基于虚拟技术的联合整地机动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依托吉林省科技发展计划项目“土壤耕整联合作业机触土部件的仿生研究”(项目编号:20050539),分析了联合整地机的发展概况与趋势。
     研究中以中小型联合整地机为对象,对室内土槽实验用土壤扰动处理方式及其均匀性进行了研究,并自行设计了3套联合整地机实验用虚拟测试系统,通过室内土槽试验和对试验结果的优化分析,获得了影响联合整地机整机和主要触土部件受力情况的主次因素和主次因素的优水平组合。
     使用三维CAD软件Autodesk Inventor创建了具有零件自适应、装配关联设计和尺寸参数化的联合整地机三维虚拟装配模型,并在该模型中查出各主要部件的材料特性、转动惯量等参数,该参数为动力学分析软件ADAMS准确建立联合整地机虚拟样机仿真模型提供基础。
     使用软件ADAMS创建的仿真模型,对联合整地机进行了多工况的仿真分析,依据仿真较优结果,对联合整地机的相关部件进行了优化设计与分析。
     经过对改进部件性能强度等校核后,使用软件Inventor具有的自适应设计、装配关联设计和部件尺寸的参数化功能,对原三维模型进行相关零件修改,并同时进行整机的虚拟装配,经装配后的静动态干涉检查结果表明:优化设计后的结构和尺寸是合理的。
     依据改进后虚拟样机装配模型制造机具并进行了田间验证试验。本文研究思路和结果,为农业工程中其它农机具的设计提供了一种崭新的数字化研究思路。
Saving energy and constructing friendly environment become main guidelines for many works in China nowaday and in the future. It was found from field survey that the non-matching phenomena between the mini- or medium-sized combines and power of the tractors are ubiquitous, combined the policy of developing the great project“Manufacture of Multifunctional Agricultural Equipments and Establishments”in the“eleventh five-year plan”, and analyzed the farming actuality based on individual farmer household in China nowadays. Supported by the Jilin provincial science and technology developing plan project“Research on the Bionic Soil-engaging Components of the Soil Preparing Combine”(No. 20050539), one mini-sized soil preparing combine was taken as the study object. The virtual measurement systems for agriculture engineering and virtual design and assembly were performed as study method. To manufacture a mini- or medium-sized combines with low energy-consuming was regarded as study goal, which provided new thoughts of research for the agricultural machine design.
     When soil is disturbed by terrain-machine, such as farming tool, bulldozer and vehicle, considered its complex constituent and many interferential factors, the mechanical properties changing of disturbed soil is unstable. Soil is a kind of discrete, multiphase compounds that is composed of soil particles, soil liquid and soil air, the constituent of it is very complex. If one kind of soil condition needs to be kept or soil need to be changed from one kind of condition to the required condition, and the mechanical forces need to be used effectively, the mechanical properties of soil subjected by external forces need to be understood except for external forces themselves. The dynamic process and the influencing factors of soil mechanical properties are relevant to many aspects directly, such as the working efficiency of terrain machines and farming tools, the cultivating quality of agriculture and so on. Because the mechanical properties changing of soil under the similar conditions are very complex, the results of soil experiment repeated badly,which bring a lot of difficulties to study the working status of agriculture tools. Firstly, the changing of soil water content and soil hardness is analyzed with the external factors (e.g. temperature, compaction load on soil, and compaction times) changing. Therefore, the quantificational results among the factors influencing the homogeneous feature of the soil mechanical properties were analyzed simply through soil-bin experiment. Based on the above quantificational results, the different results of soil preparing combine experiments, which were done in different phases, had relativity and repeated characteristic through scientific treatment of soil.
     Secondly, three sets of self-design virtual instruments were designed, which were used to measure and study the tractor performance parameters(e.g. :fuel oil consumption, engine speed and so on), the drag force of the tractor and the forces of soil-touching parts, when the soil-bin experiments of mini-sized soil preparing combine machine were done in the room under the different experiment conditions. The virtual instruments were as follows: (1)4-channel pulse signal virtual measuring system for tractor performance parameters ;( 2) 2-channel Stress-Strain portable virtual measuring system for the rotary cultivation torque and ridging resistance of soil preparing combine machine;(3) single channel high-speed virtual measuring system for the dragging force of tractor.
     Thirdly, based on the experimental optimization principle of design, the experiment projects of testing performance parameter and the dragging force of the tractor were designed by the law of augmentation of experiment. After analyzing the data of two above experiments using the method of range analysis, variance analysis and credibility analysis, the results of experiments shown that the two factors, such as working ways of soil preparing combine machine and working speed of tractor, had the remarkable influence to the above two experimental target. And what’s more, the working ways of soil preparing combine machine have the decisive influence on the target of experiments in two factors. These results gave reference to study the improvement performance of the combine machine. In view of the measuring ridging resistance and the rotary cultivation torque of the combine machine, the experiment project was designed by selecting the orthogonal array L4(23). This experiment mainly provided the rotary cultivation torque and the ridging load foundation parameter for the following power simulation analysis. Finally, the 3 dimensional virtual assembly model of combine machine was built through the three dimensional CAD software Inventor,and then the parameters including materials behavior and rotation inertia of the key components can be acquired in this model, these parameters lay the foundation to design the simulation model of the combine machine for the dynamics analysis using software ADAMS accurately. Moreover, according to the optimized result after simulation analysis, auto-adapted design, the assembly connection design and the part size parameterization function which three dimensional software Inventor had, were fully used to update the dimension of correlative parts of combine machine during the course of design conveniently.
     After the virtual simulation model constructing, it was verified successfully. Through comparisons of the simulation results and the soil-bin test results, it is shown that the maximum error was 1.13%, min-error was 0.34%, and average error was 0.86% between them, so the simulation model was suitable.compaired with prototype soil preparing combine machine,, the results of simulation shown that the drag force of improved soil preparing combine machine was reduced about 6.953% after the loadings of bionic soil-touching parts on the simulation model.
     According to the above simulation result, the key components (e.g. gear box gear, mainly mechanical axis and key etc) were improved, and the strength of them were checked and approved. The results of checking shown that the improved parts were complied with the requirements of functions and technique. Based on the improved parameters of shape and size, the 3-D virtual assembly model designed by software Inventor was updated and virtual assembled again. And what’s more, for preventing material waste or redesign in the later manufacture period, the kinematics simulation of interference detection was used to check the conflict and interference fit among the all parts after the virtual model assembling.
     The main parts, including cutting tool, frame, land wheel and ridging shovel, were checked the static interference among the important parts mutually, the results of above checking shown that the whole machine had no interference.
     In the three-dimensional virtual assembly model, as the main motion part, the rototilling blade accomplished its motion simulation by using the driving bonds. Therefore, the assembly confliction in the motion can be checked, and the interferential phenomena resulted from the changed design on the workability of the parts can be observed. No conflictions can be seen when the driving blade turned in the positive direction with the driving blade axis turning 3600.
     The checked results from the interferential examination and the dynamic confliction detection indicated that the structure and the sizes of the parts by the optimized design are logical, and the machinery parts can be manufactured based on the virtual prototype assembly model.
     The simulation platform of virtual prototype was improved and the new machine with the bionic soil-touching parts was manufactured according to the modified 3D virtual assembly of soil preparing combine model. The virtual performance tests with multi-work conditions have been done using the improved virtual prototype simulation platform, the results of tests showed that the simulation traction force for the stubble-removing and ridging was reduced 0.948% compared with the original design after optimization of the key partial dimensions; and the working traction force was also reduced 7.41% under the same multi-work conditions. The performance tests in the field have been done and the results showed that the working traction force of the new Soil preparing Combine was reduced 6.335% under the stubble removing and ridging conditions compared with the original machine.
     Virtual measurement, virtual tests, virtual assembly and the virtual prototype, used to study the dynamics of small Soil Preparing Combine, are the modernization digital experimental technology and design methodology. Meanwhile, these methods are the application of technology of computer for agricultural machine engineering. The results of the present research will provide new idea and methods for implements design in agricultural machinery engineering
引文
1. 李宝筏,邱立春,吴仕宏等.面向东北地区进行保护性耕作研究与建议.农业机械文摘,2002,(6):201~204.
    2. 马成林,王化民,吕俊伟.吉林省农业机械化可持续发展战略研究.农业工程学报,1997,13(S):216~219.
    3. 王军.东北黑土地退化严重. 新文化报 2005-3-27.
    4. 高焕文.北方地区机械化可持续旱作农业研究.中国机械化旱作节水农业国际研讨会论文集.北京:中国农业大学出版社,2000.21~25.
    5. 翟通毅.山西省发展机械化保护性耕作农业的报告.中国机械化旱作节水农业国际研讨会论文集.北京:中国农业大学出版社,2000.86~90.
    6. 贾洪雷. 东北垄作蓄水保墒耕作技术及其配套的联合少耕机具研究[D].长春:吉林大学,2005.
    7. 臧英. 保护性耕作防治土壤风蚀的试验研究[D].北京:中国农业大学,2003.
    8. 董光荣,李长治,高尚玉等.关于土壤风蚀风洞模拟实验的某些结果.科学通报,1987(4):297-301.
    9. 朱朝云,丁国栋,杨明远.风沙物理学.北京:中国林业出版社,1992.
    10. R.L.Raper. Selecting Subsoilers to Reduce Soil Compaction and Minimize Residue Burial.Conservation Tillage & Sustainable Farming. Beijing: China Agricultural Science And Technology Press,2004,135~143.
    11. 高焕文著.高等农业机器管理学.北京:中国农业大学出版社,1996.
    12. Li Hongwen, Gao Huanwen, He Jin. A Comparison of Subsoiling and Zero Tillage on Soil Properties and Crop Yield. Conservation & Substainable Farming. Beijing: China AgriculturalScience and Technology Press, 2004, 85-88.
    13. 李洪文,陈君达,邓健,赵卫东.早地玉米保护性耕作作业方案与机具体系研究. 中国农业大学学报,2000,5(4):68-72.
    14. 马人恩,王林安.旱地农业工程农艺学,中国农业科技出版社,1994.8.
    15. 王晓燕,高焕文,李洪文等.保护性耕作对农田地表径流与土壤水蚀影响的试验研究.农业工程学报,2000,(3):66-69.
    16. 高焕文,李问盈,李洪文.中国特色保护性耕作技术.农业工程学报,2003,19(3):1-4.
    17. A. Smith, R. G. Wilson, G. D. Binford, C. D. Yonts. Tillage Systems for Improved Emergence and Yield of Sugarbeets. American Society of Agricultural Engineers. 2002, 18(6): 667-672.
    18. E.B.罗伯特等著,余汉章译.玉米地传统耕作和保护性的多年平均流失量.中国水土保持,1985,(7):55-61.
    19. M.J.Kirkby, R.P.C.Morgan.Soil erosion.John Wiley & Sons Ltd.1980.
    20. 何进,李洪文,毛宁,王树东.玉米免耕播种深松联合作业机试验研究.农机化研究,2004,11(6):163-166.
    21. John E.Morcison.Development and Future of Conservation Tillage in American. China International Conference on Dryland and Water-Saving Farming, Beijing. China. November, 2000, 132-135.
    22. 陈君达,王兴文,李洪文.早地农业保护性耕作体系与免耕播种技术.北京农业工程大学学报,1993,13(1):27-33.
    23. 罗守藩等.免耕秸秆覆盖对玉米根系的影响.山西农业科学,1993(1):14-18.
    24. 赵永满,王维新.国外农业机械化的现状及发展态势.农机化研究,2005,7(4):11-12.
    25. 耿改龙,张曙彩.田间联合作业机的研究现状及展望.山东农机,1999(4):3-5.
    26. 贾洪雷,马成林,孙裕晶,陈忠亮.耕整种植联合作业工艺及配套机具.农业机械学报,2004,35(6):61~64.
    27. 贾洪雷.北方蓄水保墒耕作体系及联合少耕机具的研究应用.中国节水农业科技论坛.2004:381~386.
    28. 贾洪雷,马成林,刘昭辰,刘晖.东北垄作蓄水保墒耕作体系及其配套机具的研究与应用.农业机械学报,2005,36(7): 32-36.
    29. M.V.Lopez, D.Moret, R.Gracia, J.L.Arrue.Tillage Effects on Barley Residue Cover during Fallow in Semiarid Aragon. Soil and Tillage Research, 2003,72 (1):53-64.
    30. Anne Williams. A Farmer’s Experience of No-till Farming in Northern NSW Australia. Conservation Tillage & Sustainable Farming. Beijing: China Agricultural Science And Technology Press,2004.40-45.
    31. John E.Morrison. Development and Future Conservation Tillage in America. 中国机械化旱作节水农业国际研讨会论文集.北京:中国农业大学出版社,2000.26-34.
    32. 高焕文.北方地区机械化可持续旱作农业研究.中国机械化旱作节水农业国际研讨会论文集.北京:中国农业大学出版社,2000.21-25.
    33. Brian Mcconkey, Wayne Lindwall. Conservation Tillage Systems in Western Canada. 中国机械化旱作节水农业国际研讨会论文集北京:中国农业大学出版社,2000.142-147.
    34. 吴仕宏,包文育,李宝筏. 东北垄作玉米免耕破茬试验装置的研究.沈阳农业大学学报,2006,37(4):657-659.
    35. 教育部科技查新工作站,吉林大学查新检索咨询中心.1JGHL-140(2)秸秆—根茬粉碎还田联合作业机.科技查新报告. 报告编号:20040431Z040184.
    36. 教育部科技查新工作站,吉林大学查新检索咨询中心.1DGZL 系列多功能耕整联合作业机.科技查新报告. 报告编号:20040431Z040182.
    37. 李建桥,许亮,崔占荣.野猪头部三维几何模型逆向工程研究.中国农业工程学会学术年会论文集,2005,232-236.
    38. Shucai Xu, Jianqiao Li, Rui Zhang etal. Design of Virtual Measuring Stress-strain System for Bionic Plough and Research on Result in Dynamic Measurement. International Conference of Agricultural Engineering –2005, 6-9 December 2005 in Bangkok, Thailand.
    39. 郜楠,李建桥,崔占荣,许述财. 一种中小型耕整联合作业机的初步设计. 中国农业机械学会学术年会论文集,2006,659-662.
    40. 许述财,李建桥,张锐,文立阁,郜楠.针对扰动土壤机械性能分析的虚拟测试系统.中国农业机械学会学术年会论文集,2006,722-725.
    41. Shucai Xu, Jianqiao Li, Rui Zhang etal. Measuring System for Bionic Plough Based on Virtual Instrument Technology. ISTM/2005 6th International Symposium on Test and Measurement.1277-1280.
    42. 任露泉,李建桥,田丽梅. 地面机械仿生减粘降阻技术. 中国农业机械学会学术年会论文集,2006,638-649.
    43. 张锐,李建桥,李因武,许述财. 波纹形表面部件作用下土壤动态行为的离散元分析.中国农业机械学会学术年会论文集,2006,667-673.
    44. 许亮,李建桥,崔占荣,许述财.仿生起土铲初探. 中国农业机械学会学术年会论文集,2006,735-739.
    45. Li Jianqiao, Xu Liang, Cui Zhanrong. The Three-Dimensional GeometricalModeling for Head of Wild Boar by Reverse Engineering Technology. Proceedings of the International Conference of Bionic Engineering, 2006, 235-240.
    46. Xu Shucai, Xu Liang, Li Jianqiao, Cui Zhanrong. Measuring System for Bionic Plough Based on Virtual Instrument Technology. Proceedings of the International Conference of Bionic Engineering, 2006, 185-189.
    47. 任露泉,刘庆平,张桂兰 等.仿生柔性镇压辊.发明专利号 ZL03110943.8
    48. 孙亚飞,陈仁文,周勇,龚海燕.测试仪器发展概述.仪器仪表学报,2003,24(5):480-484.
    49. K. Fitzgerald. Technology 1991: test and measurement.IEEE-IEL.1991, 28(1):56~58.
    50. 屠良尧,李海涛.数字信号处理与 VXI 自动化测试技术.北京:国防工业出版社,2000.
    51. 赵茂泰.智能仪器原理及应用.北京:电子工业出版社.1997.
    52. 赵建,涂满平,陈国荣.虚拟仪器的软件设计.测控技术,2003,22(10):36-38.
    53. 曹军义,刘曙光.虚拟仪器技术的发展与展望.自动化与仪表,2003,(1):1-5.
    54. 应怀樵.虚拟仪器与计算机采集测试分析仪器的发展和展望.测控技术,2000,(8):4-6.
    55. 林正盛.虚拟仪器技术及其发展.现代计量测试,1997,(4):10-15.
    56. 杨乐平等. 虚拟数字示波器的设计与实现. 电子技术应用,2002(7):28-30.
    57. 秦树人.虚拟仪器——测试仪器从硬件到软件. 振动、测试与诊断,2003,20(1):1-6.
    58. 罗霄华. 虚拟仪器技术的应用与发展. 科技情报开发与经济,2001(3):35~36.
    59. 师 黎 . 虚 拟 仪 器 技 术 在 实 验 室 建 设 中 的 应 用 研 究 . 郑 州 工 业 大 学 学报,1999(2):98~99.
    60. 金 吴 . 虚 拟 仪 器 技 术 及 其 在 农 业 自 动 化 中 的 应 用 . 农 业 机 械 学报,1999(3):108~112
    61. 付萍,赵孔新,刘君义.智能仪器.长春:吉林科学技术出版社,2001.
    62. 吴卫东.试谈虚拟仪器及其开发应用.现代电视技术,2000(8):162-165.
    63. 曹国华.虚拟仪器及其应用.南京师范大学学报(工程技术版),2003,3(1):10-12.
    64. 林永兵,李晓燕,王天荣,张国雄.基于虚拟仪器的气敏元件智能测试系统.天津大学学报,2002,35(1):39-42.
    65. 高晓康,谈理.虚拟仪器在计量测试中的应用.上海计量测试,2001(3):35-36.
    66. 王培霞,贾育秦,毕友明.在虚拟仪器平台上构建便携式车辆综合测试系统. 太原重型机械学院学报,2001,22(2):113-116.
    67. Dan Strassberg.Virtual Instrument Software goes 32 Bit. EDN, 1996, (1): 77-84.
    68. 鲍一丹,王立大,蔡建平.虚拟仪器技术在拖拉机性能测试中的应用.浙江大学学报(农业与生命科学版),2003,29(3):335-338.
    69. 李义府,邹润民.虚拟仪器在电工电子实验中的应用.电气电子教学学报,2001,23(3):67-69.
    70. 周雷,杨维翰.虚拟仪器新技术及其在工业中的应用.现代科学仪器,2002(1):40-43.
    71. Pasquarette J. Building virtual instrument with OLE control [J].Evaluation Engineering, 1996, (2):22-25.
    72. 陈明,周伟,吴龙江.基于虚拟仪器技术的火车闸片摩擦系数测试系统.现代电子技术,2003(13):97-99.
    73. GF. Tartarelli.ATLASB physics performance. Nuclear Instrument and Methods in Physics Research A, 1998, (408): 110-118.
    74. P. Puzo.ATLASB physics performance. Nuclear Instrument and Methods in Physics Research A, 2002, (494):340-345.
    75. L R Stanislaw.Towards a global virtual instrument control and virtual link between experiment and modeling. Thermochimica Acta, 2000, (355): 107-111.
    76. 郑建荣.ADAMS—虚拟样机技术入门与提高.北京:机械工业出版社,2002.
    77. 王国强,张进平,马若丁.编.虚拟样机技术及其在 ADAMS 上的实践.西安:西北工业大学出版社,2002.
    78. 刘贤喜.机械系统虚拟样机仿真软件的实用化研究[D].北京.中国农业大学.2001.
    79. B. Hargreaves, GMR DYANA: The Computing System and Its Applications. General Motors Engineering Journal,Vol.8,No.l, 1961.
    80. 陆林,李耀明. 虚拟样机技术及其在农业机械设计中的应用. 中国农机化.2004(4):59-61.
    81. JZ Hong, ZK Pan.Dynamics of flexible multibody system with tree topologies.Acta Mechanica Sinica, 1992, 8(3):271-278.
    82. YZ Liu, JZ Hong, HX Yang.Dynamics of multi-rigid-body systems. Beijing Higher Educational Press, 1989.
    83. S J Yuan, Z Q Lu.Dynamics of multibody systems.Beijing: Beijing Technology University Publishing House, l992.
    84. Hong Jiazhen Computational. Dynamics of multibody system. Beijing: Higher Education Press, 1999.
    85. JZ Hong, YZ Liu.Dynamics and control of free Multibody system.In:Proc.Of the Int.Con.on Dynamics, Vibration and Control.Beijing: Peking University Press, 1990, 548-555.
    86. H.J.Fletcher, L.Rongved, E.Y Yu.Dynamics Analysis of a Two-body Gravitationally Orient Satellite, Bell System Tech. 1963,42 (5):2239-2266.
    87. W.W.Hooker, G, Margulies.The Dynamical Attitude Equations for an n-Body Satellite, J.Astron.Sci. 1965 (12):123-128.
    88. Schwerlassek, R., Roberson, R.E. A State-space Dynamical Representation for Multibody Mechanical.Systems, Acta echanica, 50(1983), 141-161, Acta Mechanica, 51(1984), 15-29.
    89. 王琪,陆启韶.多体系统 Lagrange 方程数值算法的研究进展[J].力学进展,2001,31(1):9 -17.
    90. H.T Rathod, K Sridevi. General complete Lagrange interpolations with applications to three-dimensional finite element analysis. Computer Methods in Applied Mechanics and Engineering, 2001 (190):26-27.
    91. 李金铭,刘金海等.高等数学(线性代数与矢量分析).成都:西南交通人学出版社.2000.
    92. JA.邦迪,RSR 默蒂著,吴望名等译.图论及其应用..北京:科学出版社,1984.
    93. 徐俊明.图论及其应用.合肥:中国科学技术大学出版社,2000.
    94. R L Huston, YW Liu.Dynamics of multibody systems[M].Tianjin: Tianjin University Publishing House,1991
    95. (美)T,凯恩,D.A 列文松.动力学理论与应用.北京:清华人学出版社,1988.
    96. 彭旭麟等.变分法及其应用.武汉:华中工学院出版社,1983.
    97. A. Eichberger,C. Fuhrer,R. Schwertassek. The Benefits of Parallel Multibody Simulation and its Application to Vehicle Dynamics. Advanced Multibody System Dynamics Simulation and Software Tools. Kluwer Academic Publishers, 1993.
    98. Magnus K.Dynamics of multibody system.BerIin:Springer-Verlag,l978
    99. E J Haug.Computer aided analysis and optimization of mechanical system dynamics.Berlin: Snrineer-Verlaa.1984.
    100. G. Bianch & W. Schiehlen.Dynamics of multibody system. Berlin: Springer-Verlag, 1986.
    101. 潘振宽,洪嘉振,刘延科.柔性机械臂动力学方程单一向递推组集建模方法.力学学报,1993,25:327-333.
    102. B. Hargreaves,GMR DYANA: The Computing System and Its Applications. General Motors Engineering Journal,Vol.8,No.l, 1961.
    103. C. R. Lews,GMR DYANA: Extending the Computing System to Solve More Complex Problems. General Motors Engineering Journal, Vol. 8, No.l, 1961.
    104. M. A. Chace. Solutions to Vector Tetrahedron Equation. Journal of Engineering for Industry, Transactions of ASME,Series,Vol.87,1965.
    105. M. A. Chace,D. A. Simth. DAMN-A Digital Computer Program for the Dynamic Analysis of Generalized Mechanical Systems. SAE Paper 710244,Jan. 1971.
    106. M. A. Chace, J. C. Angell. User Guide to DRAM (Dynamic Response of Articulated Machinery). Design Engineering Computer Aids Laboratory, University of Michigan,1973.
    107. N. Orlandea. Node-Analogous Sparsity-oriented Methods for Simulation of Mechanical Systems. Ph. D. dissertation,University of Michigan,1973.
    108. N. Orlandea, J. C. WiIey, R. Wehage. ADAMS 2: A Sparse Matrix Approach to the Dynamic Simulation of Two-Dimensional System. SAE Paper 780486,1978.
    109. J. Wittenburg. Analytical Methods in Mechanical System Dynamics. NATO ASI Series. Vol. 59,Computer Aided Analysis and Optimization of Mechanical System Dynamics. Springer-Verlag Berlin Heidelberg,1984.
    110. D. S. Bae,E. J. Haug. A Recursive Formulation for Constrained Mechanical Systems,PartⅠ-Open Loop. Mechanics of structures and Machines,15: 3,1987.
    111. D. S. Base,R. S. Hwang,E,J. Haug. A Recursive Formulation for Real-Time Dynamic Simulation. Proceedings of the l988 ASME Design Automation Conference,1988.
    112. E. J. Haug. Computer Aided Kinematics and Dynamics of Mechanical Systems.Vol. l Basic Methods,Needham Heights,Massachusetts,Allyn & Bacon,1989.
    113. E. J. Haug. Methods of engineering mathematics. Englewood Cliffs, N. J. Prentice Hall, 1993.
    114. E. J. Haug. High Speed Multibody Dynamic simulation and its Impact on Man-Machine systems. Advanced Multibody System Dynamics Simulation and Software Tools,Kluwer Academic Publishers,1993.
    115. J. S. Freeman. E. J. Haug,J. G. Kuhl,F. F. Tsai. Dynamic Simulation for Vehicle Virtual Prototyping. NATO ASI Series. Vol. 268,Computer-Aided Analysis of Rigid and Flexible Mechanical Systems. Kluwer Academic Publisher, 1994.
    116. E. J. Haug, D. I. Coroian, R. Serban. Variable Fidelity Differential-Algebraic Equation Model Correlation. Mech. Struct. &Mach., 25(l) ,1997.
    117. R. Serban,E. J. Haug. Kinematic and Kinetic Derivatives in Multibody System Analysis Mech. Struct. &Mach., 26(2), 1998.
    118. R. E. Roberson,J. Wittenburg. A Dynamical Formalism for an Arbitrary Number of Interconnected Rigid Bodies With Reference to the Problem of Attitude Contro1. Proceedings of the 3rd International Congress of Automated Control,London,1966.
    119. J. Wittenburg. Dynamics of Systems of Rigid Bodies. B.G. Teubner,Stuttgart,1977.
    120. R. E. Roberson. On the Practical Use of Euler-Rodrigues Parameters in Multibody System Dynamic Simulation. Ing. Arch.,Vol. 54,1985.
    121. R. Schwertassek,R. E. Roberson. A State-Space Dynamical Representation for Multibody Mechanical Systems,Part Ⅱ: Systems with Closed Loops. Acta Mechanica. Vol. 50,1984.
    122. R. E. Roberson,R. Schwertassek. Dynamics of Multibody Systems. Springer,Berlin,1988.
    123. J. Wittenburg,U.Wolz. The Program Mesa Verde for Robot Dynamics Simulations. Robotics Research: The Third International Symposium,1986.
    124. B. Weber, J.Wittenburg. Symbolical Programming in System Dynamics.Advanced Multibody System Dynamics Simulation and Software Tools,Kluwer Academic Publishers,1993.
    125. J. Wittenburg. Topological Description of Articulated Systems NATO ASI Series Vol. 268,Computer-Aided Analysis of Rigid and Flexible Mechanical Systems. Kluwer Academic Publisher,1994.
    126. Wittenburg J W.Dynamics of system of rigid bodies.B.G.Teubner Stuttgart.多刚体系统动力学.谢传锋译.北京:北京航空航天人学出版社,1986
    127. R. L. Huston,C. E. Passerello. Eliminating Singularites in Governing Equations of Mechanical Systems. Mech. Res. Commun.,Vol. 3,1976.
    128. R. L. Huston,C. E. Passerello, M. W. Harlow. Dynamics of Multi-Rigid-Body Systems. J. Appl. Mech.,Vol. 45,No.4,1978.
    129. R. L. Huston,C. E. Passerello. On Multi-Rigid-Body System Dynamics. Comput. Struct.,Vol. 10,1979.
    130. R. L. Huston,C. E. Passerello. Multibody Structural Dynamics including Translation between the Bodies. Comput. Struct.,Vol. 18. 1984.
    131. R. L. Huston. Multibody Dynamics. Butterworth-Heinmann,Stoneham,MA,1990.
    132. Schiehlen W, Seifried R. Multiscale methods for multibody systems. In: Proceedings of the Eccomas Multibody Dynamics, Lisbon, Portugal, July 1-4, 2003, paper MB2003-094.
    133. Schiehlen W. Power aspects of inverse dynamics control systems.Institut B for Mechanic,Institutsbericht IB-35, Stuttgart, 2000.
    134. Schiehlen W.Multibody system dynamics: roots and perspectives. Multibody Systems Dynamics.1997, l,2,149-188.
    135. A.Eiber,A.Kauf and W.Schiehlen, Biomechanics of the Middle Ear, in: Proc.Sth Int.Conf. Biomechanics of Man 1994(Institute of Theoretical and Applied Mechanics, Benesov CZ,1994)
    136. Bayo E.,Garcia de Jalon J,Avello A,Cuadrado J.An efficient computational method for real time multibody dynamic simulation in fully Cartesian coordinates[J].Computer Methods in Applied Mechanics and Engineering,l991,92:377-395.
    137. 刘延柱,洪嘉振,杨海兴. 多刚体动力学. 北京:高等教育出版社. 1989.
    138. 梁崇高.平面连杆机构运动分析通用程序 SKAL. 全国第一届机构学学术讨论会论文. 1983.
    139. 张纪元,沈守范. 计算机构学. 北京:国防工业出版社. 1996.
    140. 张旭.机械系统虚拟样机技术的研究. 北京:中国农业大学. 1999.
    141. 张彤.机械系统运动仿真软件前处理的研究. 北京:中国农业大学. 1999.
    142. 航伟.机械系统运动仿真结果可视化的研究. 北京:中国农业大学. 1999.
    143. 熊启蒙.基于空间算子代数理论的链式多体动力系统递推动力学研究[D]. 南京航空航天大学. 2003.8.
    144. 张旭,毛恩荣.机械系统虚拟样机技术的研究与开发.中国农业大学学报,1999(2):94-98.
    145. 王 行 仁 . 面 向 二 十 一 世 纪 , 发 展 系 统 仿 真 技 术 . 系 统 仿 真 学报.1999(2):18-23.
    146. 洪嘉振,贾书惠主编.多体系统动力学及控制.北京:北京理工大学出版社,1996.
    147. 袁士杰,吕哲勤.多刚体系统动力学.北京:北京理工大学出版社,1992.
    148. 陆佑方.柔性多体系统动力学.北京:高等教育出版社,1996.
    149. 黄文虎等.多柔性系统动力学.北京:科学技术出版社,1997.
    150. 齐朝晖,唐立民,陆佑方.一种建立多体系统计算模型的新方法.力学学报,1994,26(5):593-598.
    151. 郭吉丰,童忠钫.多挠体系统运动学和动力学模型的线性化方法.宇航学报,1992,4:17-26.
    152. 王济勇,洪嘉振.柔性多体系统得递推组集建模与仿真软件的实现.应用力学学报,1998,14(2):121-126.
    153. 潘振宽,洪嘉振,刘延科.柔性机械臂动力学方程单向递推组集建模方法.力学学报,1993,25:327-333.
    154. 齐朝晖,唐立民.有限转动张量的保角参量及在多柔体系统中的应用.力学学报,1998,30(6):711-718.
    155. 刘 锦 阳 , 洪 嘉 振 . 空 间 伸 展 机 构 接 触 碰 撞 的 动 力 学 分 析 . 字 航 学 报 ,1997,18(3):14-19.
    156. 洪 嘉 振 , 梁 敏 . 多 刚 体 系 统 内 碰 撞 数 学 模 型 和 计 算 程 序 , 力 学 学报,1989,21(4):509-512.
    157. 梁敏,洪嘉振,刘延柱.多刚体系统碰撞动力学及可解性判别准则.应用力学学报,1991,8(1 ):56-62.
    158. 王奋飞.变结构多刚体系统的动力学问题.力学学报,1990,22(4):506-572.
    159. 洪 嘉 振 , 倪 纯 双 . 变 拓 扑 多 刚 体 系 统 的 全 局 仿 真 . 力 学 学报,1996,28(5):633-637.
    160. 唐硕,陈士橹,赵建卫.飞行器设计与试验的虚拟样机技术.字航学报,2000,21(11): 1-6.
    161. 宋正河,毛恩荣,周一鸣. 机械系统人机界面优化设计模型的的研究.机械设计与制造,1999,2(2):35-37.
    162. 王志华,陈翠英. 基于 ADAMS 的联合收割机振动筛虚拟设计. 农业机械学报,2003,34(4): 53-56.
    163. 周克栋. 复杂机械的虚拟样机技术. 南京理工大学. 2002.
    164. 谭立东. 牧草高密度压捆过程的计算机分析与仿真. 内蒙农业大学. 2003.
    165. 李勇,曾志新等. 虚拟样机技术在小型农用装载机设计中的应用. 农业工程学报,2004,20(5): 134-137.
    166. 马明建,周长城.数据采集与处理技术.西安:西安交通大学出版社,1999.
    167. 陈杰,黄鸿.传感器与检测技术.北京:高等教育出版社,2002.
    168. 邓贤照,徐英凯.快速傅立叶浅谈.北京:水利电力出版社,1994.
    169. 程正兴.小波分析算法与应用.西安:西安交通大学出版社,2000.
    170. 李弼成.小波分析及其应用.北京:电子工业出版社,2003.
    171. 丛玉良,王宏志,王本平.数字信号处理.长春:吉林科技出版社,2000
    172. 程佩青.数字信号处理教程.北京:清华大学出版社,2001
    173. [美]L.R.拉宾纳,B.戈尔德著.史令启译.数字信号处理的原理与应用.北京:国防工业出版社,1982 年.
    174. 李义府,邹润民.虚拟仪器在电工电子实验中的应用.电气电子教学学报,2001,
    23(3):67-69.
    175. 何刚.检测与控制器件.北京:中国轻工业出版社,1996.
    176. 刘方新,钱昭烨,李宗民.常用仪器仪表原理与使用.北京:科学出版社,1999.
    177. 董绍平,陈世耕,王洋.数字信号处理基础.哈尔滨:哈尔滨工业大学出版社,1996
    178. 李建桥,许述财,李因武.虚拟多通道应力应变测试系统的研究.仪器仪表学 报, 2004,25(4):1018-1023.
    179. 薛钧义,张彦斌编.MCS-51/96 系列单片微型计算机及应用.西安交通大学出版社,1997 年第二版.
    180. 李华编. MCS-51 系列单片机实用接口技术.北京航空航天大学出版社,1993 年第一版.
    181. 洪嘉振,杨长俊.理论力学.北京:高等教育出版社,1999.
    182. 李军,邢俊文,覃文洁等编.ADAMS 实例教程.北京:北京理工大学出版社,2002.
    183. 边宇虹编.分析力学与多刚体动力学基础.北京:机械工业出版社,1998.
    184. 邵明安,王全九.推求土壤水分运动参数的简单入渗法Ⅱ理论分析.土壤学报2002,9(1):64-66.
    185. 潘文霞.不均匀土壤参数计算. 高电压技术,1980,6(3):41-48.
    186. 虎丹.吐马尔拜.非饱和土壤水分运动参数的分析.新疆大学学报(自然科学版),1998,6(5):6-8.
    187. 李惠娣等.土壤结构变化对包气带土壤水分参数的影响及环境效应. 水土保持学报,2001,11(4):47-48
    188. 马 明 建 . 移 动 式 土 壤 工 作 部 件 性 能 参 数 测 试 系 统 . 农 业 机 械 学 ,2003,6(9):21-28.
    189. 吕殿青.非饱和土壤水力参数的模型及确定方法. 应用生态学报,1991,1(3):15-18.
    190. 徐华等.计算土壤参数的一种新方法. 高电压技术,2005,7(5):42-46
    191. 王红闪,黄明斌. 四种方法推求土壤导水参数的差别与准确性研究.干旱地区农业研究,1992,8(6):12-16.
    192. 黄 明 斌 , 不 同 沟 灌 条 件 下 土 壤 入 渗 参 数 的 估 算 . 灌 溉 排 水 学 报 .1997,3(8):14-15
    193. 王全九,非饱和土壤水分运动参数的分析.新疆大学学报(自然科学版),1998, 6(5): 6-8
    194. 黄明斌,土壤水分运动特征参数空间异质性理论分析、取样与影响因素.中国水土保持科学,2000,16(3):4-8
    195. 黄昌勇.土壤学.北京:中国农业出版社,1982. 18–19.
    196. 黄瑞农.环境土壤学.北京:高等教育出版社.2001. 68–71.
    197. 席承藩.土壤分类学.北京:中国农业出版社.1990.69-72.
    198. 李春鸣,土壤样品的采集和处理,西北民族大学学报 (自然科学版 )1999, 24,( 3):24-27.
    199. 刘凤枝,农业环境监测实用手册, 北京:中国标准出版社,2001.
    200. 奚旦立,环境监测,北京:高等教育出版社,1987.
    201. 许述财,李建桥,李因武,张锐. 土槽室温虚拟测试系统设计. 气象水文海洋仪器.2006,3(1):67-70.
    202. 许述财,李因武,张锐,李建桥. 模型铲刀表面法向压力虚拟测试系统设计. 试验技术与试验机.2006, 46(1): 54-56.
    203. Shucai Xu, Jianqiao Li, Rui Zhang etal. Measuring System for Bionic Plough Based on Virtual Instrument Technology. ISTM/2005 6th International Symposium on Test and Measurement.1277-1280.
    204. 许述财,张立君,李建桥,杨志强.拉压型传感器静态性能虚拟标定系统. 试验技术与试验机.2005, 45(4): 23-26.
    205. 张志杰.动态测试的误差分析方法研究.测试技术学报.2004,18(2):139-143.
    206. 全力,陈照章,唐平,成立,苏清祖.信号处理虚拟仪器系统硬件设计.仪器仪表学报.2004,25(3):413-417.
    207. 葛文峰.PLC控制系统的硬件抗干扰措施. 煤矿机械. 2004,(11):57-59.
    208. 张明友,吕明. 信号检测与估计[M].第二版.北京:电子工业出版社,2005.
    209. 任露泉.试验优化设计与分析.长春:吉林科学技术出版社, 2001.
    210. 李忠范.高文森.数理统计与随机过程.长春:吉林大学出版社,2000
    211. 陈伯雄.Autodesk InventorR8 机械设计.北京:清华大学出版社,2004.
    212. 杨欣,佟金,张伏,等.自适应虚拟设计在零压续跑轮胎内支撑设计中的应用. 吉林大学学报(工学版),2006,36(5):705-709.
    213. 谭庆昌,赵洪志,曾平.机械设计.吉林:吉林科学技术出版社,2005.
    214. 刘鸿文.材料力学.北京:高等教育出版社,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700