Laves相NbCr_2基合金的制备、增韧及高温氧化行为与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Laves相NbCr_2合金因其优异的高温力学性能而具有作为新型高强高温结构材料应用的潜力。针对其室温脆性及较差的高温抗氧化性,本文研究了不同制备方法及工艺过程对NbCr_2合金组织及性能的影响,重点探讨了晶粒细化对合金断裂韧性及高温氧化行为的作用机制;研究了相组成对Cr-Nb合金高温抗氧化性的影响规律;探究了合金元素Al及稀土元素Y对NbCr_2合金断裂韧性和高温氧化行为的影响,并探讨了多元合金化对Cr-20Nb高温抗氧化性的影响及采用涂层技术提高Cr-50Nb合金高温抗氧化性的可行性。
     研究中发现,采用机械活化热压合成的Cr-33Nb及Cr-25Nb合金晶粒分别细化到250nm和193.3nm,其维氏硬度和断裂韧性要高于相应成分的熔铸态合金,而且单相Laves相NbCr_2的Cr-33Nb热压合金的断裂韧性达到了5.7 MPam~(1/2) ;随着球磨时间的延长,有利于NbCr_2晶粒的细化及其热固相反应合成,维氏硬度不断增加,而断裂韧性则从球磨20h的5.7 MPam~(1/2)减小到球磨100h的3.7 MPam~(1/2) ,但远远高于熔铸态合金的1.3 MPam~(1/2) ,充分体现了细晶增韧的效果。
     熔铸态及热压合金950℃~1200℃氧化后均形成了以Cr_2O_3为外层、CrNbO_4为内层的双层结构氧化膜,热压合金氧化速率均接近抛物线规律;虽然熔铸态合金在950℃空气中氧化接近于抛物线规律,但在1200℃空气中氧化类似于直线规律。随着热压温度的升高,合金氧化速率减小;保压时间由15min延长到80min时,合金氧化速率逐渐减小,但保压时间达到120min时,氧化速率又有所提高。随着球磨时间的延长,热压合金1100℃及1200℃的氧化增重并不是一直呈现下降的趋势,在球磨时间为20-35h左右,其抗氧化性最好。提出了晶粒细化对Cr-33Nb合金高温抗氧化性有着双重作用机制,即晶粒的细化促进了体系的扩散及氧化膜内应力的释放,形成了Cr_2O_3外膜;当晶粒过细时,导致氧化膜内生长应力的增加,引起氧化膜的开裂、脱落,从而加剧了氧化。
     通过系统地研究相组成对Cr-Nb合金在950℃~1200℃空气中氧化行为的影响,揭示了软第二相Cr能显著增加NbCr_2合金950℃的抗氧化性能,但降低了NbCr_2合金1200℃的抗氧化性能;而软第二相Nb不利于合金950℃~1200℃高温抗氧化性的提高,甚至产生了灾难性氧化。
     通过掺杂Al和Y来提高NbCr_2合金的断裂韧性和高温抗氧化性,结果表明Al和Y分别占据了Laves相NbCr_2合金中Cr原子和Nb原子的晶格位置,从而形成了反位置缺陷。合金元素Al在一定程度上改善了NbCr_2合金的断裂韧性,当Al含量达到12%时,合金断裂韧性达到了6.8 MPam~(1/2) ,且提高了NbCr_2合金1100℃的抗氧化性。Y对NbCr_2合金断裂韧性和高温抗氧化性的影响均呈现先增后减的规律;当Y含量为0.1wt.%时,合金的断裂韧性最高,达到6.15 MPam~(1/2) ;Y含量在0.07-0.14wt.%时,NbCr_2合金抗氧化性能得到提高。同时研究了Al、Si、Y多元合金化对Cr-20Nb合金高温抗氧化性的影响,结果表明,多元合金化的Cr-20Nb合金抗氧化性要好于加入单一合金元素的及纯Cr-20Nb合金,并随着Si含量的增加,合金的氧化增重越小,抗氧化性越好;SEM结果表明,添加了合金元素后,合金氧化膜与基体的粘附性得到了明显的提高。
     采用包埋渗Si、Si-Al共渗及Si-Al共渗+sol-gel工艺+热压的复合工艺在Cr-50Nb合金制备涂层,发现采用复合工艺制备的涂层最致密,与基体的结合最紧密,并形成了以Al_2O_3为外层,Si、Al、Cr及Nb扩散层为内层的复合结构;复合涂层大大提高了Cr-50Nb合金的高温抗氧化性,在1100℃经10次共100h氧化后,氧化膜仅脱落0.049mg/cm~2,特别是在1200℃,氧化膜脱落量也只有0.13 mg/cm~2,而且氧化增重也只有3.38 mg/cm~2。
Laves phase NbCr_2 has potential application as high temperature structural materials because of its excellent mechanical properties at elevated temperature. However, its wide application is limited by the ambient brittleness and high temperature oxidation. The main objective of this work focused on the investigation of grain size effect on fracture toughness and high temperature oxidation behaviors of Laves phase NbCr_2 based compounds which were fabricated by ingot metallurgy and powder metallurgy, respectively. In addition, the influence of phase constitution on the oxidation behavior of the hot pressed Cr-Nb alloys, the effect of Al and Y on fracture toughness and high temperature oxidation behaviors of the Laves phase NbCr_2 based alloys, the effect of mutilalloying on the oxidation of Cr-20Nb alloys and the effect of coating technique on the Cr-50Nb alloys were investigated.
     The results indicate that the average grain sizes of Cr-33Nb and Cr-25Nb fabricated by mechanical alloying and hot pressing are 250 nm and 193.3 nm, respectively. The microhardness and fracture toughness of hot pressed compacts are higher than those of cast alloys. Especially, the fracture toughness of hot pressed Cr-33Nb alloys with single phase NbCr_2 is up to 5.7 MPa m . With increasing the powder milling time from 0 h to 100 h, the content of Laves phase NbCr_2 and the microhardness of the hot pressed compacts increase, the grain size decreases gradually. The fracture toughness values measured using the indentation method decrease from 5.7 MPam~(1/2) to 3.7 MPam~(1/2), which are two to four times higher than that of cast materials (1.3 MPam~(1/2)), indicating that nanostructured NbCr_2 is much tougher than the conventional coarse-grained.
     It is found that both cast alloys and hot pressed alloys form a complex oxidation film containing an outer layer of Cr_2O_3 plus an inner layer of NbCrO_4, instead of a single and continuous Cr_2O_3 film. The oxidation kinetic curves of the hot pressed alloys at 950℃~1200℃and the cast alloys at 950℃are approximately parabola. However, the oxidation kinetic curves of the cast alloys at 1200℃are approximately linear. The oxidation resistance of the hot pressed compacts is found to increase with increasing sintering temperature and sintering time from 15 min to 80 min; however, as sintering time is prolonged to 120 min, the oxidation resistance declines gradually. The oxidation resistance of hot pressed alloys at 1100℃and 1200℃was found to increase rapidly with increasing mechanical alloying time from 20 h to 35 h, followed by a decrease slowly. The differences observed above are attributed to the fine grain size which can increase the diffusion of Cr atom to form Cr_2O_3 on the oxide film and increase the relaxation of the oxide scale stress and the adhesion of the oxide layer on the matrix. However, when the grain sizes were more refined, the oxidation resistance is reduced, which is attributed to the greater grain boundary areas those are the short-circuit diffusion paths for alloys and the locations of higher growth stresses leading to spallation.
     The influence of phase constitution on the oxidation behavior of the hot pressed Cr-Nb alloys were investigated at 950℃~1200℃in air. The results show that Cr phase improves the oxidation resistance of Laves phase NbCr_2 based compounds at 950℃. However, Nb phase deteriorates the oxidation resistance; moreover, Nb phase results in a catastrophic failure during oxidation.
     The influences of Al and Y on the fracture toughness and oxidation resistance of NbCr_2 alloys were studied. The results show that Al mainly occupies the Cr site and Y mainly occupies the Nb site in the NbCr_2 Laves phase. The fracture toughness of the NbCr_2 alloys increased slightly with the increase of Al addition. At a higher Al addition level (i. e. 12 at. %), the NbCr_2 alloy has a fracture toughtness of 6.8 MPam~(1/2) . The addition of Al can also increases the oxidation resistance of NbCr_2 at 1100℃. The optimum content of Y addition can increase the fracture toughness and high temperature oxidation-resistance of NbCr_2 alloys. The fracture toughness reaches its maximum 6.15 MPam~(1/2) when the Y content is 0.1wt.%. The hot pressed alloy with 0.07-0.14wt.% Y has the best oxidation resistance. The influence of Al, Si and Y multialloying on the oxidation resistance of Cr-20Nb alloys is also investigated. The results show that the oxidation resistance of Cr-20Nb alloys alloyed by multielements is higher than that of unalloyed Cr-20Nb and Cr-20Nb alloyed by single element. Moreover, the oxidation resistance of Cr-20Nb alloys increases with increasing the Si content. SEM analysis shows that the additions improve the adhesion of oxide film on the matrix.
     To protect Cr-50Nb alloys from high-temperature oxidation, the silicide diffusion coating and Si-Al coating were produced by pack cementation process and the multilayer coating was fabricated by Si-Al co-deposition pack cementation process, followed by sol-gel process and hot pressing. The results indicate that the multilayer coating has a two layers structure: the outer layer is a compact Al_2O_3 layer; the inner layer is an adherent diffusion layer consisting of Si, Al, Cr and Nb. The multilayer coating improves the oxidation resistance of Cr-50Nb alloys significantly. After 10 cycles and 100 h exposure at 1100℃and 1200℃, the spallation amounts of Cr-50Nb oxide scales are 0.049 mg/cm~2 and 0.13 mg/cm~2, respectively. Moreover, the weight gain of Cr-50Nb coated by the multilayer coating was 3.38 mg/cm~2.
引文
[1]傅恒志.未来航空发动机材料面临的挑战与发展趋向.航空材料学报, 1998, 18(4): 52~61.
    [2]李志林,曲选辉,黄伯云.新型高温结构材料——金属间化合物的研究动态.材料导报, 1995, (3):16~19.
    [3] Chan K S, Davidson D L. The fracture resistance and crack-tip micromechanics of in-situ intermetallic composites. JOM, 1996, 48(9): 62~67.
    [4] Kellou A, Grosdidier K, Coddet C, et al. Theoretical study of structural, electronic, and thermal properties of Cr2(Zr,Nb) Laves alloys. Acta Materialia, 2005, 53(5): 1459~1466.
    [5] Lipsitt H A. Titanium aluminides an overview. Edt. by Koch C C, Liu C T and Stoloff N S, High temperature ordered intermetallic alloysⅠ, MRS Symp. Proc., 1985, 39: 351~354.
    [6] Liu C T. Ductility and fracture behaviour of polycrystalline Ni3Al alloys. Edt. by Stoloff N S, Koch C C. High temperature ordered intermetallic alloysⅡ, MRS Symp. Proc., 1987, 39: 355~360.
    [7] Jiang C. Site preference of early transition metal elements in C15 NbCr_2. Acta Materialia, 2007, 55(5): 1599~1605.
    [8]何玉定. Laves相TiCr_2及其合金的研究, [博士学位论文].长沙:中南工业大学, 1999.
    [9]肖平安,曲选辉,雷长明,等.含TiCr_2 Laves相过共析钛铬合金的制备.中国有色金属学报, 2002, 12(2): 236~240.
    [10]鲁世强. Laves相NbCr_2的机械合金化活化反应合成研究, [博士后出站报告].长沙:中南大学, 2003.
    [11]马燕青. Laves相NbCr_2微(纳)米复合材料的制备及韧化研究, [硕士学位论文].南昌:南昌航空工业学院, 2005.
    [12]仲增墉.我国金属间化合物高温结构材料研究的进展.北京:机械工业出版社, 1992, 1~9.
    [13] Liu C T, Zhu J H, Brady M P, et al. Physical metallurgy and mechanical properties of transition-metal Laves phase alloys. Intermetallics, 2000, 8(9-11): 1119~1129.
    [14] Fujita M, Kaneno Y, Takasugi T. Phase field and room-temperature mechanical properties of C15 Laves phase in Nb-Hf-Cr and Nb-Ta-Cr alloy systems. Journal of Alloys and Compounds. 2006, 424(1-2): 283~288.
    [15] Takasugi T, Hanada S, Yoshida M. High temperature mechanical properties of C15 Laves phaseCr_2Nb intermetallics. Mater. Sci. Eng., 1995, A192/193(2): 805~810.
    [16]陈国良.新型金属材料(一).上海金属, 2002,24(4): 1~9.
    [17] Vasudevan A K, Petrovic J J. Comparative overview of molybdenum disilicide composites. Mater. Sci. Eng., 1992, A155(1-2):1~17.
    [18] Koch C C, Liu C T, Stoloff N S. High-temperature ordered intermetallic alloys. Mater. Res. Soc. Symp. Proc., 1985, 39: 560~565.
    [19] Yoshida M, Takasugi T. TEM observation for deformation microstructure of Laves phase NbCr2 containing V. Mater. Sci. Eng., 2003, A345(1-2): 350~356.
    [20] Kumar K S, Miracle D B. Microstructural evolution and mechanical properties of a Cr-Cr2Hf alloy. Intermetallics, 1994, 2(4): 257~274.
    [21] Kumar K S, Pang L, Horton J A, et al. Structure and composition of Laves phases in binary Cr-Nb, Cr-Zr and ternary Cr-(Nb, Zr) alloys. Intermetallics, 2003, 11(7): 677~685.
    [22] Sauthoff G Z. Intermetallic phases - materials developments and prospects. Metallkde, 1989, 80(5): 337~344.
    [23] Fleischer R L, Zabala R J. Mechanical properties of Ti-Cr-Nb alloys and prospects for high-temperature applications. Metall. Trans., 1990, A 21 (8): 2149~2154.
    [24] Takeyama M, Liu C T. Microstructure and mechanical properties of Laves-phase alloys based on Cr_2Nb. Mater. Sci. Eng., 1991, A132: 61~66.
    [25] Anton D L, Shah D M. High temperature evaluation of topologically close packed intermetallics. Mater. Sci. Eng., 1992, A153: 410~415.
    [26] Chan K S. Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites. Mater. Sci. Eng., 2002, A329-331: 513~522.
    [27] Davidson D L, Chan K S. The effect of microstructure on the fracture resistance of Nb-Cr-Ti in situ composites. Scripta Materialia, 1998, 38(7): 1155~1161.
    [28]孙学松,孙峰,孙坚. ZrCr_2 Laves相金属间化合物缺陷结构及缺陷软化效应.中国有色金属学报, 2005, 15(4): 626~630.
    [29]蒋卫卿,黄存可,黄丹等.二元合金Laves相结构的PLS分析.金属学报, 2005, 41(1): 19~22.
    [30]周鸥,姚强,孙学松.合金元素在ZrCr_2 Laves相中的晶格占位及其对力学性能的影响.中国有色金属学报, 2006, 16(9): 1603~1607.
    [31]何玉定,曲选辉,黄伯云,等.Laves相TiCr_2的相变特征.中国有色金属学报,1998,18(增刊1): 115~118.
    [32]何玉定,曲选辉,黄伯云.机械活化热压合成Laves相TiCr_2及其力学性能的研究.稀有金属, 2003, 27(2): 303~306.
    [33] Yao Q, Sun J, Zhang Y, et al. First-principles studies of ternary site occupancy in the C15 NbCr_2 Laves phase. Acta Materialia, 2006, 54(13): 3585~3591.
    [34] Yao Q, Sun J, Lin D, et al. First-principles studies of defects, mechanical properties and electronic structure of Cr-based Laves phases. Intermetallics, 2007, 15(5-6): 694~699.
    [35]姚强.过渡金属元素在NbCr_2Laves相中晶格占位的第一性原理计算.金属学报, 2006, 42(8): 801~804.
    [36]曲选辉,何玉定,黄伯云. Laves相铬化物的研究[J].高技术通讯, 1996, 12: 27~30.
    [37]鲁世强,黄伯云,贺跃辉.机械合金化对Laves相Cr2Nb固相热反应合成的影响.航空学报, 2003, 124(16): 568~572.
    [38]马燕青,鲁世强,胡春文,等. Laves相铬化物的研究概况.国外金属加工, 2004, 25(2): 10~14.
    [39]杨晓光,马淳安,雷永泉,等.合金化对ZrMn2基Laves相贮氢合金相组成的影响.中国有色金属学报, 2002, 12(5): 897~901.
    [40]张明军. Nb-Cr系多元合金的微观组织及性能研究, [硕士学位论文].西安:西北工业大学, 2007.
    [41] Frank F C, Kasper J S. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Cryst., 1958, 11: 184~190.
    [42] Frank F C, Kasper J S. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Cryst., 1959, 12: 483~499.
    [43]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料.北京:国防工业出版社, 2001.
    [44] Stein F, Palm M, Sauthoff G. Structure and stability of Laves phases part 1-Critical assessment of factors controlling Laves phase stability. Intermetallics, 2004, 12:713~720.
    [45] Kazantzis A V, Aindow M, Jones I P, et al. The mechanical properties and the deformation microstructures of the C15 Laves phase Cr2Nb at high temperatures. Acta Materialia, 2007, 55(6): 1873~1884.
    [46] Kazantzis A V, Aindow M, Triantafyllidis G K, et al. On the self-pinning character of synchro-Shockley dislocations in a Laves phase during strain rate cyclical compressions. Scripta Materialia, 2008, 59(7): 788~791.
    [47] Bewlay B P, Sutliff J A, Jackson M R, et al. Microsturctural and crystallographic relationships in directionally solidified Nb-Cr2Nb eutectics. Acta Metall. Mater., 1994, 42(8): 2869~2878.
    [48] Zhu J H, Pike L M, Liu C T, et al. Point defects in binary Laves phase alloys. Acta Mater., 1999, 47(7): 2003~2108.
    [49] Zhu J H, Liu C T. Defect structures in ZrCo2 laves phase. Acta Mater., 2000, 48(3): 2339~2347.
    [50] Moffett M B, Clark A E, Wun-Fogle M, et al. Characterization of terfenol-D for magnetostrictive transducers. J. Acoust. Soc. Am., 1991, 89(3): 1448~1455.
    [51] Hazzledine P M, Pirouz P. Synchroshear transformations in Laves phases. Scripta Metallurgica et Materialia, 1993, 28(10): 1277~1282.
    [52] Zhu J H, Liaw P K, Liu C T. Effect of electron concentration on the phase stability of NbCr2-based Laves phase alloys. Mater. Sci. Eng., 1997, A239-240: 260~264.
    [53]张忠铧,孙扬善. Fe3Al基合金力学性能和显微组织的关系研究.材料工程, 1997, 7: 17~18.
    [54] Liu C T. Recent advances in ordered intermetallics. Materials Chemistry and Physics, 1995, 42(2): 77~86.
    [55]李文,关振中,张瑞林. Ti-Al系金属间化合物的氢脆机理.稀有金属材料与工程, 1999, 28(3): 129~131.
    [56] Benjamin J S. Dispersion strengthened superalloys by mechanical alloying. Metallurgical Transactions, 1970, 1(10): 2943~2951.
    [57]陈新亮,吴萍,赵慈,等.机械球磨Al-10%Ti粉末的组织和热稳定性.稀有金属材料与工程, 2005, 34(3): 443~446.
    [58] Zhu S M, Iwasaki K. Microstructure and mechanical properties of mechanically alloyed and HIP-consolidated Fe3Al. Mater. Trans., 1999, 40(12):1461~1466.
    [59] Mekky W, Nicholson P S. The fracture toughness of Ni/Al2O3 laminates by digital image correlation II: Bridging-stresses and R-curve models. Engineering Fracture Mechanics, 2006, 73(5): 583~592.
    [60] Sigl L S, Mataga P A, Dalgleish B J, et al. On the toughness of brittle materials reinforced with a ductile phase. Acta Metall. Mater., 1988, 36: 945~953.
    [61] Thomson K E, Jiang D T, Lemberg J A, et al. In situ bend testing of niobium-reinforced alumina nanocomposites with and without single-walled carbon nanotubes. Mater. Sci. Eng., 2008, A493(1-2): 256~260.
    [62] Anton D L, Shah D M. Ductile phase toughening of brittle intermetallics. Materials ResearchSociety, Pittsburgh, PA, 1990, 194: 45~52.
    [63] Chen K, Mllen S M, Livingston J D. Microstructures and mechanical properties of NbCr_2 and ZrCr_2 Laves phase alloys prepared by powder metallurgy. Journal of Materials Science, 2003, 38: 657~665.
    [64]何玉定,曲选辉,黄伯云.合金元素对Laves相TiCr2力学性能的影响.中国有色金属学报, 1998, 8(4): 568~572.
    [65]高小玫,钱祥荣. Cr对Fe3Al的韧化作用.金属学报, 1994, 30(7): 307~310.
    [66] Okaniwa H, Shindo D, Yoshida M, et al. Determination of site occupancy of additives X(X=V, Mo, W and Ti) in the Nb-Cr-X Laves phase by ALCHEMI. Acta Materialia, 1999, 47(6): 1987~1992.
    [67] Grujicic M, Tangrila S, Cavin O B, et al. Effect of iron additions on structure of Laves phases in Nb-Cr-Fe alloys. Mater. Sci. Eng., 1993, A160: 37~48.
    [68] Brady M P, Tortorelli P F. The effect of microstructure and temperature on the oxidation behavior of two phase Cr-Cr2X (X=Nb, Ta) alloys. Symposium on High Temperature Corrosion and Materials Chemistry; San Diego, USA; 1998, 466~472.
    [69] Brady M P, Sachenko P. Effects of Fe on the oxidation/internal nitridation behavior and tensile properties of Cr and oxide dispersion ductilized Cr. Scripta Materialia, 2005, 52(9): 809~814.
    [70] Brady M P, Tortorelli P F, Payzant E A, et al. Oxidation behavior of Cr_2N, CrNbN, and CrTaN phase mixtures formed on nitrided Cr and Laves-reinforced Cr alloys. Oxidation of Metals, 2004, 61(5/6): 379~401.
    [71] Brady M P, Tortorelli P F, Walker L R. Water vapor and oxygen/sulfur-impurity effects on oxidation and nitridation in single- and two-phase Cr-Nb alloys. Oxidation of Metals, 2002, 58(3/4): 297~302.
    [72] Ohta T N, Kaneno Y, Inoue H, et al. Microstructures and mechanical properties of NbCr_2 and ZrCr_2 laves phase alloys prepared by powder metallurgy. Journal of Materials Science, 2003, 38 (4): 657~661.
    [73] Liu C T, Tortorelli P F, Hotron J A, et al. Effects of alloy additions on the microstructure and properties of Cr-Cr_2Nb alloys. Mater. Sci. Eng., 1996, A214: 23~32.
    [74] Wagner C. Theoretical analysis of the diffusion process determining the oxidation rate of alloys. J. Electrochem. Soc., 1952, 99(2): 369~380.
    [75] Kofstad P, Lillerud K P. On high temperature oxidation of chromium. J. Electrochem. Soc.,1980, 127(11): 2411~2419.
    [76] Graham H C, Davis H H. Oxidation/vaporization kinetics of Cr_2O_3. Journal of the American ceramic Society, 1971, 54(2): 89~92.
    [77] Gesmundo F, Viani F and Niu Y. The internal oxidation of two-phase binary alloys under low oxidant pressures. Oxid. Met., 1996, 45(1-2): 51~76.
    [78] Gesmundo F, Nanni P, Whittle, D P. Oxidation behavior of two-phase alloy Fe-44 w/o Cu. J. Electrochem. Soc., 1980, 127(8): 1773~1782.
    [79] Niu Yan, Fu Guangyan, Wu Weitao, et al. The oxidation of a Fe-Ce alloy under low oxygen pressures at 600-800℃. High Temperature Materials and Processes, 1999, 18(3):159~172.
    [80] Pilling N B, Bedworth R E. The oxidation of metals at high temperatures. Journal of institute of metal, 1923, 29 (3): 529~591.
    [81] Meier G H, Pettit F S. High temperature oxidation and corrosion of intermetallic compounds. Materials Science and Technology, 1992, 8 (4):331~338.
    [82] Rhys-Jones T N, Grabke H J, Kudielka H. The effect of various amounts of alloyed cerium and cerium oxide on the high temperature oxidation of Fe-10Cr and Fe-20Cr alloys. Corro. Sci., 1987, 27 (1): 49~73.
    [83] Flower H M, Wilcox B A. In situ oxidation of Ni-30wt.%Cr and TDNiCr in the high voltage electron microscope. Corro. Sci., 1977, 17 (3): 253~264.
    [84] Ramanarayanan T A, Raghavan M, Petkovicluton R. The characteristics of alumina scales formed on Fe-based yttria-dispersed alloys. J. Electrochem. Soc., 1984, 131(4): 923~931.
    [85]钱余海,李美栓,张亚明.氧化膜开裂和剥落行为.腐蚀科学与防护技术, 2003, 15(2): 90~93.
    [86] Haifeng Liu, Weixing Chen. Cyclic oxidation behaviour of electrodeposited Ni3Al–CeO2 base coatings at 1050°C. Corrosion Science, 2007, 49(9): 3453~3478.
    [87] Samanta S K, Mitra S K, Pal T K. Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel. Mater. Sci. Eng., 2006, A430(1-2): 242~247.
    [88] Moon D P. Role of reactive elements in alloy protection. Mater. Sci. Technol., 1989 (5): 754~764.
    [89]李铁藩. 21世纪高温氧化的发展方向.材料保护, 2000, 33(1): 12~17.
    [90]赵海云,王华明.激光熔覆过渡金属硅化物Laves相增强高温耐磨抗氧化涂层组织与性能研究.应用激光, 2002, 22(2): 20~23.
    [91]陈云峰,熊华平,毛唯.液相Al-Si共渗提高Ti3Al基合金高温抗氧化性.腐蚀科学与防护技术, 2005, 17(1): 39~42.
    [92] He Yi-Rong, Rapp R A, Tortorelli P F. Oxidation-resistant Ge-doped silicide coating on Cr-Cr2Nb alloys by pack cementation. Mater. Sci. Eng., 1997, A222 (2):109~117.
    [93] Bohn R, Klassena T, Bormann R. Room temperature mechanical behavior of silicon-doped TiAl alloys with grain sizes in the nano- and submicron-range. Acta Materialia, 2001, 49(2): 299~311.
    [94] Chen T, Hampikian J M, Thadhani N N. Synthesis and characterization of mechanically alloyed and shock-consolidated nanocrystalline NiAl intermetallic. Acta Materialia, 1999, 47(8): 2567~2579.
    [95] Liu Z G, Guo J T, Shi N L. Consolidation and compression property of nanocrystalline NiAl synthesized by mechanical alloying. J. Mater. Sci. Technol., 1996, 12: 7~11.
    [96] Kishio H, Shoko T, Kazuya N. In-situ observation of C14 type Laves phase nucleation from mechanically milled amorphous Zr-Ni-V-Mn-Fe alloy. Mater. Trans. JIM, 1995, 36(2): 251~257.
    [97] Wang F. Oxidation resistance of sputtered Ni3(AlCr) nanocrystalline coating. Oxid Met, 1997, 47:247~258.
    [98] Myung J S, Lin H J, Kang S G. Oxidation behavior of nanocrystalline Al alloys containing 5 and 10 at.% Ti. Oxid Met, 1999, 51(1/2):79~95.
    [99]付广艳,牛焱,吴维.不同方法制备的Cu-Cr合金的氧化行为.金属学报, 2003, 39(3): 297~300.
    [100] Pérez P, González-Carrasco J L, Adeva P. Influence of exposure time and grain size on the oxidation behaviour of a PM Ni3Al alloy at 635°C. Corros. Sci., 1998, 40(4-5): 631~644.
    [101] Pérez P. Influence of the alloy grain size on the oxidation behaviour of PM2000 alloy. Corros. Sci., 2002, 44: 1793~1808.
    [102] Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J. Amer. Cer. Soc., 1981, 64: 533~538.
    [103] Keitz A V, Sauthoff G, Neumann P. Laves phases for high temperatures-tructure, stability and constitution. Z. Metallkd, 1998, 89(12): 803~810.
    [104] Keitz A V, Sauthoff G. Laves phases for high temperatures-partⅡ: Stability and mechanical properties. Intermetallics, 2002, 10:497~510.
    [105] Hall, E O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc., 1951, B64:747~753.
    [106] Petch, N J. The cleavage strength of polycrystals. J. Iron Steel Inst., 1953, 174: 25~28.
    [107] Wang F. The effect of nanocrystallization on the selective oxidation and adhesion of Al2O3 scales. Oxid. Met., 1997, 48: 215~224.
    [108] Chen G, Lou H. The effect of nanocrystallization on the oxidation resistance of Ni-5Cr-5Al alloy. Scripta Mater., 1999, 41: 883~887.
    [109] Hassain M K. Effect of alloy microstructure on the high temperature oxidation of a Fe-10%Cr alloy. Corros. Sci., 1979, 19: 1031~1045.
    [110] Goedjen J G, Shores D A. The effect of yttrium ion implantation on the oxidation of Nickel-Chromium alloys. Oxid. Met., 1992, 38: 125~138.
    [111] Otsuka N, Shida Y, Fujikawa H. Internal-external transition for the oxidation of Fe-Ni-Cr austenitic stainless in steam. Oxid. Met., 1989, 32: 13~45.
    [112] Singh R K, Khanna A S, Tiwari R K. Influence of grain size on the oxidation resistance of 2.25Cr-1Mo steel. Oxid. Met., 1992, 37: 1~12.
    [113] Singh R K, Gnanamoorthy J B, Roy S K. Synergistic influence of alloy grain size and Si content on the oxidation behavior of 9Cr-1Mo steel. Oxid. Met., 1994, 42: 335~355.
    [114] Hart E W. On the role of dislocation in bulk diffusion. Acta Met., 1957, 5: 597~598.
    [115] Wang F, Lou H, Wu W. The oxidation resistance of a sputtered, microcrystalline TiAl-intermetallic compound film. Oxid. Met., 1995; 43:395~409.
    [116] Zhang Y F. Study of oxide scale mechanical stability at elevated temperatures, [Ph.D dissertation]. The university of Minnesota, Minnesota, USA, 1996.
    [117] Karch J, Briant R C, Gleiter H. Ceramics ductile at low temperature. Nature, 1987, 330:556~558.
    [118]王福会,楼翰一,李美栓,等.溅射沉积CoCrAl微晶涂层的抗氧化性能及抗氧化机理.腐蚀科学与防护技术, 1994, 6(1): 7~16.
    [119]郑勇,游敏,刘文俊,等.原始粉末尺寸对Ti(C,N)基金属陶瓷烧结特性和组织结构的影响.粉末冶金技术, 2003, 21(4): 195~200.
    [120]王天国,邵刚勤,段兴龙,等.高能球磨与热压烧结制备TiAl基合金.机械工程材料,2007, 31(1): 32~34.
    [121]孙金峰,李晓普,王明智.机械合金化对Fe-Cu-Al热压烧结的影响.金刚石与磨料磨具工程, 2008, 164(2): 25~28.
    [122] Qing He, Chengchang Jia, Jie Meng. Influence of iron powder particle size on the microstructure and properties of Fe3Al intermetallics prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng., 2006, A428(1-2): 314~318.
    [123]鲁世强,肖璇,李鑫,等.低温退火温度对Laves相Cr2Nb固相热反应合成的影响.稀有金属材料与工程, 2006, 35(10): 1535~1538.
    [124] Thoma D J, Perepezko J H, Plantz D H, et al. Metastable b.c.c. phase formation in the Nb-Cr system. Mater. Sci. Eng., 1994, A179-180: 176~180.
    [125] Witkin D B, Lavernia E J. Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci., 2006, 51: 1~60.
    [126]黄培云.粉末冶金原理.北京:冶金工业出版社,1982.
    [127]崔国文.缺陷扩散与烧结.北京:清华大学出版社,1990.
    [128] Mackenzie J K, Shuttleworth R. A phenomenological theory of sintering. Proc. Phys. Soc., 1949, 62(13): 833~852.
    [129] Coble R L. Sinter crystalline solids-II experimental test of diffusion models in powder compacts. Appl. Physics, 1961, 32: 793~799.
    [130] Coble R L. Hot-pressing alumina-mechanisms of material transport. J. Amer. Ceram. Soc., 1963, 46(9): 430~441.
    [131] Averback R S. Sintering and deformation of nano-grained materials. Zeitschrift fur physic D atoms molecules and clusters, 1993, 26(2): 1~4.
    [132] Averback R S, Hofler H J, Tao R. Processing of nano-grained materials. Mater. Sci. Eng., 1993, A166(3): 169~177.
    [133]樊建中,左涛,肖伯律,等.高能球磨粉末冶金制备工艺对15%SiCP/2009Al复合材料性能的影响.复合材料学报,2004, 21(4): 92~98.
    [134] Jain M, Christman T. Synthesis, processing, and deformation of bulk nanophase Fe-28Al-2Cr intermetallic. Acta Mater., 1994, 42 (6): 1901~1911.
    [135] Lillerud K P, Kofstad P. On high temperature oxidation of chromium. J. Electrochem. Soc., 1980, 127: 2397~2409.
    [136]李美栓.金属的高温腐蚀.北京:冶金工业出版社.2001.
    [137]李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社,2003.
    [138] Zhu S M, Iwasaki K. Microstructure and mechanical properties of mechanically alloyed and HIP-consolidated Fe3Al. Mater. Trans., 1999, 40(12): 1461~1466.
    [139]朱流,郦剑,李军,等.热压烧结工艺对超韧Al2O3-TiC-Co复合陶瓷性能的影响.材料热处理学报, 2007, 28(5): 20~24.
    [140] He L, Ma E. Full-density nanocrystalline Fe-29Al-2Cr intermetallic consolidated from mechanically milled powders. Journal of Materials research, 1996, 11(1): 72~80.
    [141]肖璇,鲁世强,马燕青,等.机械合金化+热压制备Laves相NbCr2合金及其组织性能研究.航空材料学报, 2007, 27(5) : 7~11.
    [142]肖璇,鲁世强,胡平,等.热压时间对Laves相Cr2Nb合金组织与性能的影响.材料热处理学报, 2007, 28(6) : 59~62.
    [143] Xiao X, Lu S Q, Hu P, et al. The effect of hot pressing time on the microstructure and properties of Laves phase NbCr2 alloys. Mater. Sci. Eng., 2008, A(1-2): 80~85.
    [144]朱日彰,何业东,齐慧滨.高温腐蚀及耐高温腐蚀材料.上海:上海科学技术出版社, 1993.
    [145] Pettit F S. Oxidation mechanisms for nickel-aluminum alloys at temperatures between 900 and 1300°C. Trans TMS-AIME, 1967, 237: 1296~1305.
    [146] Davidson D L, Chan K S. Crystallography of fatigue crack initiation in astrology at ambient temperature. Acta Metallurgica, 1989, 37(4): 1089~1097.
    [147] Chan K S, Davidson D L. Driving forces for composite interface fatigue cracks. Engineering Fracture Mechanics, 1989, 33(3): 451~466.
    [148]肖璇,鲁世强,马燕青,等.机械合金化-热压制备Nb/NbCr2复合材料的组织与性能.中国有色金属学报, 2007, 17(11): 1761~1766.
    [149]胡平,鲁世强,肖璇,等.机械合金化+热压制备Cr-NbCr2复合材料及其组织性能研究.热加工工艺,2007, 36(4):4~7.
    [150] Brady M P, Zhu J H, Liu C T, et al. Oxidation resistance and mechanical properties of Laves phase reinforced Cr in-situ composites. Intermetallics, 2000, 8(11): 1111~1118.
    [151] Thoma D J, Peprepezko J H. An experimental evaluation of the phase relationships and solubilities in the Nb-Cr system. Mater. Sci. Eng., 1992, A156: 97~108.
    [152]李辉,郭建亭,孙超,等.钇和铈对Ni3Al基合金压缩性能的影响.中国稀土学报,1991, 9(3): 243~247.
    [153] Chung C Y, Xie C Y, Hsu T Y. Effect of rare earth element Nd on the ductility and fracturebehavior of a Ni-rich NiAl alloy. Scripta mater., 1997, 37(1): 99~102.
    [154]陈仕奇,曲选辉,雷长明,等,TiAl+La有序合金的室温力学性能.金属学报, 1994, 30(1) : 20~24.
    [155]刘滨,张密林,胡耀宇,等.富镧混合稀土对Mg-10Li-4Al合金组织和力学性能的影响.航空材料学报, 2007, 27(5) : 17~21.
    [156] Xu D K, Liu L, Xu Y B, et al. The influence of element Y on the mechanical properties of the as-extruded Mg–Zn–Y–Zr alloys. Journal of alloys and compounds, 2006, 426: 155~161.
    [157]王艳蕊,刘平,雷静果,等.稀土Y掺杂对Cu-Cr-Zr合金时效性能的影响.铸造技术,2005, 26( )6:486~502.
    [158]郭建亭,任维丽,周继扬.稀土元素在金属间化合物(铝化物)中的作用.材料工程, 2002,(1): 36~39.
    [159] Han Y F, Xiao C B. Effect of yttrium on microstructure and properties of Ni3Al base alloy IC6. Intermetallics, 2000, 8(5-6): 687~691.
    [160] Xiao C B, Han Y F. Study on precipitates in Ni-Al-Mo-B alloy IC6 with addition of excess amount of yttrium. Scripta mater., 1999, 41(5) : 475~480.
    [161] George E P, Liu C T. Brittle fracture and grain boundary chemistry of microalloyed NiAl. J. Mater. Res., 1990, 5(4): 754~762.
    [162] Cosdandey F, Plano R. Determination of stacking fault energies of Ni-Cr-Ce alloys. Scripta metal. mater., 1992, 26: 723~726.
    [163] Briant C L. On the chemistry of grain boundary segregation and grain boundary fracture. Met. trans., 1990, 21A: 2339~2354.
    [164] Fisher G, Datta P K, Burnell-Gray J S, et al. The effects of active element additions on the oxidation performance of a platinum aluminide coating at 1100℃. Surf. Coat. Tech., 1998, 110(1): 24~30.
    [165] Tien J K, Pettit F S. Mechanism of oxide adherence on Fe-25Cr-4Al (Y or Sc) alloys. Metall. Trans., 1972, 3: 1587~1599.
    [166] Espevik S, Rapp R A, Daniel P L, et al. Oxidation of Ni-Cr-W ternary alloys. Oxid. Met., 1980, 14 (2):85~108.
    [167] Stott F H, Wood G C, Fountain G J. The influence of yttrium additions on the oxidation resistance of a directionally solidified Ni-Al-Cr3C2 eutectic alloy. Oxid. Met., 1980, 14 (2): 135~146.
    [168] Pint B A. Experimental observations in support of the dynamic segregation theory to explain the reactive-element effect. Oxid. Met., 1996, 45 (1/ 2): 1~37.
    [169]靳惠明,陈荣发,张剑峰,等.金属镍高温氧化机理及稀土元素效应研究.机械工程材料, 2004, 28(5): 7~10.
    [170]李美栓,辛丽,钱余海,等.氧化膜应力研究进展.腐蚀科学与防护技术, 1999, 11(5): 300~304.
    [171] Ramanarayanan T A, Ayer R, Petkovic-Luton R, et al. The influence of yttrium on oxide scale growth and adherence. Oxid. Met., 1988, 29(5-6): 445~472.
    [172] Stringer J, Wilcox B A, Jaffee R I. The high-temperature oxidation of nickel-20 wt.% chromium alloys containing dispersed oxide phases. Oxid. Met., 1972, 5(1): 11~47.
    [173]黄铭刚.合金化对Laves相NbCr2合金组织及性能的影响研究, [硕士学位论文].南昌:南昌航空大学,2008.
    [174]苏倩.合金化对Laves相NbCr2基合金力学性能和氧化性能的影响研究, [硕士学位论文].南昌:南昌航空大学,2008.
    [175] Zhu C J, Ma X F, Zhao W, et al. Processing, microstructure and mechanical properties of W50Al50 bulk alloy obtained by mechanical alloying and hot-pressing. Scripta Materialia, 2004, 51(10): 993~997.
    [176]陈磊,王富岗.抗高温氧化合金的研究进展.材料导报, 2002, 16(5) : 27~29.
    [177] Klopp W D, Sims G T, Jaffee R I. Effects of alloying on kinetics of oxidation of niobium. Journal of the Less Common Metals, 1960, 3:15~21.
    [178] Inouye H. Niobium in temperature applieations. Niobium Pro of Int SymPosum.TMS,1984,615~619.
    [179] Roger A P. The oxidation behavior and protection of niobium. JOM, 1990, 8 (1): 20~25.
    [180] Loria E A. Niobium based superalloys via powder metallurgy technology. J. Met., 1987, 7: 22~26.
    [181] Vilasi M, Francois M, Podor R, et al. New silicides for new niobium protective coatings. Journal of Alloys and Compounds, 1998, 264: 244~251.
    [182] Matsumura Y, Fukumoto M, Hayashiet S, et al. Oxidation behavior of a Re-base diffusion-barrier/β-NiAl coating on Nb-5Mo-15W at high temperatures. Oxidation of Metals, 2004, 61(1/2):105~124.
    [183]翟金坤,马祥,白新德,等. C-103铌合金上Si-Cr-Ti料浆熔烧涂层的改性研究.航空学报,1994,15(4): 499~507.
    [184]贾中华.料浆法制备铌合金和钼合金高温抗氧化涂层.粉末冶金技术, 2001, 19(2): 74~76.
    [185] Nicholls J R. Advances in coating design for high-performance gas turbines. MRS Bulletin, 2003, 9: 659~670.
    [186]赵群,于永泗.铌基合金的抗高温氧化性研究.材料导报, 2003, 17(2): 29~31
    [187] Murakami T, Sasaki S, Ichikawa K, et al. Oxidation resistance of powder compacts of the Nb-Si-Cr systemand Nb3Si5Al2 matrix compacts prepared by spark plasma sintering. Intermetallics, 2001, 9: 629~635.
    [188]朱明,李美栓,李亚利,等.溶胶-凝胶高温氧化防护涂层.腐蚀科学与防护技术, 2004 , 16 (1) : 33~37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700