二羟基铁/肝素纳米颗粒-VEGF修饰促进去细胞血管基质的生物相容性和内皮化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章二羟基铁/肝素复合物纳米修饰去细胞血管基质的制备和生物相容性评价
     目的:去细胞异种血管植入体内存在血栓形成的风险。本研究旨在采用二羟基铁/肝素复合物(DHCs)修饰去细胞血管基质以提高其生物相容性。评估其作为一种新型肝素修饰去细胞异种血管方法的可行性。
     方法:使用二羟基铁作为交联剂,采用层层自组装技术将二羟基铁(DHI)和肝素交替固定在BJV表面,构建一种新型的DHCs抗凝表面。通过甲苯胺蓝比色法检测剩余肝素浓度而获得每次自组装结合肝素的量;扫描电镜(SEM)和组织切片甲苯胺蓝染色检测肝素和二羟基铁层层自组装修饰BJV (LBL-BJV)的表面微结构;拉力试验检测其生物力学性能;洗脱试验检测DHCs与BJV结合的稳定性;抗凝血活性检测、血小板粘附实验、内皮细胞增殖实验和抗钙化实验检测LBL-BJV的生物相容性。
     结果:甲苯胺蓝比色法显示每组装一次约有808±86μg/cm2肝素固定在BJV表面;扫描电镜显示DHCs是均匀的包裹在胶原纤维表面并形成纳米膜;甲苯胺蓝组织切片染色提示肝素主要结合在BJV的表面;拉力试验提示实验组的生物力学稳定性显著地提高;洗脱试验提示DHCs稳定地结合在BJV的表面并持续缓慢的释放肝素;抗凝血活性检测显示实验组PT和APTT明显高于正常值范围;实验组材料表面的血小板数明显低于对照组,每10000μm2LBL-BJV和DC-BJV表面血小板计数分别为8±4和48±16;内皮细胞增殖实验提示经过7天的培养,实验组和对照组材料表面内皮细胞数相似;在皮下包埋4周时,LBL-BJV和DC-BJV中钙离子的含量分别为8.5±1.9μg/mg和26.6±3.7μ/mg;8周时,LBL-BJV和DC-BJV中钙离子的含量分别为21.5±6.8μg/mg和112.6±16.9μg/mg。
     结论:DHCs牢固地结合在DC-BJV表面,形成抗凝表面,并长时间的缓慢释放肝素。DHCs纳米修饰能够提高去细胞血管基质的生物力学稳定性和生物相容性。
     第二章二羟基铁/低分子肝素纳米颗粒的制备与性能评价
     目的:低分子肝素钠(LMWH)的半衰期短,维持抗血栓活性时间短。本研究旨在制备一种具有抗凝血活性的、能缓释LMWH的DHI/LMWH纳米颗粒(DLN),并评估其作为一种新型抗凝血药物的可能性。
     方法:在超声振荡或磁力搅拌条件下,将DHI溶液加入LMWH溶液而形成DLN溶液;并将两种方法在不同的DHI/LMWH质量比条件下,检测两种条件下形成的纳米颗粒形状、粒径、zeta电位和包封率;红外吸收光谱检测DLN与LMWH两者的红外吸收光谱的差异。
     结果:在超声振荡条件下形成的纳米颗粒平均粒径小于100nm,而在磁力搅拌条件下形成的纳米颗粒平均粒径大于100nm;两种处理方法对纳米颗粒的zeta电位和包封率都没有影响:zeta电位均为负值;包封率与DHI/LMWH的质量比呈正相关;当DHI/LMWH质量比低于1.2时,形成纳米颗粒的平均粒径低于100nm,当DHI/LMWH的质量比大于1.2时,形成的纳米颗粒的粒径超过100nm,并出现微米级颗粒;SEM图片显示DLN呈矩形晶体状结构;DLN与LMWH的红外吸收光谱大体相似,但DLN的红外吸收光谱中出现1732cm-、1549cm-、690cm-、423cm-四处吸收峰;DLN在PBS中稳定存在并缓慢释放:第一天释放量稍大,约占总量的5.1%,其后是均匀释放,经4周的震荡,LMWH的释放量约占总量的43.8%。
     结论:DHI和LMWH能够在超声振荡条件下形成具有缓释功能的抗凝纳米颗粒,DLN有望成为一种新型的纳米抗凝药物。
     第三章二羟基铁/低分子肝素纳米颗粒-VEGF修饰促进去细胞血管基质的生物相容性和内皮化的研究
     目的:异种移植血管存在生物相容性差和血管内皮化不足等缺陷,为了促进去细胞血管基质的生物相容性和内皮化,采用DLN-VEGF修饰去细胞血管基质表面,评估其作为一种修饰去细胞异种血管方法的可行性。
     方法:先使用DHI和LMWH预处理去细胞牛颈静脉(DC-BJV),通过DHI和LMWH之间作用力将DLN固定到去细胞血管基质的表面,再通过LMWH将VEGF固定到去细胞血管基质的表面,构建一种二羟基铁/低分子肝素纳米颗粒-VEGF修饰的去细胞牛颈静脉(DLN-VEGF-BJV);扫描电镜(SEM)和组织切片甲苯胺蓝染色检测DLN-VEGF-BJV的表面微结构;拉力试验检测其生物力学性能;洗脱试验检测DHI与BJV结合的稳定性;血小板粘附实验、内皮细胞增殖实验和抗钙化实验检测其的生物相容性;体外内皮细胞增殖实验检测其促内皮细胞生长、增值能力。
     结果:扫描电镜显示DLN广泛分布DLN-VEGF-BJV血管基质表面的纤维表面和纤维缝隙间;甲苯胺蓝组织切片染色提示DLN主要结合在BJV材料的外表面;拉力试验提示实验组的生物力学稳定性有显著性提高;免疫组化提示VEGF结合在血管基质的表面;释放试验提示LMWH和VEGF能够缓慢的从其表面释放;并具有抗抗血小板粘附,每10000μm2DLN-VEGF-BJV和DC-BJV表面的血小板计数分别为12±4和48±16;内皮细胞增殖实验实验提示经过3天和7天的培养,DLN-VEGF-BJV表面内皮细胞数明显大于DC-BJV表面内皮细胞数;皮下包埋4周时,DLN-VEGF-BJV和DC-BJV钙离子的含量分别为8.1±1.7和26.6±3.78周时,DLN-VEGF-BJV和DC-BJV钙离子的含量分别为23.5±6.1μg/mg和112.6±16.9μg/mg
     结论:DLN能够被稳定地修饰在去细胞血管基质的表面,并能够提高去细胞血管基质的生物力学稳定性、抗凝、抗血小板粘附、抗钙化和促进内皮细胞的生长和增殖,有望成为一种新型的去细胞异种移植血管的修饰方法。
Part I Preparation of dihydroxy-iron/heparin complexes nanomodified decellular vascular matrix and evaluation of its biocompatibilities
     Objective:There are risks of thrombosis after decellular xenograft implantation, the purpose of this study was to improve the biocompatibilities of decellular vascular matrix by dihydroxy-iron/heparin complexes (DHCs) nanomodification and evaluate the possibility of method which as a novel heparin modification for decellular xenograft.
     Methods:A novel thrombo-resistant surface for decellular xenograft had been developed by alternating linkage of dihydroxy-iron and heparin to decellular bovine jugular vein (DC-BJV) using dihydroxy-iron (DHI) as crosslinker. Toluidine blue colorimetric method was used to measure residual content of heparin solution after each assembly cycle, and the amount of linked heparin was calculated. Surface characterization of dihydroxy-iron/heparin layer-by-layer-assembly modified BJV (LBL-BJV) was assayed using scanning electron microscopy (SEM) and toluidine blue staining. Its biomechanical stability was detected by tensile test. The binding force of DHCs on surface of BJV was evaluated by shaken-wash test. And its biocompatibilities were detected using antithrombogenicity, platelet adhesion and cytotoxicity assay.
     Results:Toluidine blue colorimetric method showed the amount of linked heparin was about808±86μg/cm-1per assembly-cycle. SEM images proved DHCs were uniformly linked to and formed nanoscale films around the fibrils of DC-BJV. Toluidine blue staining histology pictures showed DHCs were mainly linked to DC-BJV surface. Washing test proved DHCs were firmly linked to BJV and sustainedly released heparin for a long time. Tensile test showed that biomechanical stability was increased. Hemocompatibility evaluations showed that PT and APTT of all trial groups were above the normal reference ranges, and mean platelet count per10000μm2area was8±4for LBL-BJV vs.48±16for DC-BJV. The endothelial cells (ECs) proliferation test showed the number of ECs on luminal surface of LBL-BJV was very similar to DC-BJV at7-day incubation. Calcium content assay showed the mean calcium content was8.5±1.9μg/mg dry weight for LBL-BJV vs.26.6±3.7μg/mg dry weight for DC-BJV at30days and21.5±6.8μg/mg dry weight for LBL-BJV vs.112.6±16.9μg/mg dry weight for DC-BJVs at60days, respectively.
     Conclusions:DHCs nanomodification improves biomechanical stability and biocompatibilities of decellular xenograft.
     Part Ⅱ Preparation and in vitro evaluation of dihydroxy-iron/low-molecular-weight-heparin nanoparticle
     Objective:The half-life of low molecular weight heparin (LMWH) is short, and its antithromboticity doesn't maintain for a long time. The purpose of current study was to prepare thrombo-resistant DHI/LMWH nanoparticles (DLN) which sustainedly released LMWH and evaluate the possibility of which as a novel anticoagulatant drug.
     Methods:A novel thrombo-resistant DLN was prepared by LMWH and DHI under ultrasonic oscillation or magnetic stirring. The shape, size, zeta potential and encapsulation efficiency of DLNs were detected, and the difference of DLN and LMWH were analyzed by infrared absorption spectrum.
     Results:Average size of DLN was less than100nm under ultrasonic oscillation, and average size of dihydroxy-iron/low-molecular-weight particle was more than100nm under magenic stirring. But ultrasonic osscillation and magenic stirring did not affect the zeta potential and encapsulation efficiency of nanoparticles, their values of zeta potential were negative value, and their encapsulation efficiency was positively correlated to weight-ratio of DHI/LMWH. The average size of DLN was less than100nm when the weight-ratio of DHI/LMWH was less than1.2, and their average size was more than100nm and formed micro-particles when the weight-ratio of DHI/LMWH was more than1.2. SEM immages showed the shape of DLN was rectangle. Compared infrared absorption spectrums of DLN and LMWH, there were1732,1549,690and423cm-absorbtion peak appeared in infrared absorption spectrum of DLNs. DLNs were sustainedly released LMWH in PBS for a long time.
     Conclusions:DLN can be prepared via LMWH and DHI under ultrasonic oscillation, and it is a novel thrombo-resistant nanoparticle.
     Part Ⅲ The study of dihydroxy-iron/heparin-VEGF nanoparticles modification improves biocompatibilities and endothelialization of decellular vascular matrix
     Objective:Poor biocompatibility and lack of endothelialization are limitations of decellular xenograft, the purpose of current study was to improve the biocompatibilities and endothelialization of decellular vascular matrix via DHI/LMWH-VEGF nanoparticle modification, and evaluate the possibility of method which as a novel modification for decellular xenograft.
     Methods:A DHI/LMWH-VEGF nanoparticle modified BJV (DLN-VEGF-BJV) was developed as follows:DC-BJV was preteated by DHI and LMWH, then DHI/LMWH nanoparticles (DLNs) were linked to sueface of DC-BJV via DHI and LMWH, and then VEGF was immobilized to surface of DLN via LMWH. Its surface characterization was assayed using SEM and toluidine blue staining; its biomechanical stability was detected by tensile test; the binding force of DLNs on surface of BJV was evaluated by shaken-wash test; its biocompatibilities were detected using platelet adhesion, cytotoxicity and anti-calcification assay; and its stumilating-endothelial-cell-growth was evaluated by endothelial cells proliferation assay.
     Results:SEM images proved DLNs were uniformly linked to the fibrils of BJV. Toluidine blue staining histology pictures showed DLN were mainly linked to BJV surface. Shaken-washing test proved DLN-VEGF-BJV sustainedly released LMWH and VEGF for a long time. Tensile test showed that biomechanical stability was increased. Static platelet adhesion assay results showed that the modified BJV drastically decreased platelet adhesion, and the mean platelet count per10000urn2area was12±4for DLN-VEGF-BJV vs.48±for DC-BJV. The Endothelial cells proliferation in vitro assay showed ECs could adhere and proliferate on luminal surface of both DLN-VEGF-BJV and DC-BJV, and the number of ECs on the luminal surface of DLN-VEGF-BJV was more than that on DC-BJV at3-day and7-day incubation, respectively. Calcium content assay showed the mean calcium content was8.1±1.7μg/mg dry weight for DLN-VEGF-BJV vs.26.6±3.7μg/mg dry weight for DC-BJV at30days and23.5±6.1μg/mg dry weight for DLN-VEGF-BJV vs.112.6±16.9μg/mg dry weight for DC-BJVs at60days, respectively.
     Conclusions:The DHI/LMWH-VEGF nanoparticles modification improves biomechanical stability, antithrombogenicity, anticalcification efficacy and endothelialization of decellular vascular matrix.
引文
[1]Torikai K, Ichikawa H, Hirakawa K, et al. A self-renewing, tissue-engineered vascular graft for arterial reconstruction. Thorac Cardiovasc Surg.2008; 136(1):37-45.
    [2]Teebken OE, Haverich A. Tissue Engineering of Small Diameter Vascular Grafts. Eur J Vasc Endovasc Surg.2002; 23(6):475-85.
    [3]Freed LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer scaffold issue engineering. J Bio Technol.1994;12(7):689-93.
    [4]Kim BS, Mooney DJ. Development of biocompatible synthetic extra cellular matries for tissue engineering. J Trends Biotechno.l 1998;16(5):224-30.
    [5]Gui L, Zhao L, Spencer RW, et al. Development of Novel Biodegradable Polymer Scaffolds for Vascular Tissue Engineering. Tissue Eng Part A.2011 Jan 16. [Epub ahead of print].
    [6]Yu SH, Wu YB, Mi FL, et al. Polysaccharide-based artificial extracellular matrix: Preparation and characterization of three-dimensional, macroporous chitosan, and heparin composite scaffold. J Appl Poly Sci.2008; 109(6):3639-44.
    [7]Lee WK, Park KD, Han DK, et al. Heparinized bovine pericardium as a novel cardiovascular bioprosthesis. Biomaterials.2000; 21(22):2323-30.
    [8]Yu SH, Wu YB, Mi FL, et al. Polysaccharide-based artificial extracellular matrix: Preparation and characterization of three-dimensional, macroporous chitosan, and heparin composite scaffold. J Appl Poly Sci.2008; 109(6):3639-44.
    [9]Ozkan S, Akay TH, Gultekin B, et al. Xenograft transplantation in congenital cardiac surgery at baskent university:midterm results. Transplant Proc.2007; 39(4):1250-54.
    [10]Fiore AC, Ruzmetov M, Huynh D, et al. Comparison of bovine jugular vein with pulmonary homograft conduits in children less than 2 years of age. Eur J Cardiothoracic Surg.2010; 38(3):318-25.
    [11]Martins-Green M, Bissel MF. Cell-extracellular matrix interactions in development. Semin Dev Biol.1995;6:149-159.
    [12]Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev.2009; 89(3):957-89.
    [13]Lu WD, Zhang M, Wu ZS, et al. Decellularized and photooxidatively crosslinked bovine jugular veins as potential tissue engineering scaffolds. Interact Cardiovasc Thorac Surg.2009; 8:301-5.
    [14]Schmidt CE, Baier JM. Acellular vascular tissues:natural biomaterials for tissue repair and tissue engineering. Biomaterials.2000; 21(22):2215-31.
    [15]Tschoeke B, Flanagan TC, Comelissen A, et al. Development of a composite degradable/nondegradable tissue-engineered vascular graft. Artif Organs.2008; 32(10):800-9.
    [16]Lu WD, Zhang M, Wu ZS, et al. The performance of photooxidatively crosslinked acellular bovine jugular vein conduits in the reconstruction of connections between pulmonary arteries and right ventricles. Biomaterials.2010; 31:2934-43.
    [17]LeMaire SA, Green SY, Sharma K, et al. Aortic root replacement with stentless porcine xenografts:early and late outcomes in 132 patients. Ann Thorac Surg. 2009;87(2):503-12.
    [18]Rastan AJ, Walther T, Daehnert I, et al. Bovine jugular vein conduit for right ventricular outflow tract reconstruction:evaluation of risk factors for mid-term outcome. Ann Thorac Surg.2006; 82(4):1308-15.
    [19]Crikis S, Cowan PJ, d'Apice AJ. Intravascular thrombosis in discordant xenotransplantation. Transplantation.2006; 82(9):1119-23.
    [20]Rastan AJ, Walther T, Daehnert I, et al. Bovine jugular vein conduit for right ventricular outflow tract reconstruction:evaluation of risk factors for mid-term outcome. Ann Thorac Surg.2006; 82(4):1308-15.
    [21]Ozkan S, Akay TH, Gultekin B, et al. Xenograft transplantation in congenital cardiac surgery at baskent university:midterm results. Transplant Proc.2007; 39(4):1250-54.
    [22]Fiore AC, Ruzmetov M, Huynh D, et al. Comparison of bovine jugular vein with pulmonary homograft conduits in children less than 2 years of age. Eur J Cardiothoracic Surg.2010; 38(3):318-25.
    [23]Liao D, Wang X, Lin PH, et al. Covalent linkage of heparin provides a stable anti-coagulation surface of decellularized porcine arteries. J Cell Mol Med.2009; 13(8B):2736-43.
    [24]Keuren JF, Wielders SJ, Driessen A, et al. Covalently-Bound Heparin Makes Collagen Thromboresistant. Arterioscler Thromb Vasc Biol.2004;24(3):613-7.
    [25]Lee WK, Park KD, Han DK, et al. Heparinized bovine pericardium as a novel cardiovascular bioprosthesis. Biomaterials.2000; 21(22):2323-30.
    [26]Noishiki Y, Miyata T. Successful animal study of small caliber heparin-protamine-collagen vascular grafts. Trans Am Soc Artif Intern Organs. 1985;31:102-6.
    [27]Liu L, Guo S, Chang J, et al. Surface modification of polycaprolactone membrane via layer-by-layer deposition for promoting blood compatibility. J Biomed Mater Res B Appl Biomater.2008;87(1):244-50.
    [28]Noishiki Y, Miyata T. Successful animal study of small caliber heparin-protamine-collagen vascular grafts. Trans Am Soc Artif Intern Organs. 1985;31:102-6.
    [29]Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun.1989;161(2):851-8.
    [30]Tang C, Wang G, Wu X, et al. The impact of vascular endothelial growth factor-transfected human endothelial cells on endothelialization and restenosis of stainless steel stents. J Vasc Surg.2011;53(2):461-71.
    [31]Miyazu K, Kawahara D, Ohtake H, et al. Luminal surface design of electrospun small-diameter graft aiming at in situ capture of endothelial progenitor cell. J Biomed Mater Res B Appl Biomater.2010; 94(1):53-63.
    [1]Lu WD, Zhang M, Wu ZS, et al. Decellularized and photooxidatively crosslinked bovine jugular veins as potential tissue engineering scaffolds. Interact Cardiovasc Thorac Surg.2009; 8(3):301-5.
    [2]Lu WD, Zhang M, Wu ZS, et al. The performance of photooxidatively crosslinked acellular bovine jugular vein conduits in the reconstruction of connections between pulmonary arteries and right ventricles. Biomaterials.2010; 31(10):2934-43.
    [3]Schmidt CE, Baier JM. Acellular vascular tissues:natural biomaterials for tissue repair and tissue engineering. Biomaterials.2000; 21(22):2215-31.
    [4]Tschoeke B, Flanagan TC, Cornelissen A, et al. Development of a composite degradable/nondegradable tissue-engineered vascular graft. Artif Organs.2008; 32(10):800-9.
    [5]Ozkan S, Akay TH, Gultekin B, et al. Xenograft transplantation in congenital cardiac surgery at baskent university:midterm results. Transplant Proc.2007; 39(4):1250-54.
    [6]Fiore AC, Ruzmetov M, Huynh D, et al. Comparison of bovine jugular vein with pulmonary homograft conduits in children less than 2 years of age. Eur J Cardiothoracic Surg.2010; 38(3):318-25.
    [7]Crikis S, Cowan PJ, d'Apice AJ. Intravascular thrombosis in discordant xenotransplantation. Transplantation.2006; 82(9):1119-23.
    [8]Liao D, Wang X, Lin PH, et al. Covalent linkage of heparin provides a stable anti-coagulation surface of decellularized porcine arteries. J Cell Mol Med.2009; 13(8B):2736-43.
    [9]Wang XN, Chen CZ, Yang M, et al. Implantation of decellularized small-caliber vascular xenografts with and without surface heparin treatment. Artif Organs. 2007; 31(2):99-104.
    [10]Basmadjian D, Sefton MV. Relationship between release rate and surface concentration for heparinized materials. J Biomed Mater Res.1983; 17(3):509-18.
    [11]Lee WK, Park KD, Han DK, et al. Heparinized bovine pericardium as a novel cardiovascular bioprosthesis. Biomaterials.2000; 21(22):2323-30.
    [12]Wissink MJ, Beernink R, Pieper JS, et al. Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation. Biomaterials.2001; 22(2):151-63.
    [13]Yu SH, Wu YB, Mi FL, et al. Polysaccharide-based artificial extracellular matrix: Preparation and characterization of three-dimensional, macroporous chitosan, and heparin composite scaffold. J Appl Poly Sci.2008; 109(6):3639-44.
    [14]Balamurugan K, Kalaichelvan AD. Isolation and identification of heparin like substances from the body tissue of conus musicus. Internat J PharmTech Res. 2009; 1(4):1650-53.
    [15]Crikis S, Cowan PJ, d'Apice AJ. Intravascular thrombosis in discordant xenotransplantation. Transplantation.2006; 82(9):1119-23.
    [16]Smith PK, Mallia AK, Hermanson GT. Colorimetric method for the assay of heparin content in immobilized heparin preparations. Anal Biochem.1980; 109(2):466-73
    [17]Liu M, Yue X, Dai Z, et al. Novel thrombo-resistant coating based on iron-polysaccharide complex multilayers. ACS Appl Mater Interfaces.2009; 1(1):113-23.
    [18]Okroj W, Walkowiak-Przybylo M, Rosniak-Bak K, et al. Comparison of microscopic methods for evaluating platelet adhesion to biomaterial surfaces. Acta Bioeng Biomech.2009; 11(2):45-9.
    [19]Ma Y, Liu M, Yue X, et al. Improved biocompatibility of thrombo-resistant iron-polysaccharides multilayer coatings on Nitinols. Int J Biol Macromol. 2010;46(1):109-14.
    [20]Emeis JJ, Edgell CJ. Fibrinolytic properties of a human endothelial hybrid cell line (Ea.hy 926). Blood.1988; 71(6):1669-75.
    [21]Zhao X, Kim J, Cezar CA, et al. Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci.2011; 108(1):67-72.
    [22]Pettenazzo E, Valente M, Thiene G. Octanediol treatment of glutaraldehyde fixed bovine pericardium:evidence of anticalcification efficacy in the subcutaneous rat model. Eur J Cardiothorac Surg.2008; 34:418-22.
    [23]Torikai K, Ichikawa H, Hirakawa K, et al. A self-renewing, tissue-engineered vascular graft for arterial reconstruction. Thorac Cardiovasc Surg.2008; 136(1):37-45.
    [24]Teebken OE, Haverich A. Tissue Engineering of Small Diameter Vascular Grafts. Eur J Vase Endovasc Surg.2002; 23(6):475-85.
    [25]Cooper GJ, Underwood MJ, Deverall PB. Arterial and venous conduits for coronary artery bypass:A current review. Eur J Cardiothorac Surg.1996; 10(2):129-40.
    [26]Luong-van E, GrondahI L, Chua KN, et al. Controlled release of heparin from poly (epsilon-caprolactone) electrospun fibers. Biomaterials.2006; 27(9):2042-50.
    [27]Nugent MA. Heparin sequencing brings structure to the function of complex oligosaccharides. Proc Natl Acad Sci.2000; 97(19):10301-3.
    [28]Sasisekharan S, Venkataraman G. Heparin and heparan sulfate:biosynthesis, structure and function. Curr Opin Chem Biol.2000; 4(6):626-31.
    [29]Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev.2009; 89(3):957-89.
    [30]von der Mark K, Park J, Bauer S, et al. Nanoscale engineering of biomimetic surfaces:cues from the extracellular matrix. Cell Tissue Res.2010; 339(1):131-53.
    [31]Baldwin MT, Ciesliga BL, Barkasi LD, et al. Long-term anticalcification effect of Fe3+ in rat subdermal implants of glutaraldehyde preserved bovine pericardium. ASAIO Trans.1991; 37(3):170-2.
    [32]Valdes TI, Moussy F. A ferric chloride pre-treatment to prevent calcification of Nation membrane used for implantable biosensors. Biosens Bioelectron.1999; 14(6):579-85.
    [33]Garg HG, Mrabat H, Yu L, et al. Effect of carboxyl-reduced heparin on the growth inhibition of bovine pulmonary artery smooth muscle cells. Carbohydr Res. 2010; 345(9):1084-7.
    [34]Beamish JA, Geyer LC, Haq-Siddiqi NA, et al. The effects of heparin releasing hydrogels on vascular smooth muscle cell phenotype. Biomaterials.2009; 30(31):6286-94.
    [1]Nugent MA. Heparin sequencing brings structure to the function of complex oligosaccharides. Proc Natl Acad Sci.2000; 97(19):10301-3.
    [2]Sasisekharan S, Venkataraman G. Heparin and heparan sulfate:biosynthesis, structure and function. Curr Opin Chem Biol.2000; 4(6):626-31.
    [3]Casu B. Structure and biological activity of heparin. Adv Carbohydr Chem Biochem.1985;43:51-134.
    [4]Desai UR, Petitou M, Bjork I, et al. Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide activating sequence in the recognition of native and activated states of antithrombin. J Biol Chem.1998;273(13):7478-87.
    [6]Suranyi M, Chow JS. Review:anticoagulation for haemodialysis. Nephrology (Carlton).2010;15(4):386-92.
    [7]Mohamed F, van der Walle CF. Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J Pharm Sci. 2008;97(1):71-87.
    [8]Haas S. New anticoagulants-towards the development of an "ideal" anticoagulant. Vasa.2009;38(1):13-29.
    [9]du Breuil AL, Umland EM. Outpatient management of anticoagulation therapy. Am Fam Physician.2007;75(7):1031-42.
    [10]Brito V, Ciapponi A, Kwong J. Factor Xa inhibitors for acute coronary syndromes. Cochrane Database Syst Rev.2011;(1):CD007038.
    [11]Lyman GH. Thromboprophylaxis with low-molecular-weight heparin in medical patients with cancer. Cancer.2009;115(24):5637-50.
    [12]Motta M, Bagna R, Saracco P, et al. Neonatal thrombosis. Minerva Pediatr. 2010;62(3Suppl1):117-20.
    [13]Salazar CA, Malaga G, Malasquez G Direct thrombin inhibitors versus vitamin K antagonists or low molecular weight heparins for prevention of venous thromboembolism following total hip or knee replacement. Drugs. 2010;70(10):1319-47.
    [14]Wang Y, Herron. Y. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties. J Phys Chem. 1991;95:525-32.
    [15]Li X, Qu Y, Sun G, et al. Study on the lattice distortion of the As-prepared nanosized TiO2 particles via detonation method. J Phys Chem solids.2007; 68:2405-10
    [16]Negishi Y, Omata D, Iijima H, et al. Preparation and characterization of laminin-derived peptide AG73-coated liposomes as a selective gene delivery tool. Biol Pharm Bull.2010;33(10):1766-9.
    [17]Teramura Y, Iwata H. Surface modification of islets with PEG-lipid for improvement of graft survival in intraportal transplantation. Transplantation. 2009;88(5):624-30.
    [18]Kleemann E, Neu M, Jekel N, et al. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. J Control Release.2005;109:299-316.
    [1]Schmidt CE, Baier JM. Acellular vascular tissues:natural biomaterials for tissue repair and tissue engineering. Biomaterials.2000; 21(22):2215-31.
    [2]Tschoeke B, Flanagan TC, Cornelissen A, et al. Development of a composite degradable/nondegradable tissue-engineered vascular graft. Artif Organs.2008; 32(10):800-9.
    [3]Lu WD, Zhang M, Wu ZS, et al. The performance of photooxidatively crosslinked acellular bovine jugular vein conduits in the reconstruction of connections between pulmonary arteries and right ventricles. Biomaterials.2010; 31:2934-43.
    [4]Crikis S, Cowan PJ, d'Apice AJ. Intravascular thrombosis in discordant xenotransplantation. Transplantation.2006; 82(9):1119-23.
    [5]Rastan AJ, Walther T, Daehnert I, et al. Bovine jugular vein conduit for right ventricular outflow tract reconstruction:evaluation of risk factors for mid-term outcome. Ann Thorac Surg.2006; 82(4):1308-15.
    [6]Ozkan S, Akay TH, Gultekin B, et al. Xenograft transplantation in congenital cardiac surgery at baskent university:midterm results. Transplant Proc.2007; 39(4):1250-54.
    [7]Liao D, Wang X, Lin PH, et al. Covalent linkage of heparin provides a stable anti-coagulation surface of decellularized porcine arteries. J Cell Mol Med.2009; 13(8B):2736-43.
    [8]Shen YH, Shoichet MS, Radisic M. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater.2008;4(3):477-489.
    [9]Chung YI, Kim SK, Lee YK, et al. Efficient revascularization by VEGF administration via heparin-functionalized nanoparticle-fibrin complex. J Control Release.2010;143(3):282-289.
    [10]Torikai K, Ichikawa H, Hirakawa K, et al. A self-renewing, tissue-engineered vascular graft for arterial reconstruction. Thorac Cardiovasc Surg. 2008;136(1):37-45.
    [11]Teebken OE, Haverich A. Tissue Engineering of Small Diameter Vascular Grafts. Eur J Vasc Endovasc Surg.2002;23(6):475-85.
    [13]Freed LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer scaffold for issue engineering. J Bio Tech.1994;12(7):689-93.
    [14]Kim BS, Mooney DJ. Development of biocompatible synthetic extra cellular matries for tissue engineering. J Trends Biotechnol.1998;16(5):224-30.
    [15]Gui L, Zhao L, Spencer RW, et al. Development of Novel Biodegradable Polymer Scaffolds for Vascular Tissue Engineering. Tissue Eng Part A.2011 Jan 16. [Epub ahead of print]
    [16]Yu SH, Wu YB, Mi FL, et al. Polysaccharide-based artificial extracellular matrix: Preparation and characterization of three-dimensional, macroporous chitosan, and heparin composite scaffold. J Appl Poly Sci.2008; 109(6):3639-44.
    [17]Lee WK, Park KD, Han DK, et al. Heparinized bovine pericardium as a novel cardiovascular bioprosthesis. Biomaterials.2000; 21(22):2323-30.
    [18]Yu SH, Wu YB, Mi FL, et al. Polysaccharide-based artificial extracellular matrix: Preparation and characterization of three-dimensional, macroporous chitosan, and heparin composite scaffold. J Appl Poly Sci 2008; 109(6):3639-44.
    [19]Ozkan S, Akay TH, Gultekin B, et al. Xenograft transplantation in congenital cardiac surgery at baskent university:midterm results. Transplant Proc 2007; 39(4):1250-54.
    [20]Fiore AC, Ruzmetov M, Huynh D, et al. Comparison of bovine jugular vein with pulmonary homograft conduits in children less than 2 years of age. Eur J Cardiothoracic Surg.2010; 38(3):318-25.
    [21]Martins-Green M, Bissel MF. Cell-extracellular matrix interactions in development. Semin Dev Biol.1995;6:149-159.
    [22]Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev.2009; 89(3):957-89.
    [23]Lu WD, Zhang M, Wu ZS, et al. Decellularized and photooxidatively crosslinked bovine jugular veins as potential tissue engineering scaffolds. Interact Cardiovasc Thorac Surg.2009; 8:301-5.
    [24]LeMaire SA, Green SY, Sharma K, et al. Aortic root replacement with stentless porcine xenografts:early and late outcomes in 132 patients. Ann Thorac Surg. 2009;87(2):503-12.
    [25]Rastan AJ, Walther T, Daehnert I, et al. Bovine jugular vein conduit for right ventricular outflow tract reconstruction:evaluation of risk factors for mid-term outcome. Ann Thorac Surg.2006; 82(4):1308-15.
    [26]Gui L, Zhao L, Spencer RW, et al. Development of Novel Biodegradable Polymer Scaffolds for Vascular Tissue Engineering. Tissue Eng Part A.2011 Jan 16. [Epub ahead of print].
    [27]Cooper GJ, Underwood MJ, Deverall PB. Arterial and venous conduits for coronary artery bypass:A current review. Eur J Cardiothorac Surg.1996; 10(2):129-40.
    [28]LeMaire SA, Green SY, Sharma K, et al. Aortic root replacement with stentless porcine xenografts:early and late outcomes in 132 patients. Ann Thorac Surg. 2009;87(2):503-12.
    [29]Rastan AJ, Walther T, Daehnert I, et al. Bovine jugular vein conduit for right ventricular outflow tract reconstruction:evaluation of risk factors for mid-term outcome. Ann Thorac Surg 2006; 82(4):1308-15.
    [30]Fiore AC, Ruzmetov M, Huynh D, et al. Comparison of bovine jugular vein with pulmonary homograft conduits in children less than 2 years of age. Eur J Cardiothoracic Surg 2010; 38(3):318-25.
    [31]Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun.1989;161(2):851-8.
    [32]Otrock ZK, Makarem JA, Shamseddine AI. Vascular endothelial growth factor family of ligands and receptors:Review. Blood Cells Mol Dis.2007; 38(3): 258-68.
    [33]Tang C, Wang G, Wu X, et al. The impact of vascular endothelial growth factor-transfected human endothelial cells on endothelialization and restenosis of stainless steel stents. J Vasc Surg.2011;53(2):461-71.
    [34]Miyazu K, Kawahara D, Ohtake H, et al. Luminal surface design of electrospun small-diameter graft aiming at in situ capture of endothelial progenitor cell. J Biomed Mater Res B Appl Biomater.2010; 94(1):53-63.
    [35]Wayne JF, Mark AC, Hans WC, et al. Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure.1998,6(5):637-649.
    [36]Singh S, Wu BM, Dunn JC. The enhancement of VEGF-mediated angiogenesis by polycaprolactone scaffolds with surface cross-linked heparin. Biomaterials. 2011;32(8):2059-69.
    [37]Chiu LL, Weisel RD, Li RK, et al. Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering. J Tissue Eng Regen Med.2011;5(1):69-84.
    [38]Chiu LL, Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials. 2010;31(2):226-41.
    [39]Sasisekharan S, Venkataraman G. Heparin and heparan sulfate:biosynthesis, structure and function. Curr Opin Chem Biol.2000; 4(6):626-31.
    [40]Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev.2009; 89(3):957-89.
    [41]von der Mark K, Park J, Bauer S, et al. Nanoscale engineering of biomimetic surfaces:cues from the extracellular matrix. Cell Tissue Res.2010; 339(1):131-53.
    [42]Baldwin MT, Ciesliga BL, Barkasi LD, et al. Long-term anticalcification effect of Fe3+ in rat subdermal implants of glutaraldehyde preserved bovine pericardium. ASAIO Trans.1991; 37(3):170-2.
    [43]Valdes TI, Moussy F. A ferric chloride pre-treatment to prevent calcification of Nafion membrane used for implantable biosensors. Biosens Bioelectron.1999; 14(6):579-85.
    [44]Garg HG, Mrabat H, Yu L, et al. Effect of carboxyl-reduced heparin on the growth inhibition of bovine pulmonary artery smooth muscle cells. Carbohydr Res. 2010; 345(9):1084-7.
    [45]Beamish JA, Geyer LC, Haq-Siddiqi NA, et al. The effects of heparin releasing hydrogels on vascular smooth muscle cell phenotype. Biomaterials.2009; 30(31):6286-94.
    [1]Torikai K, Ichikawa H, Hirakawa K, et al. A self-renewing, tissue-engineered vascular graft for arterial reconstruction. Thorac Cardiovasc Surg.2008; 136(1):37-45.
    [2]Teebken OE, Haverich A. Tissue Engineering of Small Diameter Vascular Grafts. Eur J Vasc Endovasc Surg.2002; 23(6):475-85.
    [3]Freed LE,Vunjak-Novakovic G,Biron RJ,et al. Biodegradable polymer scaffold issue engineering.J Bio Technol.1994;12(7):689-93.
    [4]Kim BS, Mooney DJ. Development of biocompatible synthetic extra cellular matries for tissue engineering. J Trends Biotechnol.1998;16(5):224-30.
    [5]Gui L, Zhao L, Spencer RW, et al. Development of Novel Biodegradable Polymer Scaffolds for Vascular Tissue Engineering. Tissue Eng Part A.2011 Jan 16. [Epub ahead of print]
    [6]Cooper GJ, Underwood MJ, Deverall PB. Arterial and venous conduits for coronary artery bypass:A current review. Eur J Cardiothorac Surg.1996; 10(2):129-40.
    [7]Ross DN. Homograft replacement of the aortic valve. Lancet.1962;ii:487.
    [8]Sinzobahamvya N, Wetter J, Blaschczok HC, et al. The fate of small diameter homografts in the pulmonary position. Ann Thorac Surg.2001;72(6):2070-76.
    [9]Shaddy RE, Hawkins JA. Immunology and failure of valved allografts in children.Ann Thorac Surg.2002;74(4):1271-5.
    [10]Falkenback D, Lundberg F, Ribbe E, et al. Exposure of plasma proteins on Dacron and ePTFE vascular graft material in a perfusion model. Eur J Vasc Endovasc Surg.2000;19(5):468-75.
    [11]Luong-van E, GrondahI L, Chua KN, et al. Controlled release of heparin from poly (epsilon-caprolactone) electrospun fibers. Biomaterials.2006; 27(9):2042-50.
    [12]Lu WD, Zhang M, Wu ZS, et al. Decellularized and photooxidatively crosslinked bovine jugular veins as potential tissue engineering scaffolds. Interact Cardiovasc Thorac Surg.2009; 8:301-5.
    [13]Schmidt CE, Baier JM. Acellular vascular tissues:natural biomaterials for tissue repair and tissue engineering. Biomaterials.2000; 21(22):2215-31.
    [14]Tschoeke B, Flanagan TC, Cornelissen A, et al. Development of a composite degradable/nondegradable tissue-engineered vascular graft. Artif Organs.2008; 32(10):800-9.
    [15]Lu WD, Zhang M, Wu ZS, et al. The performance of photooxidatively crosslinked acellular bovine jugular vein conduits in the reconstruction of connections between pulmonary arteries and right ventricles. Biomaterials.2010; 31:2934-43.
    [16]LeMaire SA, Green SY, Sharma K, et al. Aortic root replacement with stentless porcine xenografts:early and late outcomes in 132 patients. Ann Thorac Surg. 2009;87(2):503-12.
    [17]Rastan AJ, Walther T, Daehnert I, et al. Bovine jugular vein conduit for right ventricular outflow tract reconstruction:evaluation of risk factors for mid-term outcome. Ann Thorac Surg.2006; 82(4):1308-15.
    [18]Crikis S, Cowan PJ, d'Apice AJ. Intravascular thrombosis in discordant xenotransplantation. Transplantation.2006; 82(9):1119-23.
    [19]Rastan AJ, Walther T, Daehnert I, et al. Bovine jugular vein conduit for right ventricular outflow tract reconstruction:evaluation of risk factors for mid-term outcome. Ann Thorac Surg.2006; 82(4):1308-15.
    [20]Ozkan S, Akay TH, Gultekin B, et al. Xenograft transplantation in congenital cardiac surgery at baskent university:midterm results. Transplant Proc.2007; 39(4):1250-54.
    [21]Fiore AC, Ruzmetov M, Huynh D, et al. Comparison of bovine jugular vein with pulmonary homograft conduits in children less than 2 years of age. Eur J Cardiothoracic Surg.2010; 38(3):318-25.
    [22]Martins-Green M, Bissel MF. Cell-extracellular matrix interactions in development. Semin Dev Biol.1995;6:149-159.
    [23]Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev.2009; 89(3):957-89.
    [24]Allaire E, Guettier C, Bruneval P, et al. Cell-free arterial grafts:morphologic characteristics of aortic isografts, allografts and xenografts in rats. J Vasc Surg. 1994;19:446-56.
    [25]Leyh RG, Wilhelmi M, Rebe P, et al. In vivo repopulation of xenogeneic and allogeneic acellular valve matrix conduits in the pulmonary circulation. Ann Thorac Surg.2003;75:1457-63.
    [26]Liang HC, Chang Y, Hsu CK, et al. Effect of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials.2004;25:3541-52.
    [27]Matsumura G, Miyagawa-Tomita S, Shin'oka, et al. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation.2003;108:1729-34.
    [28]Yu X, Cheng M, Chen H. Methods for the pre-treatment of biological tissues for vascular scaffold. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2004;21(3):476-81.
    [29]Chung DT, Nimni ME. Mechanism of crosslinking of protein by glutaraldehyde. Ⅲ:Reaction with collagen in tissue. Connect Tissue Res.1984,13:109.
    [30]Eberl T. Experimental in vitro endothelialization of cardiac valve leaflets. Ann Thorac Surg.1992,53:487-492.
    [31]Shigeaki F, Tomoko Y, Kunimasa K. Immobilization of β-glucosidase in calcium alginate gel using genipin as a new type of cross-linking reagent of natural origin. App Microbiol Biotechnol.1988;28(4):440-1
    [32]Madhavan K, Belchenko D, Tan W. Roles of genipin crosslinking and biomolecule conditioning in collagen-based biopolymer:Potential for vascular media regeneration. J Biomed Mater Res A.2011. doi:10.1002/jbm.a.33006.
    [33]Shen SH, SungHW, Tu R, et al. Characterization of a polyepoxy compound fixed porcine heart valve bioprosthesis.J Appl Biomater.1994,5(1):159-162.
    [34]Tu R, Shen SH, Lin D, et al. Fixation of bioprosthetic tissues with monofunctional and multifunctional polyepoxy compounds. J Biomed Mater Res. 1994;28(6):677-84.
    [35]Adams A K, Talman EA, Campbell L, et al. Crosslink formationin porcine valves stabilized by dye-mediated photooxidation. J Biomed Mater Res.2001; 57:582
    [36]Moore MA, Adams AK. Calcification resistance, biostability, and low immunogenic potential of porcine heart valves modified by dye-mediated photooxidation. J Biomed Mater Res.2001,56(1):24-30.
    [37]Heather MP, Steven TB. EDC cross-linking improves skin substitute strength and stability. Biomaterials.2006; 27:5821-7
    [38]Cao H, Xu SY. EDC/NHS-crosslinked type II collagen-chondroitin sulfate scaffold:characterization and in vitro evaluation. J Mater Sci Mater Med. 2008;19:567-75
    [39]Deutsch M, Meinhart J, Zilla P, et al. Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts. J Vase Surg. 2009;49(2):352-62.
    [40]Siegel-Axel DI, Gawaz M. Platelets and endothelial cells. Semin Thromb Hemost.2007;33(2):128-35.
    [41]Ku PT, D'Amore PA. Regulation of basic fibroblast growth factor (bFGF) gene and protein expression following its release from sublethally injured endothelial cells. J Cell Biochem.1995;58(3):328-43.
    [42]Nugent HM, Rogers C, Edelman ER. Endothelial implants inhibit intimal hyperplasia after porcine angioplasty. Circ Res.1999;84(4):384-91.
    [43]Marsden PA, Goligorsky MS, Brenner BM. Endothelial cell biology in relation to current concepts of vessel wall structure and function. J Am Soc Nephrol. 1991;1(7):931-48.
    [44]Jansson K, Bengtsson L, Swedenborg J, et al. In vitro endothelialization of bioprosthetic heart valves provides a cell monolayer with proliferative capacities and resistance to pulsatile flow. J Thorac Cardiovasc Surg.2001;121(1):108-15.
    [45]Lichtenberg A, Tudorache I, Cebotari S, et al. In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials.2006;27(23):4221-9.
    [46]Deutsch M, Meinhart J, Fischlein T, et al. Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients:a 9-year experience. Surgery.1999;126(5):847-55.
    [47]Fasol R, Zilla P, Deutsch M, et al. Human endothelial cell seeding:evaluation of its effectiveness by platelet parameters after one year. J Vase Surg. 1989;9(3):432-6.
    [48]Zilla P, Siedler S, Fasol R, et al. Reduced reproductive capacity of freshly harvested endothelial cells in smokers:a possible shortcoming in the success of seeding?. J Vase Surg.1989;10(2):143-8.
    [49]Liao D, Wang X, Lin PH, et al. Covalent linkage of heparin provides a stable anti-coagulation surface of decellularized porcine arteries. J Cell Mol Med.2009; 13(8B):2736-43.
    [50]Keuren JF, Wielders SJ, Driessen A, et al. Covalently-Bound Heparin Makes Collagen Thromboresistant. Arterioscler Thromb Vase Biol.2004;24(3):613-7.
    [51]Noishiki Y, Miyata T. Successful animal study of small caliber heparin-protamine-collagen vascular grafts. Trans Am Soc Artif Intern Organs. 1985;31:102-6.
    [52]He Q, Ao Q, Gong K, et al. Preparation and characterization of chitosan-heparin composite matrices for blood contacting tissue engineering. Biomed Mater. 2010;5(5):055001.
    [53]Liu L, Guo S, Chang J, et al. Surface modification of polycaprolactone membrane via layer-by-layer deposition for promoting blood compatibility. J Biomed Mater Res B Appl Biomater.2008;87(1):244-50.
    [54]Lee WK, Park KD, Han DK, et al. Heparinized bovine pericardium as a novel cardiovascular bioprosthesis. Biomaterials.2000; 21(22):2323-30.
    [55]Seeger JM, Klingman N. Improved endothelial cell seeding with cultured cells and fibronectin-coated grafts. J Surg Res.1985;38:641-7.
    [56]Thomson GJ, Vohra RK, Carr MH, et al. Adult human endothelial cell seeding using expanded polytetrafluoroethylene vascular grafts:a comparison of four substrates. Surgery.1991;109:20-7.
    [57]Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature.1984;309:30-3.
    [58]Schmidt DR, Kao WJ. The interrelated role of fibronectin and interleukin-1 in biomaterial-modulated macrophage function. Biomaterials.28;2007:371-82
    [59]Wu Z, Shi Y, Chen H. RGD peptides and endothelialization of biomaterials. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2001;18(2):269-71,275.
    [60]Zhang M, Wang Z, Wang Z, et al. Immobilization of anti-CD31 antibody on electrospun poly(ε-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells. Colloids Surf B Biointerfaces.2011;85(1):32-9.
    [61]Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun.1989;161(2):851-8.
    [62]Otrock ZK, Makarem JA, Shamseddine Al. Vascular endothelial growth factor family of ligands and receptors:Review. Blood Cells Mol Dis.2007; 38(3): 258-68.
    [63]Wayne JF, Mark AC, Hans WC, et al. Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure.1998,6(5):637-649.
    [64]Tang C, Wang G, Wu X, et al. The impact of vascular endothelial growth factor-transfected human endothelial cells on endothelialization and restenosis of stainless steel stents. J Vasc Surg.2011;53(2):461-71.
    [65]Miyazu K, Kawahara D, Ohtake H, et al. Luminal surface design of electrospun small-diameter graft aiming at in situ capture of endothelial progenitor cell. J Biomed Mater Res B Appl Biomater.2010; 94(1):53-63.
    [66]Singh S, Wu BM, Dunn JC. The enhancement of VEGF-mediated angiogenesis by polycaprolactone scaffolds with surface cross-linked heparin. Biomaterials. 2011;32(8):2059-69.
    [67]Chiu LL, Weisel RD, Li RK, et al. Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering. J Tissue Eng Regen Med.2011;5(1):69-84.
    [68]Chiu LL, Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials. 2010;31(2):226-41.
    [69]Kurane A, Vyavahare N. In vivo vascular tissue engineering:influence of cytokine and implant location on tissue specific cellular recruitment. J Tissue Eng Regen Med.2009;3(4):280-9.
    [70]Guan J, Stankus JJ, Wagner WR. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J Control Release.2007;120(1-2):70-8.
    [71]Ota T, Sawa Y, Iwai S, et al. Fibronectin-hepatocyte growth factor enhances reendothelialization in tissue-engineered heart valve. Ann Thorac Surg. 2005;80(5):1794-801.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700