niehren S., Winkle J., Seeger S., Biotin-functionalized cellulose-based monolayers as sensitive interfaces for the detection of single molecules, ChemBioChem,2006,7,900-903.
    [18]Fehr M., Frommer W. B., Lalonde S., Visualization of maltose uptake in living yeast cells by fluorescent nanosensors, Proc. Natl. Acad. Sci. USA,2002,99, 9846-9851.
    [19]He H., Mortellaro M. A., Leiner M. J. P., Fraatz R. J., Yusa J. K., A fluorescent sensor with high selectivity and sensitivity for potassium in water, J. Am. Chem. Soc.,2003,125,1468-1469.
    [20]Stojanovic M. N., Prada P., Landry D. W., Fluorescent sensors based on aptamer self-assembly,J. Am. Chem. Soc.,2000,122,11547-11548.
    [21]李洋,宁志刚,谭颖,孙淑苗,王丕新,淀粉基荧光微球的制备及其布洛芬包载和释药性能,应用化学,2011,28,1114-1121。
    [22]Li Y, Tan Y, Ning Z. G., Sun S. M., Gao Y, Wang P. X., Design and fabrication of fluorescein-labeled starch-based nanospheres, Carbohydr. Polym.,2011,86, 291-295.
    [23]Guan X. L., Liu X. Y., Su Z. X., Preparation and photophysical behaviors of fluorescent chitosan bearing fluorescein:Potential biomaterial as temperature/pH probes, J. Appl. Polym. Sci.,2007,104,3960-3966.
    [24]Zhou J., Qin Y., Liu S., Zhang L., Homogeneous synthesis of hydroxyethylcellulose in NaOH/urea aqueous solution, Macromol. Biosci.,2006, 6,84-89.
    [25]Nayebzadeh K., Chen J. S., Dickinson E., Moschakis T., Surface structure smoothing effect of polysaccharide on a heat-set protein particle gel, Langmuir, 2006,22,8873-8880.
    [26]Kontoyianni C., Sideratou Z., Theodossiou T., Tziveleka L.-A., Tsiourvas D., Paleos C. M., A novel micellar PEGylated hyperbranched polyester as a prospective drug delivery system for paclitaxel, Macromol. Biosci.,2008,8, 871-881.
    [27]Tezuka Y., Imai K., Oshima M., Chiba T., Determination of substituent distribution in cellulose ethers by 13C and 1H NMR studies of their acetylated derivatives:O-(2-hydroxypropyl)cellulose, Carbohydr. Res.,1990,196,1-10.
    [28]Sjoback R., Nygren J., Kubista M., Absorption and fluorescence properties of fluorescein, Spectrochim. Acta A,1995,51, L7-L21.
    [29]Nielsen L. J., Eyley S., Thielemans W., Aylott J. W., Dual fluorescent labeling of cellulose nanocrystals for pH sensing, Chem. Commun.,2010,46,8929-8931.
    [30]Martins-Franchetti, S. M., Altvars, T. D. Z., Study of low density polyethylene-poly(vinyl chloride) blend secondary relaxations by photoluminescence, Polym. J.,1995,31,467-474.
    [31]Guan X. L., Lai S. J., Su Z. X., Facile preparation and potential application of water-soluble polymeric temperature/pH probes bearing fluorescein, J. Appl. Polym. Sci.,2011,122,1968-1975.
    [32]Martins-Franchetti S. M., Altvars T. D. Z., Study of low density polyethylene-poly(vinyl chloride) blend secondary relaxations by photoluminescence, Eur. Polym. J.,1995,31,467-474.
    [33]Dibbern-Brunclli D., de Oliverira M. G., Atvars T. D. Z., Temperature dependence of the photobleaching process of fluorescein in poly(vinyl alcohol), J. Photochem. Photobiol. A,1995,85,285-289.
    [34]Monique M. M., Intermolecular hydrogen bonding and temperature effects on internal conversion inxanthene dyes, Chem. Phys. Lett.,1976,43,332-337.
    [1]Li H., Wang J. X., Pan Z. L., Cui L. Y., Xu L., Wang R. M., Song Y. L., Jiang L., Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection, J. Mater. Chem.,2011,21,1730-1735.
    [2]Yang X. D., Shen B. W., Jiang Y. N., Zhao Z. X., Wang C. X., Ma C., Yanga B., Lin Q., A novel fluorescent polymer brushes film as a device for ultrasensitive detection of TNT,J. Mater. Chem. A,2013,1,1201-1206.
    [3]Engel Y., Elnathan R., Pevzner A., Davidi G., Flaxer E., Patolsky F., Supersensitive detection of explosives by silicon nanowire arrays, Angew. Chem. Int. Ed.,2010,49,6830-6835.
    [4]Dasary S. S. R., Senapati D., Singh A. K., Anjaneyulu Y., Yu H. T., Ray P. C., Highly sensitive and selective dynamic light-scattering sssay for TNT detection using p-ATP attached gold nanoparticle, ACS Appl. Mater. Interfaces,2010,2, 3455-3460.
    [5]Riskin M., Tel-Vered R., Lioubashevski O., Willner I., Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite,J.Am. Chem. Soc.,2009,131,7368-7378.
    [6]Rose A., Zhu Z. G., Madigan C. F., Swager T. M., Bulovic V., Sensitivity gains in chemosensing by lasing action in organic polymers, Nature,2005,434, 876-879.
    [7]Thomas S. W., Joly G. D., Swager T. M., Chemical sensors based on amplifying fluorescent conjugated polymers, Chem. Rev.,2007,107,1339-1386.
    [8]Tang L. H., Feng H. B., Cheng J. S., Li J. H., Uniform and rich-wrinkled electrophoretic deposited grapheme film:A robust electrochemical platform for TNT sensing. Chem. Commun.,2010,46,5882-5884.
    [9]Aguilar A. D., Forzani E. S., Leright M., Tsow F., Cagan A., Iglesias R. A., Nagahara L. A., Amlani I., Tsui R., Tao N. J., A hybrid nanosensor for TNT vapor detection, Nano Lett.,2010,10,380-384.
    [10]Zhang K., Zhou H. B., Mei Q. S., Wang S. H., Guan G. J., Liu R. Y., Zhang J., Zhang Z. P., Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid, J. Am. Chem. Soc.,2011,133,8424-8427.
    [11]Andrew T. L., Swager T. M., A fluorescence turn-on mechanism to detect high explosives RDX and PETN, J. Am. Chem. Soc.,2007,129,7254-7255.
    [12]McQuade D. T., Pullen A. E., Swager T. M., Conjugated polymer-based chemical sensors, Chem. Rev.,2000,100,2537-2574.
    [13]Meaney M. S., McGuffin V. L., Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching, Anal. Chim. Acta, 2008,610,57-67.
    [14]Nie H., Zhao Y., Zhang M., Ma Y. G., Baumgartenb M., Mullen K., Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer, Chem. Commun.,2011,47,1234-1236.
    [15]Yang J. S., Swager T. M., Porous shape persistent fluorescent polymer films:An approach to TNT sensory materials, J. Am. Chem. Soc.,1998,120,5321-5322.
    [16]Zhao D. H., Swager T. M., Sensory responses in solution vs solid state:A fluorescence quenching study of poly(iptycenebutadiynylene)s, Macromolecules, 2005,38,9377-9384.
    [17]Xu B. W., Wu X. F., Li H. B., Tong H., Wang L. X., Selective setection of TNT and picric acid by conjugated polymer film sensors with donor-acceptor architecture, Macromolecules,2011,44,5089-5092.
    [18]Wang X. H., Guo Y. Z., Li D., Chen H., Sun R.-C., Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution, Chem. Commun.,2012,48,5569-5591.
    [19]Klemm D., Heubletin B., Fink H.-P., Bohn A., Cellulose:Fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed.,2005,44, 3358-3393.
    [20]Cunha A. G., Gandini A., Turning polysaccharides into hydrophobic materials:a critical review. Part 1. Cellulose, Cellulose,2010,17,875-889.
    [21]Nielsen L. J., Eyley S., Thielemans W., Aylott J. W., Dual fluorescnent labeling of cellulose nanocrystals for pH sensing, Chem. Commun.,2010,46,8929-8931.
    [22]Dou H. J., Jiang M., Peng H. S., Chen D. Y., Hong Y., pH-dependent self-assembly:Micellization and micelle-hollow-sphere transition of cellulose-based copolymers, Angew. Chem. Int. Ed.,2003,42,1516-1519.
    [23]Kang H. L., Liu W. Y., He B. Q., Shen D. W., Ma L., Huang Y., Synthesis of amphiphilic ethyl cellulose grafting poly(acrylic acid) copolymers and their self-assembly morphologies in water, Polymer,2006,47,7927-7934.
    [24]Wan S., Jiang M., Zhang G. Z., Dual temperature- and pH-dependent self-assembly of cellulose-based copolymer with a pair of complementary grafts, Macromolecules,2007,40,5552-5558.
    [25]Akagi T., Baba M., Akashi M., Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments:Potential applications, Polymer,2007,48,6729-6747.
    [26]Song Y. B., Zhang L. Z., Gan W. P., Zhou J. P., Zhang L. N., Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery, Colloid. Surf. B:Biointerfaces,2011,83,313-320.
    [27]Toal S. J., Trogler W. C., Polymer sensors for nitroaromatic explosives detection, J. Mater. Chem.,2006,16,2871-2883.
    [28]Zhao Z. J., Deng C. M., Chen S. M., Lam J. W. Y., Qin W., Lu P., Wang Z. M., Kwok H. S., Ma Y. G., Qin H. Y., Tang B. Z., Full emission color tuning in luminogens constructed from tetraphenylethene, benzo-2,1,3-thiadiazole and thiophene building blocks, Chem. Commun.,2011,47,8847-8849.
    [29]Song Y. B., Sun Y. X., Zhang X. Z., Zhou J. P., Zhang L. N., Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers, Biomacromolecules,2008,9,2259-2264.
    [30]Rapoport N., Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery, Prog. Polym. Sci.,2007,32,962-990.
    [31]Zhang C., Ping Q., Zhang H., Shen J., Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol, Carbohydr. Polym.,2003,54, 137-141.
    [32]Heinze T., Rensinga S., Koschella A., Starch derivatives of high degree of functionalization.13. Novel amphiphilic starch products, Starch/Starke,2007,59, 199-207.
    [33]Lukyanov A. N., Torchilin V. P., Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs, Adv. Drug Deliv. Rev., 2004,56,1273-1289.
    [34]Discher D. E., Eisenberg A., Polymer Vesicles, Science,2002,297,967-973.
    [35]Antonietti M., Forster S., Vesicles and liposomes:A self-assembly principle beyond lipids,Adv. Mater.,2003,15,1323-1333.
    [36]Kumari A., Yadav S. K., Yadav S. C., Biodegradable polymeric nanoparticles based drug delivery systems, Colloid. Surf. B:Biointerfaces,2010,75,1-18.
    [37]Sohn H., Sailor M. J., Magde D., Trogler W. C., Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles, J. Am. Chem. Soc.,2003,125,3821-3830
    [38]Murphy C. B., Zhang Y., Troxler T., Ferry V., Martin J. J., Jones W. E. Jr., Probing foster and dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors, J. Phys. Chem.B,2004,108,1537-1543.
    [39]Lakowicz J. R., Principles of Fluorescence Spectroscopy,2nd ed.; Plenum Press: New York,1999.
    [1]de Silva A. P., Gunaratne H. Q. N., Gunnlaugsson T., Huxley A. J. M., McCoy C. P., Rademacher J. T., Rice T. E., Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev.,1997,97,1515-1566.
    [2]Silva A. F., Fiedler H. D., Nome F., Ionic quenching of napththalene fluorescence in sodium dodecyl sulfate micelles, J. Phys. Chem. A,2011,115,2509-2514.
    [3]Jefferies W. A., Dickstein D. L., Ujiie M., Assessing p97 as an Alzheimer's disease serum biomarker, J. Alzheimer's Dis.,2001,3,339-344.
    [4]Martin F. L., Williamson S. J. M., Paleologou K. E., Hewitt R., El-agnaf O. M. A., Allsop D., Fe (Ⅱ)-induced DNA damage in a-synuclein-transfected human dopaminergic BE(2)-M17 neuroblastoma cells:Detection by the comet assay, J. Neurochem.,2003,87,620-630.
    [5]Guo C. L., Irudayaraj J., Fluorescent Ag clusters via a protein-directed approach as a Hg(Ⅱ) ion sensor, Anal. Chem.,2011,83,2883-2889.
    [6]Bag B., Pal A., Rhodamine-based probes for metal ion-induced chromo-/fluorogenic dual signaling and their selectivity towards Hg(Ⅱ) ion, Org. Biomol. Chem.,2011,9,4467-4480.
    [7]Nolan E. M., Lippard S. J., Tools and tactics for the optical detection of mercuric ion, Chem. Rev.,2008,108,3443-3480.
    [8]Desvergne J. P., Czarnik A. W., Chemsensors of Ion and Molecule Recognition; Kluwer:Dordrecht, The Netherlands,1997.
    [9]Yuan M. J., Li Y. L., Li C. H., Liu X. F., Lv J., Xu J. L., Liu H. B., Wang S., Zhu D. B., A colorimetric and fluorometric dual-modal assay for mercury ion by a molecule, Org. Lett.,2007,9,2313-2316.
    [10]Zhu M., Zhou C. J., Zhao Y. J., Li Y. J., Liu H. B., Li Y. L., Synthesis of a fluorescent polymer bearing covalently linked thienylene moieties and rhodamine for efficient sensing, Macromol. Rapid Commun.,2009,30,1339-1344.
    [11]Li C. H., Zhou C. J., Zheng H. Y., Yin X. D., Zuo Z. C., Liu H. B., Li Y. L., Synthesis of a novel poly(para-phenylene ethynylene) for highly selective and sensitive sensing mercury (Ⅱ) ions, J. Polym. Sci. A:Polym. Chem.2008,46, 1998-2007.
    [12]Zhu M., Yuan M. J., Liu X. F., Xu J. L., Huang C. S., Liu H. B., Li Y. L., Wang S., Zhu D. B., Visible near-infrared chemosensor for mercury ion, Org. Lett.,2008, 10,1481-1484.
    [13]Lv J., Ouyang C. B., Yin X. D., Zheng H. Y, Zuo Z. C., Xu J. L., Liu H. B., Liang Y. L., Reversible and highly selective fluorescent sensor for mercury(Ⅱ) based on a water-soluble poly(para-phenylene)s containing thymine and sulfonate moieties, Macromol. Rapid Commun.,2008,29,1588-1592.
    [14]Xu W. F., Mu L. X., Miao R., Zhang T. P., Shi W. S., Fluorescence sensor for Cu(II) based on R6G derivatives modified silicon nanowires, J. Lumin.,2011, 131,2616-2620.
    [15]Huang M. R., Huang S. J., Li X. G, Facile Synthesis of polysulfoamino-anthraquinone nanosorbents for rapid removal and ultrasensitive fluorescent detection of heavy metal ions, J. Phys. Chem. C,2011,115,5301-5315.
    [16]Wu S. Z., Wu Y. F., Zeng F., Tong Z., Zhao J. Q., Tunability of fluorescence property of a terbium-complex-containing polymer via incorporation of a transition-metal Complex. Macromol. Rapid Commun.,2006,27,937-942.
    [17]Panda S., Pati P. B., Zade S. S., Twisting (conformational changes)-based selective 2D chalcogeno podand fluorescent probes for Cr(Ⅲ) and Fe(Ⅱ), Chem, Commun.,2011,47,4174-4176.
    [18]Yin W., Cui H., Yang Z., Li C., She M., Yin B., Facile synthesis and characterization of rhodamine-based colorimetric and "off-on" fluorescent chemosensor for Fe3+, Sensor. Actual. B,2011,157,675-680.
    [19]Hu Z. Q., Feng Y. C., Huang H. Q., Ding L., Wang X. M., Lin C. S., Li M., Ma C. P., Fe3+ -selective fluorescent probe bansed on rhodamine B and its application in bioimaging, Sensor. Actuat. B,2011,156,428-432.
    [20]Li Z. X., Zhang L. F., Zhao W. Y, Li X. Y, Guo Y. K., Yu M. M., Liu J. X., Fluoranthene-based pyridine as fluorescent chemsensor for Fe3+, Inorg. Chem. Commun.,2011,14,1656-1658.
    [21]Samir M. A. S. A., Alloin F., Dufresne A., Review of recent into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules,2005,6,612-626.
    [22]Eichhorn S. J., Dufresne A., Aranguren M., Marcovich N. E., Capadona J. R., Rowan S. J., Weder C., Thielemans W., Roman M., Renneckar S., Gindl W., Veigel S., Keckes J., Yano H., Abe K., Nogi M., Nakagaito A. N., Mangalam A., Simonsen J., Benight A. S., Bismarck A., Berglund L. A., Peijs T., Review: Current international research into cellulose nanofibers and nanocomposites, J. Mater. Sci.,2010,45,1-33.
    [23]Dong S., Roman M., Fluorescently labeled cellulose nanocrystals for bioimaging applications,J. Am. Chem. Soc.,2007,129,13810-13811.
    [24]Mahmoud K. A., Mena J. A., Male K. B., Hrapovic S., Kamen A., Luong J. H. T., Effect of surface charge on the celluar uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals, ACSAppl. Mater. Inter.,2010,2,2924-2932.
    [25]Nielsen L. J., Eyley S., Thielemans W., Aylott J. W., Dual fluorescent labeling of cellulose nanocrystals for pH sensing, Chem. Commun.,2010,46,8929-8931.
    [26]Beck-Candanedo S., Roman M., Gray D. G., Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions, Biomacromolecules,2005,6,1048-1054.
    [27]Thielemans W., Warbey C. R., Walsh D. A., Permselective nanostructured membranes based on cellulose nanowhiskers, Green Chem.,2009,11,531-537.
    [28]Porath J., Fornstedt N., Group fractionation of plasma proteins on dipolar ion exchangers, J. Chromatogr.,1970,51,479-480.
    [29]Sarazzin P., Beneventi D., Chaussy D., Vurth L., Stephan O., Adsorption of cationic photoluminescent nanoparticles on softwood cellulose fibers, Colloids Surf,4,2009,334,80-86.
    [30]Bonne M. J., Edler K. J., Buchanan J. G., Wolverson D., Psillakis E., Helton M., Thielemans W., Marken F., Thin-film modified electrodes with reconstituted cellulose-PDDAC films for the accumulation and detection of triclosan, J. Phys. Chem. C.,2008,112,2660-2666.
    [31]Dutta R., Scott M. D., Haldar M. K., Ganguly B., Srivastava D. K., Friesner D. L., Mallik S., Fluorescent water soluble polymers for isozyme-selective interactions with matrix metalloproteinase-9, Bioorg. Med. Chem. Lett.,2011,21,2007-2010.
    [32]Vanderhart D. L., Atalla R. H., Studies of microstructure in native cellulose using solid-state 13C NMR, Macromolecules,1984,17,1465-1472.
    [33]Follain N., Marais M. F., Montanari S., Vignon M. R., Coupling onto surface carboxylated cellulose nanocrystals, Polymer,2010,51,5332-5344.
    [34]Newman R. H., Estimation of the lateral dimensions of cellulose crystallites using NMR signal strengths, Solid State Nucl. Magn. Reson.,1999,15,21-29.
    [35]Patel A. B., Khumsupan P., Narayanaswami V., Pyrene fluorescence analysis offers new insights into the conformation of the lipoprotein-binding domain of human apolipoprotein E, Biochemistry,2010,49,1766-1775.
    [36]Murphy C. B., Zhang Y., Troxler T., Ferry V., Martin J. J., Jr. Jones W. E., Probing Forster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors, J. Phys. Chem. B,2004,108,1537-1543.
    [37]Yang C. C., Tian Y. Q., Chen, C. Y. Jen A. K.-Y., Chen W. C., A novel benzoxazole-containing poly(N-isopropylacrylamide) copolymer as a multifunctional sensing material, Macromol. Rapid Commun.,2007,28,894-899.
    [38]Jung H. J., Singh N., Lee D. Y., Jang D. O., Single sensor for multiple analytes: chromogenic detection of I- and fluorescent detection of Fe3+, Tetrehedron Lett., 2010,51,3962-3965.
    [39]Fabbrizzi L., Poggi A., Sensors and switches from supramolecular chemistry, Chem. Soc. Rev.,1995,24,197-202.
    [1]Silva A. K. A., Richard C., Bessodes, M., Scherman D., Merten,O-W., Growth factor delivery approaches in hydrogels, Biomacromolecules,2009,10,9-18.
    [2]Chang C., Zhang L., Cellulose-based hydrogels:Present status and application prospects, Carbohydr. Polym.,2011,84,40-53.
    [3]Aouada F. A., De Moura M. R., Orts W. J., Mattoso L. H. C., Preparation and characterization of novel micro- and nanocomposite hydrogels containing cellulosic fibrils, J. Agric. Food Chem.,2011,59,9433-9442.
    [4]Basumallick L., Ji J. A., Naber N., Wang Y. J., The fate of free radicals in a cellulose based hydrogel:Detection by electron paramagnetic resonance, J. Pharm. Sci.,2009,98,2464-2471.
    [5]Mihranyan A., Edsman K., Str(?)mme M., Rheological properties of cellulose hydrogels prepared from cladophora cellulose powder, Food Hydrocolloid.,2007, 21,267-272.
    [6]Hiroki A., Tran H. T., Nagasawa N., Yagi T., Tamada M., Metal adsorption of carboxymethyl cellulose/carboxymethyl chitosan blend hydrogels prepared by gamma irradiation, Radiat. Phys. Chem.,2009,78,1076-1080.
    [7]Chang C., Peng J., Zhang L., Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices, J. Mater. Chem.,2009,19,7771-7776.
    [8]Trombino S., Cassano R., Bloise E., Muzzalupo R., Tavano L., Picci N., Synthesis and antioxidant activity evaluation of a novel cellulose hydrogel containging trans-ferulic acid, Carbohydr. Polym.,2009,75,184-188.
    [9]Nakayama A., Kakugo A., Gong J. P., Osada Y., Takai M., Erata T., Kawano S., High mechanical strength double-network hydrogel with bacterial cellulose, Adv. Funct. Mater.,2004,14,124-128.
    [10]Yan L., Shuai Q., Gong X., Gu Q., Yu H., Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removel, Clean,2009,37,392-398.
    [11]Chen W., Leung V., Kroener H., Pelton R., Polyvinylamine-phenylboronic acid adhension to cellulose hydrogel. Langmuir,2009,25,6863-6868.
    [12]Saha A., Manna S., Nandi A. K., Temperature and pH sensitive photoluminescence of riboflavin-methyl cellulose hydrogel:towards AND molecular logic gate behavior, Soft Matter,2009,5,3992-3996.
    [13]Fricain J. C., Granja P. L., Barbosa M. A., de Jso B., Barthe N., Baquey C., Cellulose phosphates as biomaterials. In vivo biocompatibility studies, Biomaterials,2002,23,971-980.
    [14]Vinatier C., Gauthier O., Fatimi A., Merceron C., Masson M., Moreau A., Moreau F., Fellah B., Weiss P., Guicheux J., An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects, Biotechnol. Bioeng.,2009,102,1259-1267.
    [15]Connors K. A., The stability of cyclodextrin complexes in solution, Chem. Rev., 1997,97,1325-1357.
    [16]Fayad N., Marchal L., Billaud C., Nicolas J., Comparison of β-cyclodextrin effect on polyphenol oxidation catalyzed by purified polyphenol oxidase from different sources,J. Agric. Food Chem.,1997,45,2442-2446.
    [17]Sabadini E., Cosgrove T., Inclusion complex formed between star-poly(ethylene glycol) and cyclodextrins, Langmuir,2003,19,9680-9683.
    [18]Szejtli J., Introduction and general overview of cyclodextrin chemistry, Chem. Rev.,1998,98,1743-1753.
    [19]Rusa C. C., Luca C., Tonelli A. E., Polymer-cyclodextrin inclusion compounds-Toward new aspects of their inclusion mechanism, Macromolecules, 2001,34,1318-1322.
    [20]Szejtli J., Osa T., Comprehensive supramolecular chemistry, Vol.3, Cycledextrins; Elsevior:Oxford,1996.
    [21]Wenz G., Cyclodextrins as building blocks for supramolecular structures and functional units, Angew. Chem., Int. Ed.,1994,33,803-822.
    [22]D'Souza V. T., Lipkowitz K. B., Cyclodextrins, Chem. Rev.,1998,98, 1741-2076.
    [23]Merino C., Junquera E., J' Barbero J., Aicart E., Effect of the presence of β-cycrodextrin on the solution behavior of procaine hydrochloride. Spectroscopic and thermodynamic studies, Langmuir,2000,16,1557-1565.
    [24]Petrovic G., Stojanovic G, Palic R., Modified β-cyclodextrins as prospective agents for improving water solubility of organic pesticides, Environ. Chem. Lett., 2011,9,423-429.
    [25]Kato J., Kakehata H., Maekawa Y., Yamashita T., Regioselectivity control of radiation-induced reaction:electron beam-induced Fries rearrangement of sulfonamide within a (3-cyclodextrin inclusion complex, Chem. Commun.,2006, 43,4498-4500.
    [26]Wu S., Luo Y, Zeng F., Chen J., Chen Y., Tong Z., Photoreversible fluorescence modulation of a rhodamine dye by supramolecular complexation with photosensitive cyclodextrin, Angew. Chem. Int. Ed,2007,46,7015-7018.
    [27]Li S., Purdy W. C., Cyclodextrins and their applications in analytical chemistry, Chem. Rev.,1992,92,1457-1470.
    [28]Chen X., Jiang H., Wang Y, Zou G., Zhang Q., β-Cyclodextrin-induced fluorescence enhancement of a thermal-responsive azobenzene modified polydiacetylene vesicles for a temperature sensor, Mater. Chem. Phys.,2010,124, 36-40.
    [29]Vasquez J. M., Vu A., Schultz J. S., Vullev V. I., Fluorescence enhancement of warfarin induced by interaction with β-cyclodextrin, Biotechnol. Progr.,2009,25, 906-914.
    [30]Zhou J., Zhang L., Solubility of cellulose in NaOH/urea aqueous solution, Polym. J.,2000,32,866-870.
    [31]Liu S., Zhang L., Sun Y., Lin Y., Zhang X., Nishiyama Y., Supramolecular structure and properties of high strength regenerated cellulose films, Macromol. Biosci.,2009,9,29-35.
    [32]Luo X., Zhang L., High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon, J. Hazard. Mater.,2009,171, 340-347.
    [33]Zhou J., Chang C., Zhang R., Zhang L., Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution, Macromol. Biosci.,2007,7,804-809.
    [34]Chang C., Zhang L., Zhou J., Zhang L., Kennedy J. F., Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions, Carbohydr. Polym.,2010,82,122-127
    [35]Brown W., Wiskstom R., A viscosity-molecular weight relationship for cellulose in cadoxen and a hydrodynamic interpretation, Eur. Polym. J.,1965,1,1-10.
    [36]Zhang L., Cai J., Zhou J., Novel solvent compounds and its preparation and application,2005, CN 03128386.1.
    [37]Isogai A., Usada M., Kato T., Uryu T., Atalla R. H., Solid-state 13CP/MAS C NMR study of cellulose polymorphs, Macromoleceles,1989,22,3168-3172.
    [38]Kim S. W., Bae Y. H., Okano T., Hydrogels:Swelling, drug loading, and release, Pharm. Res.,1992,9,283-290.
    [39]Grosse P. Y., Bressolle F., Pinguet F., In vitro modulation of doxorubicin and docetaxel antitumoral activity by methyl-β-cyclodextrin, Eur. J. Cancer,1998,34, 168-174.
    [40]Jin L., Liu Q., Sun Z., Ni X., Wei M., Preparation of 5-fluorouracil/β-cyclodextrin complex intercalated in layered double hydroxide and the controlled drug release properties, Ind. Eng. Chem. Res.,2010,49,11176-11181.
    [41]Goto H., Furusho Y., Yashima E., Supramolecular control of unwinding and rewinding of a double helix of oligoresorcinol using cyclodextrin/adamantane system, J. Am. Chem. Soc.,2007,129,109-112.
    [42]Gorecki T., Pawliszyn J., Sample introduction approaches for solid phase microextraction/rapid GC, Anal. Chem.,1996,68,3265-3274.
    [43]Yu J., Wei F., Gao W., Zhao C., Thermodynamic study on the effects of (3-cyclodextrin inclusion with berberine, Spectrochim. Acta A,2002,58,249-256.
    [44]Hazra P., Chakrabarty D., Chabraborty A., Sarkar N., Intramolecular charge transfer and solvation dynamics of nile red in the nanocavity of cyclodextrins, Chem. Phys. Lett,2004,388,150-157.
    [45]Munoz De La Pena A., Ndou T., Zung J. B., Warner I. M., Stoichiometry and formation constants of pyrene inclusion complexes with β- and γ-cyclodextrin, J. Phys. Chem.,1991,95,3330-3334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700