既有矩形水池的抗震性能诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矩形水池是由顶盖、池壁及底板等矩形薄板组成的空间箱形结构,受荷情况较为复杂,并且水池相邻池壁、底板与池壁、底板与地基之间等存在着相互约束作用。对于贮液结构来说,裂缝控制的要求一般较高,因此在计算内力和变形时,一般假设材料是正交各向异性的匀质连续弹性体,而忽略混凝土材料的非匀质性、塑性和裂缝的影响,在设计矩形水池时,采用弹性薄板理论进行计算。
     本文检索了目前水池研究的相关知识,详细介绍了国内外水池模型及其抗震设计的研究现状,针对某矩形沉淀池工程,采用大型有限元分析软件TDAP,对该沉淀池在静水压力、多遇地震和罕遇地震作用下的抗震性能进行分析研究:(1)采用文克尔弹性地基模型考虑土与结构的动力相互作用,详细介绍了弹簧刚度的计算方法;(2)地震作用下,将池内液体作为附加质量作用于水池结构,以此考虑池内液体对结构抗震性能的影响。多遇地震作用下采用静的解析方法,罕遇地震作用下采用动力时程分析法,运用延性设计理论对罕遇地震作用下的结构内力和变形能力进行诊断;(3)对结构进行动力时程分析时,根据重复反射理论提出一种由典型地震波和土层波阻抗计算场地设计地震波的方法,这种方法计算出的地表面地震波能较好地考虑局部场地效应,一定程度上减小地震烈度异常现象。本文对矩形水池抗震设计的研究思路与方法为今后该领域的研究提供一种较为实用的参考方法。
The rectangle pool is a space box-frame structure. It consists of the roof、walls、the floor and other rectangular laminas. The load case is relatively complex. And the adjacent walls、floor and the walls、floor and the foundation has a mutual restraint. Because the liquid storage structures require to control the crack strictly, when calculating the stress and deformation, it is necessary to ignore the non-uniformity of the concrete material、plasticity and the fracture effect. In the design of a rectangular pool, assume that the structure is orthotropic、continuous and elastomeric. generally use the theory of elastic thin-plate to calculate.
     the thesis retrieved the current relevant knowledge of the pool, introduced the domestic and international pool model and seismic design in details. it took a rectangular pool for example, used large-scale finite element analysis software TDAP, The paper analysed the performance of the pool under static loads、level one seismic and the level two seismic :(1) adopted the winkler elastic foundation model in consideration of soil-structure dynamic interaction, introduced the method to calculate the spring stiffness in detail; (2) under the action of earthquake, to consider the performance of the pool under the interaction of the liquid and the structure, the liquid is added on basin structure as the mass. the static analytical method was used to analyse the level one earthquake,and the time-history analysis method was used to calculate the performance under the level two earthquake, when check the stress and the deformation under the level two earquake of the structure, the theory of ductility design was uesd; (3) during the dynamic time-history analysis, based on the repeated reflection theory, a method of inversing seismic wave on the ground was suggested in this paper. It is according to the typical seismic waves and the impedance of the site soil. this method took local site effects better into account, reduced the phenomenon of abnormal intensity to some degrees. The ideas and methods in the thesis provided a practical approach in this field to design for reference.
引文
[1]张飘.给水排水工程结构[M].北京:机械工业出版社,2010.
    [2]莫骄.特种结构设计[M].北京:中国计划出版社,2006.
    [3]《给水排水工程结构设计手册》编委会.给水排水工程结构设计手册(第二版)[M].北京:中国建筑工业出版社,2007.
    [4]朱彦鹏.特种结构[M].武汉:武汉理工大学出版社,2010.
    [5]铁道部第一勘查设计院编.水池[M].北京:中国铁道出版社,2001.
    [6]贾乃文.混凝土特种结构力学分析与设计计算[M].北京:中国建筑工业出版社,1993.
    [7]许报力.弯矩分配法和弯矩迭代法在矩形水池结构计算中的应用[J].《四川建筑科学研究》,1985,03:45~52.
    [8]尉希成,周美玲.线性变厚壁矩形水池传播矩阵解法[J].《铁道标准设计通讯》,1990,01:22~29.
    [9]李杰,李国强.地震工程学导论[M],北京:地震工程出版社,1992
    [10] H.M.Westergaar. water pressures on dams during earthquakes[J]. Trans.A.S.C.E 1933:418-433.
    [11] Hoskin L M and Jaeobsen L S. Water Pressure in a tank caused by a simulated earthquakes[J]. Bulletin of the Seismological Society of America , 1984, 24(1): 1~32
    [12] Choun Young-sun, Yun Chung-bang. Sloshing characteristics in rectangular tanks with a submerged block [J]. Computers & Structures, 1996, 61(3): 401~413.
    [13] Warnitchai P, Pinkaew T. Modelling of liquid sloshing in rectangular tanks with flow-dampening devices [J]. Engineering Structures, 1998, 20(7): 593~600.
    [14]陈科,李俊峰,王天舒.矩形贮箱内液体非线性晃动动力学建模与分析[J].力学学报, 2005, 37(3): 339~345.
    [15] Ikeda T, Nakagawa N. Non-linear vibrations of a structure caused by water sloshing in a rectangular tank [J]. Journal of Sound and Vibration, 1997, 201(1): 23~41.
    [16] Housner G.W. Dynamic Pressure on aecelerated fluid container[J]. Bulletin of the Seismologieal Soeiety of Ameriea.1957,47(1):15~35.
    [17] Housner G.W. Behavior of structures during earthquake Proceedings[J],1959,85: 35~42.
    [18]居荣初,曾心传.弹性结构与液体的藕联振动理论[M].北京:地震出版社,1983
    [19]刘云贺,王克成,陈厚群.储液池的抗震问题探讨[J].地震工程与工程振动,2005,25(1):149~154.
    [20]程选生,杜永峰.弹性壁板下钢筋混凝土矩形贮液结构的液动压力[J].工程力学,2009,26(06):82~88.
    [21]李彦民,徐刚等.储液容器流固耦合动力响应分析计算[J].工程力学,2002.19(4):29~31.
    [22]张素侠,刘习军,贾启芬,王霞.矩形弹性壳液耦合系统的模拟试验分析[J].机械强度, 2004, 26(6): 615~619.
    [23]刘习军,张素侠等.矩形弹性壳液藕合系统中的重力波分析[J].力学学报, 2006, 38(1): 106~111.
    [24] O.Andrianarison, R.Ohayon. Compressibility and gravity effects in internal fluid—structure vibrations: Basic equations and appropriate variational formulations [J], ComPut.MethodsAPPI.Mech.Engrg. 2006, 195:1958~1972.
    [25]北京市基本建设委员会.给水排水工程结构设计规范GB50069-2002.北京:中国建筑工业出版社,1985-01-01.
    [26] Balendra.T.Ang. Seismic design of flexible cylindrical liquid storage tanks [J]. Earthquake Engineering and Structure Dynamics, 1982,10(3):477~496.
    [27]胡盈辉,庄茁,由小川.大型储液罐在地震作用下的附加质量法研究[J].压力容器, 2009, 26(8): 1~6.
    [28]刘焕忠.附加质量法在储油罐动力分析中的应用研究.[D].北京:清华大学,2004.
    [29]王冬花.钢筋混凝土水池优化设计[D].安徽合肥:合肥工业大学, 2009.
    [30]杜永峰,史晓宇,程选生.钢筋混凝土矩形贮液结构的液-固耦合动力分析[J].西北地震学报, 2008, 30(1): 21~26.
    [31]朱彦鹏,王龙,王秀丽.带刚域的十字交叉弹性地基梁的内力分析与设计[J].建筑科学, 2005, 21(1): 35~40.
    [32]包旭范.贮水构筑物考虑土与结构共同作用的非线性有限元空间分析[J].特种结构, 1995, 12(3): 9~14.
    [33]沈珠江.理论土力学[J].北京:中国水利水电出版社, 2000.
    [34]王长科,郭新海.基础一垫层一复合地基共同作用原理[J].土木工程学报, 1996, 5(10): 30~35.
    [35] Arc Information System. Arkquake Manuals [M]. 2001.
    [36] J.P.Bardet, K.ICHII and C.H.LIN. EERA–A Computer Program for Equivalent-linear Earthquake site Response Analyses of Layered Soil Deposits [M], 2000.
    [37]蒋通,邢海灵.水平土层地震反应分析考虑频率相关性的等效线性化方法[J].岩土工程学, 2007, 29(2): 218~224.
    [38] Architecture Institute of Japan. anti-quake architectural structure design on considering the soil-structure interaction[M]. 2006.
    [39] Civil Engineering Institute of Construction Ministry. seismic numerical analysis of site soil (NO.1778) [M], 2009.
    [40] Japan Water Works Association. Manual of anti-quake construction on water conservancy facilities[M], 2009.
    [41]卢华喜.不同频谱特性地震动输入下的场地地震反应[J].华东交通大学学报, 2007, 24(1):22~26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700