Zr基非晶合金的形成能力与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据快速凝固原理,自行设计了一套单辊急冷快速凝固实验装置,制备出了非晶薄带,研究了Zr基非晶合金的快速凝固特征。通过将金属熔体能量方程及Navier-Stokes方程相耦合,理论计算了液态合金的冷却速率;利用Takeuchi修正模型估算了该合金形成非晶的临界冷却速率。借助XRD、TEM、DSC分析技术,研究了Zr基非晶合金的结构特征,并对合金的电阻率、抗拉强度和伸长率等性能进行了量化表征,进而探索了冷却速率、组织形态与合金性能的相关规律。
     在快速凝固过程中,液池温度在垂直辊面的高度方向上的变化,比与辊面相切的水平方向上的温度变化显著,且熔体自上而下、自左至右的流动过程中,在高度约25μm处流速的大小和方向均发生变化,水平流速迅速增大,高度方向的流速急剧减小,两者在x>0.6mm时趋于稳定。合金的冷却速率随辊速的增大而增大。制备出的Zr_xAl_yNi_zCU_(100-x-y-z)(x=45,55,65;y=8,10,12;z=3,5,7)合金薄带均为非晶态结构。Zr_(55)Al_(12)Ni_3Cu_(30)合金的玻璃形成能力最好,其临界冷却速率较低,只有4.7K/s,而Zr_(45)Al_(12)Ni_7Cu_(36)合金的玻璃形成能力最差,其临界冷却速率较高,达610K/s。
     正交试验结果表明,成分为Zr_(45)Al_(12)Ni_7Cu_(36),辊速控制在约40m/s所获得的非晶合金薄带具有最理想的性能。
     冷却速率对非晶合金薄带性能具有显著的影响。随冷却速率的增大,Zr_(45)Al_xNi_(x-5)Cu_(60-2x)(x=8,10,12)合金的抗拉强度升高,伸长率则有所降低,电阻率逐渐增大。
In the paper, a set of single roller device has been manufactured according to rapid solidification principle, which is applied to produce the amorphous alloys and the rapid solidification characteristics of Zr-based alloy have been studied. By coupling of the energy equation and the Navier-Stokes equation, the cooling rate of the alloy is calculated theoretically. Meanwhile, using Takeuchi modified model, the critical cooling rate of forming amorphous alloy is also estimated. The structural characteristics of Zr-based amorphous alloy have been studied by using XRD, TEM and DSC analysis techniques, and the electrical resistivity, tensile strength and elongation of Zr-based amorphous alloys are quantificationally characterized. The relations of cooling rate and microstructure morphology with alloy properties are also investigated.
     During rapid solidification, the temperature of puddle changes more significant along the vertical direction than that in the horizontal direction. The alloy melt changes its flow rate and velocity direction rapidly at about 250μm height. The horizontal flow velocity increases rapidly, but the vertical flow velocity decreases sharply, both of them tend to be stable when x>0.6mm. The cooling rate of the alloy increases with the increase of the wheel velocity. The alloy foils prepared with the compositions of Zr_xAl_yNi_zCu_((100-x-y-z))(x=45,55,65; y=8,10,12; z=3, 5, 7) are all amorphous. The glass forming ability of Zr_(55)Al_(12)Ni_3Cu_(30) alloy is the best, whoes critical cooling rate is merely 4.7K/s, much lower than others, whereas, the critical cooling rate of Zr_(45)Al_(12)Ni_7Cu_(36) is much higher to 610K/s.
     The results of the orthogonal test indicate that: the Zr_(45)Al_(12)Ni_7Cu_(36) amorphous alloy foils obtained has the best properties when the wheel velocity is controlled at 40m/s.
     The cooling rate has significant influence on the properties of the amorphous alloy. With the increase of the cooling rate, the tensile strength and electrical resistivity of Zr_(45)Al_xNi_(x-5)Cu_(60-2x)(x=8, 10, 12) amorphous alloy increase, but the elongation decreases.
引文
[1]王正品,张路,要玉宏.金属功能材料[M].北京:化学工业出版社,2004.
    [2]寇生中,冯柳,丁雨田等.高强度Cu基块状非晶合金的最新研究进展[J].材料导报,2003,17(9):242-245.
    [3]李雷鸣,徐锦锋.大体积非晶合金的制备技术[J].铸造技术,2007,28(10):1332-1335.
    [4]增本健.作为下一代功能材料的非晶态金属的进展[J].上海钢研,2002,(3):4-7.
    [5]屈乃琴,唐灏.先进合金材料的发展及应用[J].航空工艺技术,1996,(5):23-25.
    [6]郝雷,陈学定,袁子洲.大块非晶合金的研究进展[J].材料导报,2004,18(8):22-24.
    [7]Chen,HS.The influence of structure relaxation on the density and Young's modulus of metallic glasses[J].Appl.Phys.,1978,49:3289-3291.
    [8]Davies HA.Amorphous Metallic Alloys[M].London:Metal Society,1978.
    [9]R.Hasegawa,C.L.Chien.Mossbauer and its r.f.sideband effects in iron-rich glassy alloys[J].Solid State Communications,1976,18(7):913-916.
    [10]U.Bengtzelius,W.Gotze,A.Sjolander.Dynamics of supercooled liquids and the glass transition[J].Solid State Phys.,1975,30(17):227-231.
    [11]李凡,黄海波.FeNiPB(Cu,Nb)合金的非晶及晶化的微观组织结构[J].东南大学学报(自然科学版),2006,36(7):542-545.
    [12]Y.Waseda,H.Okaki,T.Masumoto(日本).“非晶态金属的结构和晶化的近代观点”《金属玻璃译文集》[M],上海:上海科学技术出版社,1980.
    [13]Cargill III.G.S.Dense Random packing of amorphous structural model for noncrystalline metallic solids[J].Appl.,1970,41:2248-2253.
    [14]Cohen M H,Turnbull D,Metastability of amorphous structures[J].Nature,1964,203:964-970.
    [15]Uhlmann.D.R.A kinetic tteatment of glass formation[J].Non-Cryst.Solids,1972,7:337-348.
    [16]E.Matsubara,T.Ichitsubo,J.Saida etal.Structural study of Zr-based metallic glasses[J].Journal of Alloys and Compounds,2007,434-435(5):119-120.
    [17]W.H.Wang,C.Dong,C.H.Shek.Bulk metallic glasses[J].Materials Science and Engineering,2004,2-3(6):45-89.
    [18]A.Inoue.Preparation and novel properties of nanocrystalline and nanoquasicrystalline alloys[J].Nanostructured Materials,1995,6(1-4):53-64.
    [19]黄胜涛.固体X射线学(二)[M].北京:高等教育出版社,1990.
    [20]郑兆勃.非晶固态材料引论[M].北京:科学出版社,1987.
    [21]Suzuki K.Nanostructure of metallic amorphous alloys-characterization of medium-range structure and dynamics by pulsed neutron scatting[J].Mater.Trans.JIM,1995,39:693-699.
    [22]Matsubara E.Waseda Y.Structure studies of new metallic amorphous alloys with wide supercooled liquid region[J].Mater.Trans.JIM,1995,36:883-889.
    [23]D.Turnbull,R.L.Cormia.Kinetics of later stages of clustering in Al-Cu alloy[J].Acta Metallurgica,1969,8(11):747-750.
    [24]B.S.Murty,D.H.Ping,K.Hono et al.Influence of oxygen on the crystallization behavior of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses[J].Acta mater mater,2000,48(15):3985-3996.
    [25]A.Inoue,T.Zhang,N.Nishiyama et al.Extremely wide supercooled liquid region and large glass-forming ability in Zr65-xAl7.5Cu17.5Ni10Bex amorphous alloys[J].Materials Science and Engineering A,1994,179-180(5):210-214.
    [26]Shen TD,Schwarz RB.Bulk ferromagnetic glasses in the Fe-Ni-P-B System[J].Acta Materialia,2001,49(5):837-847.
    [27]Marry BS,Hono K.The glass forming ability ofMg65Cu15M10Y10(M=Ni,Al,Zn,Mn)alloy system[J].Mater.Trans.JIM,2000,41:1538-1544.
    [28]A.Inoue,T.Zhang,T.Masumoto.Reductilization of embrittled La-Al-Ni amorphous alloys by viscous flow deformation in a supercooled liquid region[j].Non-Cryst.Solids,1993,156-158(5):598-602.
    [29]T.A.Waniuk,R.Busch,A.Masuhr.Equilibrium viscosity of the Zr41.2Ti13.8Cu12.5Ni10 Be22.5 bulk metallic glass-forming liquid and viscous flow during relaxation,phase separation,and primary crystallization[J].Acta Materialia,1998,46(15):5229-5236.
    [30]Inoue A,Zhang W,Zhang T et al.High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems[J].Acta Materialia,2001,49(14):2645-2652.
    [31]J.M.Barandiarán,J.Colmenero.Continuous cooling approximation for the formation of a glass[J].Journal of Non-Crystalline Solids,1981,46(3):277-287.
    [32]Tadaharu Shibuya,Takayuki Asao,Mutsuhiro Tamura et al.Production of quasicrystals and crystalline approximants in the Al-Pd-(Fe,Ru,Os)systems[J].Materials Science and Engineering A,294-296(12):61-64.
    [33]D.R.Uhlmann.A kinetic treatment of glass formation[J].Journal of Non-Crystalline Solids,1972,7(4):337-348.
    [34]H.H.Hng,Y.Li,S.C.Ng et al.Critical cooling rates for glass formation in Zr-Al-Cu-Ni alloys[J].Journal of Non-Crystalline Solids,1996,208(1-2):127-138.
    [35]Yingfan Xu,Wenkui Wang.Crystal nucleation and glass formation in undercooled Pd-Ni-P melts[J].Materials Science and Engineering A,1990,130(1):93-100.
    [36]Michael.C.Weinberg,Edgar.D.Zanotto.Re-ecamination of the temperature dependence of the classical nucleation rate:Homogeneous crystal nucleation in glass[J].Journal of Non-Crystalline Solids,1989,108(1):99-108.
    [37]王珍玉 杨院生 童文辉等.大块非晶临界冷却速率的非等温转变计算模型[J].物理学报,2006,55(4):1953-1957.
    [38]蔡安辉,潘冶,孙国雄.大块金属玻璃非晶形成能力参数表征探讨[J],特种铸造及有色金属,2004,(2):19-29.
    [39]卢博斯基 F.E.非晶态金属合金[M],北京:冶金工业出版社,1989.
    [40]Cost J.R.,Stanley J.T.,Thijsse B.J.Structural Relaxation in Pd-Ge metallic glass[J].Mater.Sci.Eng,1988,97:523-527.
    [41]Balanzat E.,Stanley J.T.,Mairy C.et al.The nature of the atom species involved in the reversible relaxation of metallic glasses[J].Acta Metall,1985,33:785-796.
    [42]Van den Beukel,Van der Zwaag S,Mulder L.Structural Relaxation and Atomic Transport in Amorphous Alloys[J].Acta Metal,1984,32:1895-1899.
    [43]Van Den Beukel A.Radelaar S.On the kinetic of structural relaxation in metallic glasses[J].Acta Metall,1983,31:419-427.
    [44]Cohen Morrel H,Tumbull D.Molecular Transport in Liquids and Glasses[J].Chem.Phys,1959,31:1164-1169.
    [45]Tumbull D,Cohen Morrel H.Free-Volume model of the amorphous phase:glass transition[J].Chem.Phys.,1961,34:120-125.
    [46]Turnbull D,Cohen Morrel H.On the free-Volume model of the liquid-glass transition[J].Chem.Phys.,1970,52:3038-3041.
    [47]Kelton K.F.,Spaepen F.Kinetics of structural relaxation in several metallic glasses observed by changes in electronic resistivity[J],Phys.Rev.B,1984,30:5516-5524.
    [48]Takahara.Y.Irreversible structural relaxation in Fe-B-Si amorphous alloys[J].Mater.Sci-Eng.,1997,A231:128-133.
    [49]Gebert A.,Eckert J.,Schultz L.Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65A 17.5Cu17.5Ni10 metallic glass[J].Acta Mater,1998,46:5475-5482.
    [50]Busch R.,Schneider S.,Peker A.et al.Herispherical Total Emissivity and Specific Heat Capacity of Deeply Undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J].Appl.Phys.Lett.,1995,67:1544-1546.
    [51]Kawase D,Tsai A.P.,Inoue A.et al.Crystallization on supercooled liquid in metallic Zr-Cu-Al glasses[J].Appl.Phys.Lett.,1993,62:137-139.
    [52]Lu K.,Wang J.T.Activation energies for crystal nucleation and growth in amorphous alloys[J].Mater.Sci.Eng.,1991,A133:500-503.
    [53]Thompson C.V.,Greer A.L.,Spaepen F.Crystal nucleation in amorphous (Au100-yCuy)77 Si9Ge14 alloys[J].Acta Metall,1983,31:1883-1894.
    [54]Kissinger H.E.Reaction kinetics in differential thermal analysis[J].Analyt.Chem,1957,29:1702-1706.
    [55]A.Inoue.Bulk amorphous alloys with soft and hard magnetic properties[J].Mater Sci Eng,1997,A(226-228):357-363.
    [56]周效锋,陶淑芬.非晶态金属及其应用[J].曲靖师范学院学报,2002,21(3):37-39.
    [57]夏俊海,羌建兵,王英敏等.Cu-Zr-Nb系铜基块体非晶合金的形成[J].金属学报,2005,41(4):999-1003.
    [58]孙阳阳,刘兵,谌祺等.新型块体非晶合金Cu43Zr43Al7Pd7的形成能力及力学性能和腐蚀性能研究[J].金属学报,2007,43(2):177-181.
    [59]何建军,陈鼎,陈清.大块非晶体材料的研究发展[J].湖南冶金,2002,(5):3-7.
    [60]孙剑飞,陈德明,沈军等.Zr基大块非晶合金的制备及力学性能[J].固体火箭技术,2002,25(4):56-58.
    [61]A.Inoue,H.M.Kimura,K.Sasamod et al.Structure and mechanical strength of Al-V-Fe melt-spun ribbons containing high volume fraction of nanoscale amorphous particles[J].Nanostructred Materials,1996,7(3):363-382.
    [62]G.Ausanioa,H.Chiriacb,V.Iannottia et al.Consistency between morphology and magnetization data in studying the effect of production parameters in Nd90-xFexAl10(x=35-50)melt spun ribbons[J].Journal of Magnetism and Materials,2003,265(2):138-141.
    [63]L.V.Panina,K.Mohri.Magneto-Impedance effect in amorphous wires[J].Appl.Phys.Lett.,1994,65:1189-1191.
    [64]何圣静,高莉如.非晶态材料及其应用[M].北京:机械工业出版社,1987.
    [65]廖西平,陈建红.世纪新材料.非晶态金属[J].重庆工商大学学报(自然科学版),2005,22(5):501-504.
    [66]林揆训,林璇英等.非晶硅薄膜的低温快速晶化及其结构分析[J].物理学报,2002,51(4):863-866.
    [67]夏德媛,赵庆安,隋先国 等.非晶合金变压器的节能效果与发展前景[J].电力需求侧管理,2007,9(1):32-34.
    [68]程天一,章守华 编著.快速凝固技术与新型合金[M].北京:宇航出版社,1990.
    [69]Sun Zhanbo,zhu Yaomin,Li Xiaoyuan,Song Xiaoping.Composition,magnetic properties and GMR performances of melt-spun Cu-Co-Ni ribbons[J].Journal of Magnetism and Magnetic Materials,2004,(269):341-345.
    [70]Baibich M.N,Broto J.M,Fert A,etal.Giantmagnetoresistance of(001)Fe/(001)Cr magnetic super lattices[J].Phys Rev Lett,1988,(61):2472-2475.
    [71]沈宏.大块非晶态金属研究进展[J].苏州大学学报(工科版),2003,23(5):60-63.
    [72]徐凯,徐慧.世界铜冶炼发展趋势及我国铜工业发展对策[J].有色金属,2003,55(2):129-131.
    [73]A.J.Swiston Jr.,T.C.Hufnagel,T.P.Weihs.Joining bulk metallic glass using reactive multilayer foils[J].Scripta Materialia,2003,(48):1575-1580.
    [74]胥锴,吴子平,刘萍.非晶态金属材料研究现状与前景[J].广东有色金属学报,2005,15(4):30-36.
    [75]罗春信.非晶质钎料[J].电焊机,1999,29(4):29-31.
    [76]祁焱,张羊换,全白云等.钎焊及钛基钎焊料的发展及应用[J].金属功能材料,2003,10(5):31-37.
    [77]金子秀夫[日]著,胡本芙 译.新型合金材料[M].北京:宇航出版社,1989.
    [78]胡汉起.金属凝固原理[M].北京:机械工业出版社,1991.
    [79]H.Jones.Developments in Aluminum Alloys by Solidification at Higher Cooling Rates[J].Aluminum,1978,54(4):274-281.
    [80]A.MUNITZ,R.ABBASCHIAN.Liquid separation in Cu-Co and Cu-Co-Fe alloys solidified at high cooling rates[J].Journal of materials science,1998,(33):3639-3649.
    [81]徐泽玮.我国非晶合金配电变压器的应用现状和发展建议[J].金属功能材料,2006,3(13):29-33.
    [82]张荣生,刘海洪编著.快速凝固技术[M].北京:冶金工业出版社,1994.6.
    [83]李月珠编著.快速凝固技术和材料[M].北京:国防工业出版社,1993.
    [84]陈明安,卓利,张新明.Al_126%Si薄带双辊快速凝固成形试验研究[J].材料工程,1999,(4):32-35.
    [85]杨劲松,周成,谢建新.双带快冷法制备1050纯铝带材[J].中国有色金属学报, 2004,40(11):1804-1809.
    [86]邹家生,许志荣,蒋志国等.Ti-Zr-Ni-Cu非晶钎料[J].焊接学报 2005,10(26):51-53.
    [87]李刚,路文江,俞伟元等.非晶新型代银钎料的制备及性能研究[J].兰州理工大学学报,2004,30(5):9-12.
    [88]俞伟元,陈学定,路文江等.快速凝固钎焊薄带[J].焊接技术,2006,(35)3:2-4.
    [89]刘天喜,傅定发,夏伟军等.双辊快淬制备镁合金薄带的工艺研究[J].矿冶工程,2007,27(1):64-67.
    [90]杨劲松,周成,谢建新.双带法快速凝固1050Al薄带的成形试验研究[J].航空材料学报,2002,22(3):9-12.
    [91]黄劲松.Zr55Al10Ni5Cu30大块非晶合金的研究进展[J].稀有金属与硬质合金,2004,32(1):36-39。
    [92]杨院生,李会强,童文辉.含原子团簇的Zr基大块非晶合金熔体能量模型[J].中国科学,G辑 2007,37(3):330-336.
    [93]Q.Jinga,Y.Zhanga,Wanga et al.A study of the glass forming ability in ZrNiAl alloys[J].Materials Science and Engineering,2006,A 441:106-111.
    [94]文凡.Zr60A110Ni30非晶合金的吸氢特性IN].金属功能材料,2000,(3):39-40.
    [95]李旭飞,方守狮,肖学山.Zr-Cu-Al三元合金大块金属玻璃的形成能力及热稳定性[J].上海大学学报(自然科学版),2005,11(5):527-530.
    [96]王清,王英敏,羌建兵等.Cu基Cu-Zr-Al块体非晶合金的成分设计[J].金属学报,2004,40(11):1183-1187.
    [97]T.M.Yue,Y.ESu,H.O.Yang.Laser cladding of Zr65Al7.5Ni10Cu17.5 amorphous alloy on magnesium[J].Materials Letters,2007,61:209-212.
    [98]刘海军,陈伟荣,王英敏等.新型Zr-Al-Ni-Cu块状非晶合金[J].金属学报,2003,39(9):938-942.
    [99]姚启均.金属机械性能试验常用数据手册[M].北京:机械工业出版社,1985.
    [100]王宥宏,孙占波,宋晓平.CuCr合金快淬带的凝固数值模拟[J].中国有色金属学报,2005,15(7):1045-1049.
    [101]惠希东,杨院生,陈晓明等.单辊法制备非晶合金中的传热与熔体流动数值模拟[J].金属学报,1999,35(11):1206-1210.
    [102]张伟堂,白敏丽.单辊法制备非晶合金中冷却速率的数值计算[J].金属功能材料,2002,(1):12-18.
    [103]徐锦锋,代富平,魏炳波.快速传热传质对Fe-Cu包晶合金凝固过程的作用机制[J].中国科学,G辑,2007,37(4):492-500.
    [104]文凡.(Fe,Co,Ni)-Si-B系大块非晶合金[J].金属功能材料,2002,9(2):37-39.
    [105]徐锦锋,魏炳波.快速凝固Co2Cu包晶合金的电学性能[J].物理学报,2007,54(7):3444-3449.
    [106]Smithells.Smithells Metals Reference BooK[M],London:Butterworths,1984.
    [107]嵇罡,季颖斐等.大块非晶的形成能力[J].材料科学与工程,1999,67:55-58.
    [108]娄德诚.新型Zr基大块非晶合金的制备及其非晶形成能力研究[D].燕山大学,2005.
    [109]D.Fatay,J.Gubicza,P.Szommer.Thermal stability and mechanical properties of a Zr-based bulk amorphous alloy[J].Materials Science and Engineering A.2004,(7):387-389.
    [110]A Takeuchi,A Inoue.Quantitative evaluation of critical cooling rate for metallic glasses[J].Mater.Sci.Eng.A,2001,304-306:446-451.
    [111]王焕荣,石志强,藤新营等.合金玻璃形成能力的研究进展[J].功能材料,2002,33(4):357-359.
    [112]夏明许,孟庆格,张曙光等.金属玻璃形成液体的热力学特性[J].物理学报,2006,55(12):6543-6549.
    [113]F B de Boer,D G Pettifor.Cohesion in Metals[M].Amsterdam:Elsevier Science Publishers B.V.,1988.
    [114]范鹏,周国治.有组元的物性参数预测金属熔体的热力学性质[J].金属学报,1999,35(4):421-426.
    [115]路贵民,乐启炽,崔建忠.Zn-Mn和Zn-Ti二元合金热力学性质[J].中国有色金属学报,2001,11(1):95-98.
    [116]张邦维,胡望宇,舒小林 著.嵌入原子方法理论及其在材料科学中的应用[M].长沙:湖南大学出版社,2003.
    [117]Yifang Ouyang,Xiaping Zhong,Yong Duet al.Enthalpies of formation for the Al-Cu-Ni-Zr quaternary alloys calculated via a combined approach of geometric model and Miedema theory[J].Journal and Compounds,2006,420:175-181.
    [118]A kira Takeuchi,A kihisa Inoue.Calculation of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys[J].Materials Transactions,2000,41(11):1372-1378.
    [119]张秋美,候军才,李福山.铜基大块非晶合金临界冷却速率的计算[J].铸造技术,2007,28(4):508-511.
    [120]Z.P.Lu.C.T.Liu.A new glass-forming ability criterion for bulk metallic glasses[J].Acta Materialia,2002,50(13):3501-3512.
    [121]Z.P.Lu.C.T.Liu.Glass Formation Criterion for Various Glass-Forming Systems[J]. Phys.Rev.Lett.,2003,91(11):115505.
    【122】 徐民,孙羽,全明秀等.Fe-Co-Nd-Nb-B非晶合金的形成和软磁性能[J].金属学报,2007,43(7):699-704.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700