陶瓷涂层及含纤维陶瓷界面相C/C复合材料的微观力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C/C复合材料表面抗氧化涂层材料及含纤维陶瓷界面相C/C复合材料应尽量避免以牺牲复合材料力学性能为代价,因此,有必要全面研究和掌握制备工艺对材料微观结构和微观力学性能的影响,在有效控制制备成本、提高抗氧化性能的前提下提高材料的力学可靠性和使用寿命。本文主要研究了C/C复合材料表面SiC、TaC和ZrC陶瓷涂层及含PyC-(SiC)-TaC-PyC纤维陶瓷界面相C/C复合材料的微观结构和微观力学性能,建立了制备工艺-微观结构-微观力学性能之间的相互关系。其主要工作和结论为:
     1)采用化学气相沉积工艺,分别在1100℃、1200℃和1300℃及离化学气相沉积反应器进气口340mm.380mm和420mm沉积位置制备了SiC涂层,研究了沉积温度和沉积位置对涂层微观结构和微观力学性能的影响。并研究了沿厚度方向非均匀沉积SiC涂层的力学性能分布。同时,以含游离Si或C的SiC涂层为研究对象,研究了游离Si或C对涂层的微观结构和微观力学性能。
     2))研究了1100℃、1200℃和1300℃三个沉积温度对TaC涂层微观结构和微观力学性能的影响。对非均匀TaC涂层沿厚度方向进行结构和力学表征,研究了微观结构和微观力学性能之间的相互关系。分析了TaC涂层中游离C对涂层微观力学性能的影响。并以共沉积的游离碳为拉曼应力敏感因子,采用拉曼光谱法研究了非均匀沉积TaC涂层沿厚度方向的应力分布。
     3)研究了沉积位置对ZrC涂层沉积速率、成分、微观结构和微观力学性能的影响。通过比较化学计量比ZrC和非化学计量比C0.85Zr涂层微观结构和微观力学性能,研究了化学计量比对ZrC涂层力学性能的影响。
     4)利用纳米压痕仪,采用单根纤维顶出试验法研究了PyC-(SiC)-TaC-PyC复合界面相对C/C复合材料界面剪切强度的影响。并借用已有数学模型,研究了界面热应力对复合材料界面剪切强度的影响。
     综上所述,本文研究了C/C复合材料表面SiC、TaC和ZrC涂层及含PyC-(SiC)-TaC-PyC界面相C/C复合材料微观结构和微观力学性能,为合理设计C/C复合材料界面相及表面涂层,提高C/C复合材料可靠性和使用寿命起到了指导作用。
The improvement of the anti-oxidation properties of C/C composites with ceramic interlayers and ceramic external coatings shouldn't at the cost of sacrificing their mechanical properties. Therefore, it is necessory to investigate the influences of preparation processes on micro-structure and-mechanical properties of materials in order to improve their realibility and lifetime and while controlling the production cost effectively. In the present work, the microstructure and mechanical properties of SiC, TaC and TaC external coatings on C/C composites and C/C composites with PyC-(SiC)-TaC-PyCmulti-interlayer are invesigated. Meanwhile, the relationships among the processing, microstructure and mechanical properties of the materials are bulit. The main research content and conclusions are as follows:
     1) SiC coatings were produced by chemical vapor deposition at1100℃、1200℃and1300℃C and340mm、380mm and420mm substrate position from the inlet of the CVD reactor. The effect of deposition temperature and substrate position on microstructure and mechanical properties of the coatings were investigated. Meanwhile, the effect of free Si or C in the SiC coatings on microstructure and mechanical properties were studied.
     2) The effect of deposition temperature(1100℃、1200℃and1300℃) on microstructure and mechanical properties of TaC coatings were investigated. The relationship between microstructure and mechanical properties of TaC coatings with non-uniform structure through-the-thickness of the coating were analyzed. The effects of free C on mechanical properties of TaC coating were also studied. Meanwhile, treat the free C as stress-sense factor, the residual stress through the thickness of the TaC coating were evaluated.
     3) The effects of substrate position on microstructure and mechanical properties of the ZrC coatings were investigated. And the effects of stoichiometric ratio of ZrC coatings on mechanical properties effects of stoichiometric ratio of ZrC coatings on mechanical properties were studied by comparing the microstructure and mechanical properties of ZrC and C0.85Zr coating。
     4) The effect of PyC-(SiC)-TaC-PyC multi-interlayers on interfacial shear strength of C/C composites were investigated by single fiber push out tests by using nano-indentation. The effects of residual stresses on interfacial shear strength were studied by employing Huesh's model.
     In a word, in the present work, the microstructure and mechanical properties of external coatings on C/C composites and composites with PyC-(SiC)-TaC-PyC interlayers were investigated. It is helpful for designing coatings and interface of C/C composites and improving its reliability and lifertime.
引文
[1]E. Fitzer, The future of carbon-carbon composites Carbon,1987,25(2):163-190.
    [2]E. Fitzer and L.M. Manocha, Carbon reinforcements and carbon/carbon composites.1998, Verlag Berlin Heidelberg:Springer.
    [3]E.L. Corral and R.E. Loehman, Ultra-High-Temperature Ceramic Coatings for Oxidation Protection of Carbon-Carbon Composites.J.Am.Ceram.Soc,2008, 91(5):1495-1502.
    [4]Q.G. Fu, H.J. Li, K.Z. Li, et al., Effect of SiC whiskers on the microstructure and oxidation protection ability of SiC-CrSi2 coating for carbon/carbon composites Materials Science and Engineering A,2007,445-446:386-391.
    [5]X. Xiong, Y.-L. Wang, Z.-K. Chen, et al., Mechanical properties and fracture behaviors of C/C composites with PyC/TaC/PyC, PyC/SiC/TaC/PyC multi-interlayers. Solid State Sciences 2009,11:1386-1392.
    [6]X. Xiong, Z.-K. Chen, B.-Y. Huang, et al., Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition. Thin Solid Films,2009,517:3235-3239.
    [7]Z-K. Chen, X. Xiong, G-D. Li, et al., Ablation behaviors of carbon/carbon composites with C-SiC-TaCmulti-interlayers. Applied Surface Science, 2009,255:9217-9223.
    [8]Z-K. Chen, X. Xiong, G-D. Li, et al., Mechanical properties and oxidation behaviors of carbon/carbon composites with C-TaC-C multi-interlayer. J Mater Sci.,2010,45:3477-3482.
    [9]P.R. Romine and O.O. Ochoa, An assessment of the effect of inhibitor oxidation on the response of oxidation resistant carbon/carbon composites Composites Science and Technology,1996,56:569-579.
    [10]R.Y. Luo, Z. Yang, and L.F. Li, Effect of additives on mechanical properties of oxidation-resistant carbon/carbon composite fabricated by rapid CVD method. Carbon,2000,38.
    [11]Y.C. Zhu, S. Ohtani, Y. Sato, et al., Influence of boron ion implantation on the oxidation behavior of CVD-SiC coated carbon-carbon composites. Carbon, 2000,38:501-507.
    [12]R. Naslain, The design of the fiber-matrix interfacial zone in ceramic matrix composites. Composites Part A,1998,29A:1145-1155.
    [13]R. Naslain, J. Lamon, R. Pailler, et al., Micro/Minicomposites:a useful approch to the design and development of non-oxide CMCs. Composites:Part A,1999, 30:537-547.
    [14]G.N. Morschera and J.D. Cawley, Intermediate temperature strength degradation in SiC/SiC composites Journal of the European Ceramic Society,2002, 22:2777-2787.
    [15]S. Bertrand, C. Droillard, R. Pailler, et al., TEM structure of (PyC/SiC)n multilayered interphases in SiC/SiC composites Journal of the European Ceramic Society,2000,20:1-13.
    [16]S. Pasquier, J. Lamon, and R. Naslain, Tensile static fatigue of 2D SiC/SiC composites with multilayered (PyC-SiC)n interphases at high temperatures in oxidizing atmosphere. Composites Part A,1998,29A (1157-1164).
    [17]S. Goujard, L. Vandenbulcke, and H. Tawil, Oxidation tests of carbonaceous composite materials protected by Si-B-C CVD coatings. Thin Solid Films, 1994,245:86-97.
    [18]S. Labruquere, H. Blanchard, R. Pailler, et al., Enhancement of the oxidation resistance of interfacial area in C/C composites. Part Ⅱ:oxidation resistance of B-C, Si-B-C and Si-C coated carbon preforms densified with carbon. Journal of the European Ceramic Society,2002,22:1011-1021.
    [19]S. Labruquere, H. Blanchard, R. Pailler, et al., Enhancement of the oxidation resistance of interfacial area in C/C composites. Part I:oxidation resistance of B-C, Si-B-C and Si-C coated carbon fibres. Journal of European Ceramic Society,2002,22:1001-1009.
    [20]S. Labruquere, X. Bourrat, R. Pailler, et al., Structure and oxidation of C/C composites:role of the interface Carbon,2001,39:971-984.
    [21]G.D. Li, X. Xiong, and B.Y. Huang, Microstructure characteristic and formation mechanism of crackfree TaC coating on C/C composite. Trans.Nonferrous.Met.Soc.China,2005,15(6):1206-1213.
    [22]G-B. Zheng, H. Mizuki, H. Sano, et al., CNT/PyC-SiC/SiC double-layter oxidation-protection coating on C/C composite Carbon,2008,46:1808-1811.
    [23]H. Zhou, L. Gao, Z. Wang, et al., ZrB2-SiC oxidation protective coating on C/C composites prepared by vapour silicon infiltration process. J.Am.Ceram.Soc., 2010,93(4):915-919.
    [24]H.W. He, K.C. Zhou, X. Xiong, et al., Investigation on decomposition mechanism of tantalum ethylate precursor during formation of TaC on C/C composite material Materials letters,2006,60:3409-3412.
    [25]K-Z. Li, D-S. H, H-J. Li, et al., Si-W-Mo coating for SiC coated carbon/carbon composites against oxidation. Surface & Coatings Technology,2007. 201:9598-9602.
    [26]Q Zhu, X Qiu, and C Ma, Oxidation resistant SiC coating for graphite materials Carbon 1999,37:1475-1484.
    [27]W. Sun, X. Xiong, B.Y. Huang, et al., Preperation of ZrC nano-praticles reinforced amorphous carbon composite coating by atmoshpere pressure chemical vapor deposition Applied Surface Science,2009,255:7142-7146.
    [28]W. Sun, X. Xiong, B-Y Huang, et al., ZrC ablation protection coating for carbon/carbon composites Carbon,2009,47:3365-3380.
    [29]Z-K. Chen, X. Xiong, G-D. Li, et al., Texture structure and ablation behavior of TaC coating on carbon/carbon composites Applied Surface Science,2010, 257:656-661.
    [30]C. Friedrich, R. Gadow, and M. Speicher, Protective multilayer coatings for carbon-carbon composites Surface & Coatings Technology,2002, 151-152:405-411.
    [31]A. Takuya, H. Hiroshi, H. Taku, et al., Si C/C multi-layered coating contributing to the antioxidation of C/C composites and the suppression of through-thickness cracks in the layer Carbon,2001,39:1477-1483.
    [32]J.F. Huang, X.R. Zeng, H.J. Li, et al., Al2O3-mullite-SiC-Al4SiC4 multi-composition coating for carbon/carbon composites Materials Letters,2004, 58:2627-2630.
    [33]C. Kral, W. Lengauer, D. Rafaja, et al., Critical review on the elastic properties of transition metal carbides,nitrides and carbonitrides. Journal of Alloys and Compounds,1998,265:215-233.
    [34]V. Cracium, J. Woo, D. Cracium, et al., Epitaxial ZrC thin films grown by pulsed laser deposition Applied Surface Science,2006,252:4615-4618.
    [35]Z-K. Chen, X. Xiong, B-Y. Huang, et al., Phase composition and morphology of TaC coating on carbon fibers by chemical vapour infiltration. Thin Solid Films 2008,516:8248-8254.
    [36]Z-K. Chen, X. Xiong, and Y. Long, Influence of TaCls partial pressure on texture structure of TaC coating deposited by chemical vapor deposition. Applied Surface Science,2010,257:4044-4050.
    [37]J.F. Huang, X.R. Zeng, H.J. Li, et al., Influence of the preparation temperature on the phase, microstructure and anti-oxidation property of a SiC coating for C/C composites. Carbon,2004,42:1517-1521.
    [38]Y.L. Zhang, H.J. Li, Q.G. Fu, et al., A Si-Mo oxidation protective coating for C/SiC coated carbon/carbon composites Letters to the Editor/Carbon,2007, 45:1130-1133.
    [39]Y. Long, A. Javed, I. Shapiro, et al., The effect of substrate position on the microstructure and mechanical properties of SiC coatings on carbon/carbon composites Surface & Coatings Technology,2011,206:568-574.
    [40]Z. Chen, W.P. Wu, Z.F. Chen, et al., Microstructural characterzation on ZrC doped carbon/carbon composites Ceramics International,2012,38:761-767.
    [41]Z.Q. Li, H.J. Li, W. Li, et al., Preparation and ablation of ZrC-SiC coating for carbon/carbon composites by solid phase inflitration. Applied Surface Science, 2011,258:565-571.
    [42]王艳香,谭寿洪和江东亮,反应烧结碳化硅的研究与进展.无机材料学报,2004,19(3):456-462.
    [43]王零森编.特种陶瓷[M].2005,中南大学出版社:长沙.
    [44]U. Starke, J. Bernhardt, J. Schardt, et al., SiC surface reconstruction:relevancy of atomic structure for growth technology. Surface Review and Letters,1999, 6:1129-1144.
    [45]M. Iwami, Silicon carbide:fundamentals Nuclear instruments and Methods in Physics Research A.2001,466:406-411.
    [46]H.O. Pierson, Handbook of refractory carbides and nitrides:Properties, Characteristics, Processing and Applications.1996, U.S.A:Noyers Publications.
    [47]D.M. Li, R. Hernberg, and T. Mantyla, Catalytic dissociation of hydrogen on a tantalum carbide filament in the HFCVD of diamond. Diamond & Related Materials,1998,7:1709-1713.
    [48]N. Ahlen, M. Johnsson, and M. Nygren, Oxidation behaviour of TaxTil-x and TaxTil-xCyNl-y whiskers Thermochimica Acta 1999,336:111-120.
    [49]A. Rubinshtein, R. Shneck, A. Danon, et al., Surface treatment of tantalum to improve its corrosion resistance. Materials Science and Engineering A,2001, A302 128-134.
    [50]N.A. Hassine, J. G. P. Binner, and T. E. Cross, Synthesis of refractory metal carbide powders via microwave carbothermal reduction Int.J. of Refractroy Metals & Hard Materials 1995,13:353-358.
    [51]J.H. Ma, Y.H. Du, M.N. Wu, et al., One simple synthesis route to nanocrystalline tantalum carbide via the reaction of tantalum pentachloride and sodium carbonate with metallic magnesium. Materials Letters,2007,61:3658-3661.
    [52]D.H. Kwon, S.H. Hong, and B.K. Kim, Fabrication of ultrafine TaC powders by mechano-chemical process. Materials Letters,2004,58:3863-3867.
    [53]李秀涛,史景利,郭全贵,等,含钽炭基复合材料前驱体的制备及表征.新型炭材料,2007,22(2):115-160.
    [54]Z.J. Dong, X.K. Li, G.M. Yuan, et al., Fabrication of protective tantalum carbide coatings on carbon fibers using a molten salt method. Applied Surface Science, 2008,254:5936-5940.
    [55]H. Xiang, Y.D. Xu, L.T. Zhang, et al., Synthesis and microstructure of tantalum carbide and carbon composite by liquid precursor route. Scripta Materialia,2006, 55:339-342.
    [56]C.S. Chen and C.P. Liu, Characterization of sputtered nano-crystalline zirconium carbide as a diffusion barrier for Cu metallization Journal of Electronic Materials 2005,34(11):1408-1413.
    [57]B. Liu, C. Liu, Y.L. Shao, et al., Deposition of ZrC-coated particles for HTR with ZrC14 powder. Nuclear Engineering and Design,2011.
    [58]C. Liu, B. Liu, Y.L. Shao, et al., Vapor pressure and thermochemical properties of ZrC14 for ZrC coating of coated fuel particles. Trans.Nonferrous.Met.Soc.China, 2008,18:728-732.
    [59]S. Ueta, J. Aihara, A. Yasuda, et al., Fabrication of uniform ZrC coating layer for the coated fuel particle of the very high temperature reactor. Journal of Nuclear Materials,2008,376:146-151.
    [60]X. Shen, K. Li, H. Li, et al., Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites Carbon,2010,48:344-351.
    [61]W. Kowbel and J.C. Withers, CVD and CVR silicon-based functionally gradient coatings on C-C composites Carbon 1995,33(4):415-426.
    [62]J.W. Lee and Y.C. Kuo, Cyclic oxidation behavior of a cobalt aluminide coating on Co-base superalloy AMS 5608. Surface & Coatings Technology,2005, 200:1225-1230.
    [63]M. Huang, K.Z. Li, H.J. Li, et al., Double-layer oxidation protective SiC/Cr-Al-Si coating for carbon-carbon composites Surface & Coatings Technology,2007,.201:7842-7846.
    [64]J.F. Huang, H.J. Li, X.R. Zeng, et al., Influence of preparation technology on the microstructure and anti-oxidation property of SiC-Al2O3-mullite multi-coatings for carbon/carbon composites Applied Surface Science,2006,252:4244-4249.
    [65]J. Li, R.Y. Luo, Y.P. Chen, et al., Oxidation behavior and kinetics of SiC/alumina-borosilicate coating for carbon-carbon composites Applied Surface Science,2008,255:1967-1974.
    [66]F. Smeacetto, M. Ferraris, M. Salvo, et al., Protective coatings for carbon bonded carbon fibre composites. Ceramics International,2008,34:1297-1301.
    [67]F. Smeacetto, M. Salvo, and M. Ferraris, Oxidation protective multilayer coatings for carbon-carbon composites Carbon,2002,40:583-587.
    [68]唐伟忠,薄膜材料制备原理、技术及应用[M].2008,北京:冶金工业出版社.
    [69]F.T.J. Smith, E. Carnall, and L.S. Ladd, The Chemical Vapor Deposition of Bulk Polycrystalline Silicon Carbide Int.J.High Technology Ceramics,1987, 3:263-276.
    [70]王豫,水恒勇,化学气相沉积制膜技术的应用于发展.热处理,2001,16(4):1-4.
    [71]H. Huang, K.J. Winchester, A.Suvorova, et al., Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films Materials and Engineering A,2006,435-436:453-459.
    [72]B.J. Choi and D.R. Kim, Growth of silicon carbide by chemical vapour deposition. Journal of Materials Science Letters,1991,10:860-862.
    [73]K. Minato and K. Fukuda, Structure of chemically vapour deposited silicon carbide for coated fuel particles. Journal of Materials Science,1988, 23:699-706.
    [74]M.G. So and J.S. Chun, Growth and structure of chemical vapor deposited silicon carbide from methyltrichlorosilane and hydrogen in the temperature range of 1100 to 1400℃. J.Vac,Scl,Technol,1988, A6(1):5-8.
    [75]D-J. Kim, D-J. Choi, and Y-W. Kim, Effect of reactant depletion on the microstructure and preferred orientation of polycrystalline SiC films by chemical vapor deposition. Thin Solid Films,1995,266:192-197.
    [76]H.-S. Kim and D.-J. Choi, Effect of Diluent Gased on Growth Behavior and Characteristics of Chemically Vapor Deposited Silicon Carbide Films. J.Am.Ceram.Soc,1999,82(2):331-337.
    [77]J.H. Park, C.H. Jung, D.J. Kim, et al., Effect of H2 dilution gas on the growth of ZrC during low pressure chemical vapor deposition in the ZrCl4-CH4-Ar system. Surface & Coatings Technology,2008,203:87-90.
    [78]J.H. Park, C.H. Jung, D.J. Kim, et al., Temperature dependency of the LPCVD growth of ZrC with ZrCl4-CH4-H2 system Surface & Coatings Technology,2008, 203:324-328.
    [79]Y.S. Won, W.G. Varanasi, O. Kryliouk, et al., Equilibrium analysis of zirconium carbide CVD growth JOurnal of Crystal Growth,2007,307:302-308.
    [80]B. Reznik, D. Gerthsen, W. G. Zhang, et al., Microstructure of SiC deposites from methyltrichorosilan. Journal of the European Ceramic Society,2003, 23:1499-1508.
    [81]C-F. Wang and D-S. Tsai, Low pressure chemical vapor deposition of silicon carbide from dichlorosilian and acetylene Materials Chemistry and Physics. 2000,63:196-201.
    [82]李明,宋力听,乐军,等,铌表面固体粉末包埋渗硅研究.无机材料学报,2005.20(3):764-768.
    [83]贾昌德和宋桂明编.无机非金属材料性能[M].2008,科学出版社:北京.
    [84]赵陆翔,郭喜平和姜螈螈,铌基合金包埋渗法制备抗氧化硅化物涂层及其组织形成.中国有色金属学报,2007,17(4):596-601.
    [85]Q.G. Fu, H.J. Li, X.H. Shi, et al., Microstructure and anti-oxidation property of CrSi2-SiC coating for carbon/carbon composites Applied Surface Science,2006, 252:3475-3480.
    [86]闫志巧,熊翔,肖鹏,等,SiC/Mo-Si复合涂层C/SiC复合材料的氧化性能.新型炭材料,2010,25(2):124-128.
    [87]Q.G. Fu, H. Xue, H. Wu, et al., A hot-pressing reaction technique for SiC coating of carbon/carbon composites. Ceramics International,2010,36:1463-1466.
    [88]苏哲安,杨鑫,黄启忠,等,化学气相反应制备SiC涂层对C/C复合材料力学性能影响.无机材料学报,2011,26(3):233-238.
    [89]J. Zhang, R. Luo, Y. Zhang, et al., Effect of isotropic interlayer on the mechanical and thermal properties of carbon/carbon composites. Materials Letters,2010, 64:1536-1538.
    [90]P. Diss, J. Lamon, L. Carpentier, et al., Sharp indentation behaviour of carbon/carbon composites and varieties of carbon Carbon,2002,40:2567-2579.
    [91]J. Li and C. Ding, Determination of microhardness and elastic modulus of plasma-sprayed Cr3C2-NiCr coatings using knoop indention testing. Surface & Coatings Technology,2001,135:229-237.
    [92]J. Tan, P. J. Meadows, D. Zhang, et al., Young's modulus measurements of SiC coatings on spherical particles by using nanoindentation. Journal of Nuclear Materials,2009,393:22-29.
    [93]M.H. Leipold and T.H. Nielsen, Mechanical properties of hot-presses zirconium carbide tested to 2600℃. J.Am.Ceram.Soc.,1964,47(9):419-424.
    [94]B.-K Jang and H. Matsubara, Influence of porosity on hardness and Young's modulus of nanoporous EB-PVD TBCs by nanoindentation. Materials Letters, 2005,59:3462-3466.
    [95]B.-K. Jang and H. Matsubara, Hardness and Young's modulus of nanoporous EB-PVD YSZ coatings by nanoindentation Journal of Alloys and Compounds, 2005,402:237-241.
    [96]C.S. Chen, C.P. Liu, and C.-Y.A. Tsao, Influence of growth temperature on microstructure and mechanical properties of nanocrsytalline zirconium carbide films Thin Solid Films,2005,479:130-136.
    [97]D. Cracium, G. Socol, N. Stefan, et al., Chemical composition of ZrC films grown by pulsed laser deposition Applied Surface Science,255,255:5260-5263.
    [98]E. Lugscheider, K. Bobzin, S. Barwulf, et al., Mechanical properties of EB-PCD-thermal barrier coatings by nanoindentation. Surface & Coatings Technology,2001,138:9-13.
    [99]R. Chaim and M. Hefftz, Effect of grain size on elastic modulus and hardness of nanocrystalline ZrO2-3wt% Y2O3 ceramic Journal of Materials Science,2004, 39:3057-3061.
    [100]Y.T. Chen and C.C. Chang, Effect of grain size on magnetic and nanomechanical properties of Co60Fe20B20 thin films Journal of Alloys and Compounds,2010, 498:113-117.
    [101]J.C. Wang, Young's modulus of porous materials(Parts Ⅰ, Ⅱ). J.Mater.Sci,1984, 19:801-814.
    [102]D. Cracium, G. Socol, N. Stefan, et al., Chemical composition of ZrC films grown by pulsed laser deposition Applied Surface Science,2009, 255:5260-5263.
    [103]M. Srinivas, G. Malakondaiah, R.W. Armstrong, et al., Ductile fracture toughness of polycrystalline armco iron of varying grain size Acta Metallurgica et Materialia.1991,39(5):807-816.
    [104]A. Paradkar, V. Kumar, S.V. Kamat, et al., The effect of grain size and composition on the fracture toughness of Ti-Al-Nb alloys undergoing stress-induced martensitic transformation Materials Science and Engineering A, 2008,486:273-282.
    [105]L.L. Snead, T. Nozawa, Y. Katoh, et al., Handbook of SiC properties for fuel performance modeling Journal of Nuclear Materials,2007,371:329-377.
    [106]Y.S. Zhao, J. Qian, L.L. Daemen, et al., Enhancement of fracture toughness in nanostructured diamond-SiC composites Applied Physics Letters,2004, 84(8):1356-1358.
    [107]M.C. Osborne, Mechanical- and Physical-Property Changes of Neutron-Irradiated Chemical-Vapor-Deposited Silicon Carbide. J.Am.Ceram.Soc,1999,82(9):2490-96.
    [108]K.J. Anusavice and N-Z. Zhang, Effect of crystallinity on strength and fracture toughness of Li2O-Al2O3-CaO-SiO2 glass-Ceramics. J.Am.Ceram.Soc.,1997, 80(6):1353-1358.
    [109]V. Sergo, O. Sbaizero, and D.R. Clarke, Mechanical and chemical consequences of the residual stresses in plasma sprayed hydroxyapatite coatings Biomaterials, 1997,18:477-482.
    [110]O. Kesler, J. Matejicek, S. Sampath, et al., Measurement of residual stress in plasma-sprayed metallic, ceramic and composites coatings Materials and Engineering A,1998, A257:215-224.
    [111]蒋艳平,肖刘,射线衍射法测Zn电镀层中的残余应力.湘潭大学自然科学学报,2001,23(4):42-45.
    [112]A. Portinha, V. Teixeira, J. Carneiro, et al., Residual stresses and elastic modulus of thermal barrier coatings graded in porosity Surface & Coatings Technology, 2004,188-189:120-128.
    [113]王丹,徐滨士和董世运,涂层残余应力实用检测技术的研究进展.金属热处理,2006,31(5):48-53.
    [114]A. Godara, L. Gorbatikh, G. Kalinka, et al., Interfacial shear strength of a glass fiber/epoxy bonding in composites. Composites Science and Technology,2010, 70:1346-1352.
    [115]M. Rollin, S. Jouannigot, J. Lamon, et al., Characterization of fibre/matrix interfaces in carbon/carbon composites. Composites Science and Technology, 2009,69:1442-1446.
    [116]R.J. Kerans and T.A. Parthasarathy, Crack deflection in ceramic composites and fiber coating design criteria. Composites Part A,1999,30:521-524.
    [117]P.C. Varelidis, R.L. McCullough, and C.D. Papaspyrides, The effect of temperature on the single-fiber fragmentation test with coated carbon fibers Composites Science and Technology,1997,58:1487-1496.
    [118]T. Hinoki, W. Zhang, A. Kohyama, et al., Effect of fiber coating in interfacial shear strength of SiC/SiC by nano-indentation. Journal of Nuclear Materials, 1998,258-263:1567-1571.
    [119]B.Viswanath, R. Raghavan, U. Ramamurty, et al., Mechanical properties and anisotropy in hydroxyapatite single crystals. Scripta Materialia.2007, 57(361-364).
    [120]S-S.Saeed and A.G. Karlis, Micromechanical properties of single crystal hydroxyapatite by nanoindentation. Acta Biomaterialia,2009,5:2206-2212.
    [121]D-J. Kim and D-J. Choi, Microhardness and surface roughness of silicon carbide by chemical vaopour deposition. Journal of Materials Science Letters,1997, 16:286-289.
    [122]G.M. Pharr, Measurements of mechanical properties by ultra-low load indentation Materials and Engineering A,1998,253:151-159.
    [123]O.R. Shojaei and A. Karimi, Comparison of mechanical properties of TiN thin films using nanoindentation and bulge test Thin Solid Films,1998,332:202-208.
    [124]W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation:Advanced in understanding and refinements to methodology. J.Mater.Res,2004,19(1):3-20.
    [125]李河清,蔡殉和陈秋龙,纳米压入技术表征薄膜(涂层)的力学性能.材料热处理学报,2001,22(4):52-55.
    [126]高阳编.先进材料测试仪器基础教程[M].2008,清华大学出版社:北京.27-73.
    [127]R. Saha and W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation Acta Materialia,2002,50:23-38.
    [128]A.A. Pelegri and X.Q. Huang, Nanoindentation on soft film/hard substrate and hard film/soft substrate material systems with finite element analysis Composites Science and Technology,2008,68:147-155.
    [129]J.H. Gong, H.Z. Miao, Z.J. Peng, et al., Effect of peak load on the determintation of hardness and Young's modulus of hot-pressed Si3N4 by nanoindentation Materias Science and Engineering A,2003,354:140-145.
    [130]S.H. Chen, L. Liu, and T. Wang, Size dependent nanoindentation of a soft film on a hard substrate Acta Materialia,2004,52:1089-1095.
    [131]Y.C. Lu and D.M. Shinozaki, Effects of substrate constraint on micro-indentation testing of polymer coatings Materials Science and Engineering A,2005,396:77-86.
    [132]S. Liu and Q. Jane Wang, Determination of Young's modulus and Poisson's ratio for coatings Surface & Coatings Technology,2007,201:6470-6477.
    [133]C.M. Lepienski, G.M. Pharr, Y.J. Park, et al., Factors limiting the measurements of residual stresses in thin films by nanoindentation Thin Solid Films,2004, 447-448:251-257.
    [134]Y.L. Yilmaz, Analyzing single fiber fragmentation test data by using sress transfer model Journal of Composites Materials,2002,36:537-551.
    [135]S. Lee, T. Nguyen, J. Chin, et al., Analysis of the single-fiber fragmentation test. Journal of Materials Science,1998,33:1-8.
    [136]T. Ramanathan, A. Bismarck, E. Schulz, et al., The use of a single-fibre pull-out test to investigate the influence of acidic and basic surface groups on carbon fibers on the adhesion to poly (phenylene sulfide) and matrix-morphology-dependent fracture behaviour. Composites Science and Technology,2001,61:1703-1710.
    [137]Y.R. Zhao, Y.M. Xing, Z.K. Lei, et al., Interfacial stress transfer behavior in a specially-shaped fiber/matrix pullout test. Acta Mech Sin,2010,26:113-119.
    [138]D. K.Shetty, Shear-Lag Analysis of Fiber Push-Out (Indentation) Tests for Estimating Interfacial Friction Stress in Ceramic-Matrix Composites. J.Am.Ceram.Soc,1988,71(2):C-107-C-109.
    [139]Y. Furukawa, H. Hatta, and Y. Kogo, Interfacial shear strength of C/C composites Carbon,2003,41:1819-1826.
    [140]C.A. Lewinsohn, C.H. Henager Jr, and R. H. Jones, Measuring interphase recession by fiber push-in testing J.Am.Ceram.Soc,2001,84(4):866-868.
    [141]S.H. Ju and S.H. Liu, Determining stress intensity factors of composites using crack opening displacement. Composites Structures,2007,81:614-621.
    [142]V.k. Srivatava, Prediction of crack tip opening displacement of fiber composites Engineering Fracture Mechanics,1992,42(5):869-872.
    [143]C. Gamonpilas and E.P. Busso, On the effect of substrate properties on the indentation behavior of coated systems Materials Science and Engineering A, 2004,380:52-61.
    [144]Z.H. Xu and D. Rowcliffe, Finite element analysis of substrate effects on indentation behaviour of thin films Thin Solid Films,2004,447-448:399-405.
    [145]S.W. Wai, G.M. Spinks, H.R. Brown, et al., Surface roughness:Its implications and inference with regards to ultra microindentation measurements of polymer mechanical properties Polymer Testing,2004,23 501-507.
    [146]K. Tunvisut, N.P. O'Dowd, and E.P. Busso, Use of scaling functions to determine mechanical properties of thin coatings from microindentation tests INternational Journal of Solid and Structures,2001,38:335-351.
    [147]M. Sakai, Substrate-affected indentation contact parameters of elastoplastic coating/substrate composites J. Mater. Res.,2009,24(3):831-843.
    [148]I. Manika and J. Maniks, Size effects in micro- and nanoscale indentation Acta Materialia,2006,54:2049-2056.
    [149]J.Y Kim, J.J. Lee, Y.H. Lee, et al., Surface roughness effect in instrumented indentation:A simple contact depth model and its verification J.Mater.Res., 2006,21(12):2975-2978.
    [150]J.Y. Kim, B.W. Lee, D.T. Read, et al., Infulence of tip bluntness on the size-dependent nanoindentation hardness Scripta Materialia,2005,52:353-358.
    [151]D.W.Stollberg, J.M.Hampikian, L.Riester, et al., Nanoindentation measurements of combustion CVD Al2O3 and YSZ films. Materials Science and Engineering A, 2003,359:112-118.
    [152]F. Halitim, N. Ikhlef, L. Bpudoukha, et al., Microhardness, Young's modulus and fracture toughness of alumina implanted with Zr+, Cr+ and Ni+:The effect of the residual stresses J.Phys.D:Appl.Phys.,1997,30:330-337.
    [153]M. Bartsch, L. Mircea, J. Suffner, et al., Interfacial fracture toughness measurement of thick ceramic coatings by indentation. Key Engineering Materials,2005,290:183-190.
    [154]J.Malzbender and G. De With, Fracture toughness of hybird organic-inorganic coatings Journal of Materials Science Letters,2000,19:1867-1868.
    [155]孔德军,张永康,朱伟,等,ZrO2热障涂层残余应力分析.材料热处理学报, 2008,29(1):128-132.
    [156]Y.H. Lee and D. Kwon, Measurement of residual-stress effect by nanoindentation on elastically strained (100) W Scripta Materialia,2003, 49:459-465.
    [157]Y.L Kang, Y. Qiu, Z.K. Lei, et al., An application of Raman spectroscopy on the measurement of residual stress in porous silicon Optics and Lasers in Engineering 2005,43:847-855.
    [158]韩荣江,王继扬,徐现刚,等,显微激光拉曼光谱法鉴别SiC晶体的多型体结构.人工晶体学报,2004,33(6):877-881.
    [159]李美栓,辛丽,余家康,等,喇曼光谱法测量金属表面氧化膜的残余应力.中国腐蚀与防护学报,1999,19:185-188.
    [160]邱明,毛卫国,戴翠英,等,热障涂层应力场的微拉曼光谱技术测试研究.长沙交通学院学报,2006,22(2):76-80.
    [161]R. Liu, C. Zhang, X. Zhou, et al., Structure analysis of chemical vapor deposited β-SiC coatings from CH3SiCl3-H2 gas precursor Journal of Crystal Growth, 2004.270:124-127.
    [162]N.S. Jacobson, D.J. Roth, R.W. Rauser, et al., Oxidation through cracks of SiC-protected carbon/carbon. Surface & Coatings Technology,2008, 203(372-383):372-383.
    [163]T. Morimoto, Y. Ogura, M. Kondo, et al., Multilayer coating for carbon-carbon composites. Carbon,1995,33(4):351-357.
    [164]A. Benfdila and K. Zekentes, On silicon carbide thermal oxidation African Physical Review,2010,4:25-30.
    [165]A.G. Odeshi, H. Mucha, and B. Wielage, Manufacture and characterization of a low cost carbon fibre reinforece C/SiC dual matrix composite. Carbon,2006, 44:1994-2001.
    [166]D.J. Cheng, W.J. Shyy, D.H. Kuo, et al., Growth Characteristics of CVD Beta-Silicon Carbide. J.Electronchem.Soc.,1987,134(12):3145-3149.
    [167]H. Sone, T. Kaneko, and N. Miyakawa, In situ measurements and growth kinetics of silicon carbide chemical vapor deposition from methyltrichlorosilian. Journal of Crystal Growth,2000,219:245-252.
    [168]D. Zhu,P. Hing, P. Brown, et al., Characterization of silicon carbide coatings grown on graphite by chemical vapor deposition. Journal of Materials Processing Technology,1995,48:517-523.
    [169]T.M. Besmann, B.W. Sheldon, T.S. Moss Ⅲ, et al., Depletion Effect of Silicon Carbide Deposition From Methytrichlorosilane. J.Am.Ceram.Soc.,1992, 75(10):2899-2903.
    [170]Y. Huo and Y. Chen, Effects of Deposition Temperature on the Growth Characteristics of CVD SiC Coatings Key Engineering Materials,2008, 368-372:846-848.
    [171]S-S.Saeed and K.A. Gross, Nanoindentation on the surface of thermally sprayed coatings Surface & Coatings Technology,2009,203:3516-3520.
    [172]C.Y. Lu, L.F. Cheng, C.N. Zhao, et al., Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydroden. Applied Surface Science,2009, 255:7495-7499.
    [173]J-P. Kim, J-H. Kim, J-H. Lee, et al., Damage resistance of SiC and Si3N4 coatings with control of microstructure and thickness Progress in Organic Coatings,2009,64:274-280.
    [174]G. Li, S. Chakrabarti, M. Schulz, et al., The effect of substrate positions in chemical vapor deposition reactor on the growth of carbon nanotube arrays. Carbon,2010,48:2106-2122.
    [175]G. Sun, H. Li, Q. Fu, et al., Finite element simulation of the effects of process parameters on deposition uniformity of chemical-vapor-deposited silicon carbide. Computational Materials Science,2009,46:1002-1006.
    [176]J. Chin, P.G.Gantzel, and R. G. Hudson, The structure of chemical vapor deposited silicon carbide. Thin Solid Films,1977,40:57-72.
    [177]D.M. Dobkin and M.K. Zuraw, Principles of chemical vapor deposition.2003, Dordrecht:Kluwer Academic Publishers.
    [178]J. Rodriguez-Viejo, J. Stoemenos, N.Clavaguera, et al., Growth morphology of low-pressure metalorganic chemical vapor deposition silicon carbide on a-SiO2/Si(100) substrates. Journal of Crystal Growth,1995,155:214-222.
    [179]Y. Ward and R. J. Young, A microstructural study of silicon carbide fibres through the use of Raman microscopy. Journal of Materials Science,2001, 36:55-66.
    [180]G.Chollon, R. Naslain, C. Prentice, et al., High temperature properties of SiC and diamond CVD-monofilaments. Journal of European Ceramic Society,2005, 25:1929-1942.
    [181]D.W. Feldman, J.H. Parker, W.J. Choyke, et al., Phono dispersion curves by Raman scattering in SiC polytypes 3C,4H,6H,15R,21R. Physical Review, 1968,173(3):787-793.
    [182]J. Wasyluk, T.S. Perova, S.A. Kukushkin, et al., Raman investigation of different polytypes in SiC thin films grown by solid-gas phase epitaxy on Si (111) and 6H-SiC substrates Materials Science Forum,2010,645-648:359-362.
    [183]C. Ricciardi, E.Aimo Boot, F. Giorgis, et al., Polycrystalline SiC growth and characterization. Applied Surface Science,2004,238:331-335.
    [184]G. Gouadec and P. Colomban, Non-destructive mechanical characterization of SiC fibers by Raman spectroscopy. Journal of the European Ceramic Society, 2001,21:1249-1259.
    [185]F.J. Buchanan and J.A. Little, The growth and morphology of chemically deposited silicon carbide coatings on carbon-carbon composites Surface and Coating Technology,1991,46:217-226.
    [186]Y-J. Lee and D-J. Choi, The effect of diluent gases on the growth behavior of CVD SiC films with temperature. Journal of Materials Science, 2000,35:4519-4526.
    [187]Y. Xu, L. Cheng, L. Zhang, et al., Morphology and growth mechanism of silicon carbide chemical vapor deposited at low temperatures and normal atmosphere. Journal of Materials Science,1999,34:551-555.
    [188]C-H. Chu, Y-M. Lu, and M.-H. Hon, Growth characteristics of β-SiC by chemical vapour deposition. Journal of Materials Science,1992,27:3883-3888.
    [189]D. Lespiaux, F. Langlais, R. Naslain, et al., Correlations between gas phase supersaturation, nucleation process and physico-chemical characteristics of silicon carbide deposited from Si-C-H-Cl system on silica substrates. Journal of Materials Science,1995,30:1500-1510.
    [190]D. Chaussende, M. Ucar, L. Auvray, et al., Control of the supersaturation in the CF-PVT process for the growth of silicon carbide crystals:Research and applications. Crystal Growth & Design,2005,5(4):1539-1544.
    [191]I. J. McColm, Ceramic Hardness 1990, New York Plenum Press.
    [192]M.Trunec, Effcet of grain size on mechanical properties of 3Y-TZP ceramics. Ceramics-Slilkaty,2008,52(3):165-171.
    [193]B-K. Jiang and H.Matsubara, Hardness and Young's modulus of nanoporous EB-PVD YSZ coatings by nanoindentation. Journal of Alloys and Compounds, 2005,402:237-241.
    [194]K.S.K. Karuppiah, A.L. Bruck, S. Sundararajan, et al., Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity. Acta Biomaterialia,2008,4:1401-1410.
    [195]J. Malzbender, G. De With, and J.M.J. den Toonder, Elastic modulus, indentation pressure and fracture toughness of hybrid coatings on glass. Thin Solid Films, 2000,366:139-149.
    [196]J.J. Bellante, H. Kahn, R. Ballarini, et al., Fracture toughness of poly crystalline silicon carbide thin films. Applied Physics Letters,2005, 86:071920-1-071920-3.
    [197]T.H. Courtney, Mechanical Behavior of Materials McGraw-Hill series in materials science and engineering 1990, Singapore McGraw-Hill Publishing Company.
    [198]C.O. Matthew, Mechanical- and Physical-Property Changes of Neutron-Irradiated Chemical-Vapor-Deposited Silicon Carbide, J.Am.Ceram.Soc.,1999,82(9):2490-96.
    [199]J. Tan, Mechanical properties characterization of silicon carbide layers in simulated coated particles[D], in School of Materials,2010, University of Manchester Manchester.
    [200]王毅,徐永东,张立同,等,液相先驱体制备C/C-TaC复合材料.固体火箭技术,2007,30(6):541-543.
    [201]D. Sciti,1. Silvestroni, S. Guicciaradi, et al., Processing, mechanical properties and oxidation behavior of TaC and HfC composites containing 15vol% or MoSi2. J.Mater.Res.,2009,24(6):2056-2065.
    [202]X.H. Zhang, GE. Hilmas, and W.G. Fahrenholtz, Densification and mechanical properties of TaC-based ceramics. Materials Science and Engineering A.2009, 501:37-43.
    [203]J. Yi, X-D. He, and Y. Sun, Characterization of the evaporation behavior of a β-SiC target during electron beam-physical vapor deposition. Journal of Alloys and Compounds,2010,491(1-2):436-440.
    [204]H.L. Brown, P.E. Armstrong, and C.P. Kempter, Elastic properties of some polycrystalline transition-metal monocarbides. The Journal of chemical physics, 1966,45(2):547-549.
    [205]L. Lapez-de-la-Torre, B. Winkler, J. Schreuer, et al., Elastic properties of tantalum carbide (TaC). Solid State Communications,2005,134:245-250.
    [206]C.K. Jun and P.T. Shaffer, Elastic moduli of niobium carbide and tantalum carbide at high temperature. J.Less-Common Matals,1971,23:367-373.
    [207]N.P. Bansal, ed. Hand book of Ceramic Composites.2005, Kluwer Academic Pubilisher Boston/Dordrecht/London,197-211.
    [208]D.J. Green, An introduction to the mechanical properties of ceramics. Cambridge Solid State Science Series, ed. D.R. Clarke, S. Suresh, and I.M.W. FRS.1998, Cambridge:Cambridge University Press.
    [209]T.H. Courtney, Mechanical behaviour of materials 1990, Singapore McGraw-Hill Publishing Company
    [210]C. Bellan and J. Dhers, Evaluation of Young's modulus of CVD coatings by different techniques Thin Solid Films,2004,469-470:214-220.
    [211]E. Lopez-Honorato, P.J. Meadows, P. Xiao, et al., Structure and mechanical properties of pyrolytic carbon produced by fluidized bed chemical vapor deposition. Nuclear Engineering and Design 2008,238:3121-3128.
    [212]H. Sakata, G. Dresselhaus, M.S. Dresselhaus, et al., Effect of uniaxial stress on the Raman spectra of graphite fibers J.Appl.Phys,1988,63:2769-2772.
    [213]Q.M. Liu, L.T. Zhang, L.F. Cheng, et al., Chemical vapour deposition of zirconium carbide and silicon carbide hybrid whiskers Materials Letters,2010, 64:552-554.
    [214]Y.G. Wang, Q.M. Liu, J.L. Liu, et al., Deposition mechanisms for chemical vapor deposition of zirconium carbide coatings J.Am.Ceram.Soc.,2008, 91(4):1249-1252.
    [215]栾新刚,刘巧沐,刘佳,等,化学气相沉积碳化锆涂层的研究进展.材料导报:综述篇,2010,24(3):45-47.
    [216]Y. Imai, M. Mukaida, A. Watanabe, et al., Formation energies of two-dimensional nuclei randomly-generated on (001), (110), and (111) planes of a face-entered-cubic crystal Thin Solid Films,1997,300:305-313.
    [217]X.G. Wang, W.M. Guo, Y-M. Kan, et al., Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives. Journal of the European Ceramic Society,2011,31:1103-1111.
    [218]K. Polychronopoulou, C. Rebholz, M.A. Baker, et al., Nanostructure, mechanical and tribological properties of reactive magnetron sputtered TiCx coatings. Diamond & Related Materials,2008,17:2054-2061.
    [219]C.L. Chu, H.L. Ji, L.H. Yin, et al., Fabrication, properties, and cytocompatibility of ZrC film on electropolished NiTi shape memory alloy. Materials and Engineering C,2011,31:423-427.
    [220]M. Desaeger and I. Verpoest, On the use of the micro-indentation test technique to measure the interfacial shear strength of fiber-reinforced polymer composites. Composites Science and Technology,1993,48:215-226.
    [221]B. Li and Z.K. Chen, Unpublished work.
    [222]T. Nozawa, L. L. Snead, Y. Katoh, et al., Shear properties at the PyC/SIC interface of a TRISO-Coating. Journal of Nuclear Materials,2007,371:304-313.
    [223]S.N. Patankar, C. Suryanarayana, and F.H. Froes, Infulence of tin dioxide interphase on the residual stresses in alumina fiber/glass composites. Scripta Metallurgica et Materialia,1991,25:1787-1792.
    [224]C-H. Hsueh, P. F. Becher, and P. Angelini, Effects of interfacial Films on Thermal Stresses in Whisker-Reinforced Ceramics. J.Am.Ceram.Soc.,1988, 71(11):929-933.
    [225]M.C. Watson and T.W. Clyne, The tensioned push-out test for fibre-matrix interface characterisation under mixed mode loading. Materials Science and Engineering A,1993,160:1-5.
    [226]K. Honda and Y. Kagawa, Analysis of shear stress distribution in pushout process of fiber-reinforced ceramics. Acta metall mater,1995,43(4):1477-1487.
    [227]K. Honda and Y. Kagawa, Debonding Criterion in the pushout process of fiber-reinforced ceramics. Acta mater,1996,44(8):3267-3277.
    [228]X. Liao, H. Li, W. Xu, et al., Study on the thermal expansion properties of C/C composites. J Mater Sci,2007,42:3435-3439.
    [229]R. J. Kerans, Theoretical analysis of the fiber pull-out and push-out tests. J.Am.Ceram.Soc,1991,74(7):1585-1596.
    [230]I.M. Low, Effects of residual stresses on the failure micromechanisms in toughened epoxy systems. Journal of Materials Science,1990,25:2144-2148.
    [231]A.N. Netravali, D. Stone, S. Ruoff, et al., Continuous micro-indenter push-through technique for measuring interfacial shear strength of fiber composites. Composites Science and Technology,1989,34:289-303.
    [232]S.P. Timoshenko and J.N. Goodier, Theory of Elasticity.1951, New York: McGraw-Hill.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700