铜锗包晶合金深过冷熔体中的相选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深过冷状态下包晶合金的相选择具有非常重要的意义,因为它不但有助于人们认识非平衡凝固过程,而且还有很重要的工业应用价值。深过冷状态下,许多重要材料都会涉及到相选择,比如坡莫合金、不锈钢、稀土永磁材料和稀土氧化物高温超导材料等。然而,人们对包晶合金中相选择的规律和机理还没有清晰和统一的认识,因此需要深入研究。
     本文以铜锗包晶合金(Cu-14.8%Ge)和过包晶合金(Cu-18%Ge)为模型合金,采用电磁悬浮技术进行了深过冷快速凝固和相选择研究,并与玻璃基底悬淬、铜基底悬淬和落管实验结果进行对比,考察了过冷度与冷速对深过冷熔体中相选择规律的影响。
     在电磁悬浮实验中,‘包晶成分合金获得了157K-244K的过冷度,过包晶成分合金获得了124K-241K的过冷度,、初生相均为α-Cu。在玻璃基底悬淬实验中,包晶成分合金获得了32K-174K的过冷度,初生相为α-Cu;过包晶成分合金获得了179K~294K的过冷度,当过冷度超过280K后初生相为包晶相ζ-Cu5Ge。在铜基底悬淬实验中,两种成分合金中的包晶相ζ-Cu5Ge均可以初生相的形式析出。在落管实验中,所有包晶成分合金和大多数过包晶成分合金中的初生相为α-Cu,只有在少数的过包晶成分合金中,包晶相ζ-Cu5Ge以初生相的形式析出。
     上述结果表明,铜锗包晶合金熔体中的包晶相以初生相形式析出很困难。但是,只要过冷度足够大(>280K),即使是低冷速下包晶相ξ-Cu5Ge也能成为初生相。深过冷状态铜锗包晶合金熔体中发生相选择时,过冷度是决定性因素,冷速是诱导性因素。
Phase selection in undercooled melts of peritectic alloys is of much interest because it is helpful to an understanding of non-equilibrium solidification, and of great value in industries. It occurs in undercooled melts of many engineering materials such as permalloy, stainless steel, rare earth permanent magnet materials, and rare earth high-temperature superconducting materials. However, a clear and general understanding of it is missing in literature, and therefore, much work should be done in this respect.
     In the present thesis work, peritectic Cu-14.8%Ge composition and hyperperitectic Cu-18%Ge composition were chosen as model alloys for the purpose of investigating phase selection in undercooled melts. They were undercooled and rapidly solidified using the electromagnetic levitation technique. Parallelly, glass and metal substrate-quenching experiments and drop tube experiments were carried out on the same compositions, aiming at a comparative investigation of influences of undercooling and cooling rate on phase selection.
     In the EML experiments, Cu-14.8%Ge and Cu-18%Ge compositions were undercooled below liquidus by an amount of 157K to 244K and by an amount of 124K to 241K, respectively. Theαphase was crystallized primarily in both compositions. In the glass substrate-quenching experiments, the peritectic Cu-14.8%Ge composition was undercooled by an amount of 32K to 174K, and crystallized into primaryαphase; the hyperperitectic Cu-18%Ge composition was undercooled by an amount of 179 to 294 K, and crystallized into primaryζphase for undercoolings above 280 K. In the metal substrate-quenching experiments, both compositions were solidified via primary crystallization of the peritecticζphase. In the drop tube experiments, all samples of the peritectic Cu-14.8%Ge composition and most of the samples of the hyperperitectic Cu-18%Ge composition were crystallized into primary a phase, whereas few samples of the composition Cu-18%Ge were crystallized into primaryζphase, at least at the initial stage ofthe solidification process.
     The above results showed that primary crystallization of the peritecticζphase in peritectic Cu-Ge alloys is fairly difficult. However, it is able to become a primary phase even under slow cooling conditions, provided that a liquid undercooling of greater than 280 K is achieved. It. is thus concluded that with respec to the phase selection in undercooled Cu-Ge alloys, undercooling is a decisive factor, whereas cooling rate is a beneficial factor.
引文
1. 崔忠忻.金属学与热处理[M],机械工业出版社,1997,96-100.
    2. Kerr H W, Kurz W. Solidification of peritectic alloys [J], International Materials Reviews,1996, 41 (4):129-163.
    3. 程天一,章守华.快速凝固技术与新型合金[M],宇航出版社,1990,1-69.
    4. 胡汉起.金属凝固原理[M],机械工业出版社,1987,254-261.
    5. 孙万里,张忠明,徐春杰,郭学锋.深过冷快速凝固技术的研究进展[J],兵器材料科学与工程,2005,28(11):66-71.
    6. Muller B A, Perepezko J H. The undtercooling of aluminum [J], Metallurgical Transactions A, 1987,18:1143-1150.
    7. Herlach D M, Gao J, Holland-Moritz D, Volkmann T. Nucleation and phase-selection in undercooled melts [J], Materials Science and Engineering,2004, A375-377:9-15.
    8. Eckler K, Gaetner F, Assadi H, Norman A F, Greer A L, Herlach D M. Phase selection growth and interface kinetics in undercooled Fe-Ni melt droplets [J], Materials Science and Engineering, 1997, A226-228:410-414.
    9. Zambon A, Badan B, Eeckler K, Gartner F, Norman A F, Greer A L, Herlach D M, Ramous E. Microstructure and phase selection in containerless processing of Fe-Ni droplets [J], Acta Materialia,1998,46 (13):4657-4670.
    10. Thoma D J, Perepezko J H. Microstructural transitions during containerless processing of undercooled Fe-Ni alloys [J], Metallurgical and Materials Transactions A,1992,23(4): 1347-1362.
    11.李明军,林鑫,杨根仓,周尧和.深过冷Fe-10at%Ni合金中亚稳相的形成、形貌及其凝固行为[J],自然科学进展,1999,12:1304-1311.
    12.刘峰,杨根仓,刘宁,周尧和.非平衡凝固Fe-Ni包晶合金的δ/γ相变[J],2007,37(3):294-302.
    13. Hermann R, Loser W, Lindenkreuz G, Diefenbach A, Zahnow W, Dreier W, Volkmann T, Herlach D M. Metastable phase formation in undercooled Fe-Co melts [J], Materials Science and Engineering,2004, A375-377:507-511.
    14. Li M J, Song G S, Yang G C, Zhou Y H. Critical undercoolings for the formation of metastable phase and its morphologies solidified from undercooled Fe-Co melts [J], Journal of Materials Research,1999,14 (5):1679-1682.
    15. Woodcock T G, Hermann R, Loser W. Development of a metastable phase diagram to describe solidification in undercooled Fe-Co melts [J]. Computer Coupling of Phase Diagrams and Thermochemistry,2007,31:256-263.
    16.刘宁,杨根仓,刘峰,陈豫增,杨长林,周尧和.深过冷Fe-Co合金的凝固规律[J],ActaMetallurgica Sinica,2007,3(5):449-453.
    17. Leonhardt M, Loser. W, Lindenkreuz H G. Phase selection in undercooled peritectic Fe-Mo alloys [J], Acta Materialia,2002,50:725-734.
    18. Loser W, Leonhardt M, Arnold B. Phase selection in undercooled binary peritectic alloy melts[J], Materials Science and Engineering,2004, A375-377:534-539.
    29. Biswas K, Phanikumar G, Chattopadhyay K, Volkmann T, Funke 0, Holland-Moritz D, Herlach D M. Rapid solidification behaviour of undercooled levitated Fe-Ge alloy droplets [J], Materials Science and Engineering,2004, A375-377:464-467.
    20. Phanikumar G, Biswas K, Funke O, Holland-Moritz D, Herlach D M., Chattopadhyay K. Solidification of undercooled peritectic Fe-Ge alloy [J], Acta Materialia,2005,53:3591-3600.
    21. Leonhardt M, Loser W, Lindenkreuz H G. Non-equilibrium solidification of undercooled Co-Si melts [J], Scripta Materialia,2004,50:453-458.
    22. Loser W, Leonhardt M, Arnold B. Phase selection in undercooled binary peritectic alloy melts [J], Materials Science and Engineering,2004, A 375-377:534-539.
    23. Cao C D, Lu X Y, Wei B. Peritectic solidification under high undercooling condition [J], Chinese Science Bulletin,1999,44(14):1338-1343.
    24. Cao C D, Lu X Y, Wei B. Peritectic solidification of highly undercooled Cu-Co alloys [J], Advances in Space Research,1999,24(10):1251-1255.
    25.徐锦锋,魏炳波.快速凝固Co-Cu包晶合金的电学性能[J],Acta Physica Sinica,2005,54(7): 3444-3450.
    26. Wang N, Wei B. Rapid solidification of undercooled Cu-Ge peritectic alloy [J], Acta Materialia, 2000,48:1931-1938.
    27.范金.铜基包晶合金深过冷熔体中的相选择研究[D],东北大学,2006.
    28.阮莹,代富平,魏炳波.铜锗合金中相的形成规律[J],科学通报,2006,51(22):2607-2611.
    29. Reutzel S, Strohmenger J, Volkmann T, Gao J, Herlach D M. Phase formation in undercooled Sm-Co alloy melts [J], Materials Science and Engineering,2007, A(449-451):709-712.
    30. Gao J, Wei B. Containerless solidification of undercooled NdFeZrB alloy droplets in a drop tube [J], Journal of Alloys and Compounds,1999,285:229-232.
    31. Gao J, Volkmann Th. Herlach D M. A metastable phase crystallized from undercooled NdFeCoZrGaB alloy droplets [J], Journal of Alloys and Compounds,2000,308:296-300.
    32. Gao J, Volkmann T, Roth S, Loser W, Herlach D M. Phase formation in undercooled NdFeB alloy droplets [J], Journal of Magnetism and Magnetic Materials,2001,234:313-319.
    33. Gao J, Volkmann T, Herlach D M. Undercooling-dependent solidification behavior of levitated Nd14Fe79B7 alloy droplets [J], Acta Materialia,2002,50:3003-3012.
    34. Gao J, Volkmann T, Herlach D M. Solidification of levitated Nd-Fe-B alloy droplets at significant bulk undercoolings [J], Journal of Alloys and Compounds,2003,350:344-350.
    35. Gao J, Strohmenger J, Herlach D M. Phase selection in undercooled Nd-Fe-Co-B alloy droplets [J], Materials Science and Engineering,2004, A375-377:498-501.
    36. Gao J, Volkmann T, Reutzel S, Herlach D M. Characterization of the microstructure of gas-atomized Nd-Fe-B alloy particles of non-peritectic chemical compositions [J], Journal of Alloys and Compounds,2005,388:235-240.
    37. Gao J, Yang S, Reutzel S, Herlach D M, Song X P. Crystallization of Nd2Fe17Bx from stoichiometric melt composition [J], Journal of Alloys and Compounds,2007,433:356-362.
    38. Hermann R, Bacher I, Matson D M, Loser W, Schultz L. Growth Kinetics in levitated and quenched Nd-Fe-B Alloys, IEEE Transcation on Magnetics,2001,37:1100-1105.
    39. Ozawa S, Saito T, Yu J, Motegi T. Solidification behavior in undercooled Nd-Fe-B alloys [J], Journal of Alloys and Compounds,2001,322:276-280.
    40. Hermann R, Bacher I, Loser W, Schultz L. Primary solidification of Nd2Fe14B by levitation and quenching of undercooled melts [J], Journal of Magnetism and Magnetic Materials,1999, 196-197:737-739.
    41. Hermann R, Filip O. Influence of melt convection on the microstructure of levitated and undercooled Nd-Fe-B alloys [J], Journal of Magnetism and Magnetic Materials,2003,263: 15-20.
    42. Filip O, Hermann R. Influence of melt convection on the microstructure of levitated and undercooled Nd-Fe-B alloys [J], Journal of Magnetism and Magnetic Materials,2004,272-276: 1857-1858.
    43. Moir S A, Herlach D M. Observation of phase selection from dendrite growth in undercooled Fe-Ni-Cr melts [J], Acta Materialia,1997,45(7):2827-2837.
    44. Volkmann T, Loser W, Herlach D M. Nucleation and phase selection in undercooled Fe-Cr-Ni melts:Part II. Containerless solidification experiments [J], Metallurgical and Materials Transactions A,1997,28 (2):461-469.
    45. Koseki T, Flemings M C. Solidification of undercooled Fe-Cr-Ni alloys:Part 1. Thermal behavior [J], Metallurgical and MaterialsTransactions A,1996,26 (11):2991-2999.
    46.吴建春,高峰,董寅生,盛晓波,林萍华.包晶合金实验研究进展[J],铸造设备研究,2004,6:47-50.
    47. Huttunen-Saarivirta E, Vuorinen J. Preparation and characterisation of melt-spun Al-Cu-Fe quasicrystals [J], Intermetallics,2005,13:885-895.
    48. Nagashio K, Kuribayashi K. Phase selection in the undercooled peritectic Y3Fe5012 melt [J], Acta Materialia,2002,50:1973-1981.
    49. Nagashio K, Kuribayashi K, Takamura Y. Phsese selection of peritectic phase in undercooled Nd-based superconducting oxides [J], Acta Materialia,2000,48:3049-3057.
    50. Li M J, Ozawa S, Kuribayashi K. On determining the phase-selection principle in solidification from undercooled melts-competitive nucleation or competitive growth [J], Philosophical Magazine Letters,2004,84(8):483-493.
    51. Nagasaki S, Hirabayashi M. Binary Alloy Phase Diagrams, AGNE Gijutsu Center Co Ltd, Tokyo,2002.
    52. Okress E C, Wroughton D M, Comenetz G. Electromagnetic levitation of solid and molted metals [J], Journal of Applied Physical,1952,23:545-548.
    53.韩至成.电磁冶金学,北京:冶金工业出版社[M],2001,277-281.
    54. Suzuki M, Piccone T J, Fleminge M C. Solidification of highly undercooled Fe-P alloys [J], Metallurgical Transactions A,1991,22:2761-2768.
    55. Rainer K W, Hans-Jorg F. Non-contact method for the measurement of the enthalpy of fusion applied to binary Zr alloys [J], Z Metallkd,2000,91:552-557.
    56. Herlach D M. Non-equilibrium solidification of undercooled metallic melts [J], Materials science and Engineering,1994, R12:177-272.
    57. Herlach D M, Cochrane R F, Egry I, Fecht H J, Greer A L. Containerless processing in the study of metallic melts and their solidification [J], International Materials Reviews,1993,38:273-347.
    58.赵彦钊,殷海荣.玻璃工艺学[M],北京:化学工业出版社,2006,112-114.
    59. 舒尔兹H,黄照柏.玻璃的本质结构和性质[M],北京:中国建筑工业出版社,1984, 385~391.
    60.程守珠,江之水.普通物理学[M],高等教育出版社,2000,314-327.
    61.杨湘,金庆波.红外测温技术的运用[J],天津冶金,1999,1:29-33.
    62.郭浏.浅谈红外测温仪及其选型[J],安阳师范学院学报,2006,144:146-146..
    63.黄少良.北美标准中测温方法:热电偶与红外测温方法比较[J],2005,10:56-58.
    64.张德欣,林瑶.如何正确选择红外仪测温[J],电子产品世界,1999,7:67-68.
    65. Dorab N B, Terry S K, Renato G B. The normal spectral emittance of yttrium, lanthanum, cerium, praseodymium and neodymium above 1000K [J], Metallurgical Transactions B,1976,7: 577-580.
    66. Dokko W, Bautista R G. The normal spectral emittance of liquid cerium-copper alloys [J], Metallurgical Transactions B,1979,11:309-312
    67. Siegel R, Howell J R. Thermal radiation heat transfer [J], McGraw-Hill Book Co N Y,1923,23.
    68. Watanbe H, Susa M, Nagata K. Discontinuity in normal spectral emissivity of solid and liquid copper at the melting point [J], Metallurgical and Materials Transactions A,1997,28: 2507-2513.
    69. Gao J, Zhang Y K, Reutze S, Herlach D M, He J C. Undercooling and solidification of peritectic Cu-Ge alloys in strong magnetic field [J], Proceeding of the 5th International Symposium on Electromagnetic Processing of Materials,2006:363-368.
    70. Krishnamurthy S, Reed-Hill R E. Concerning the role of mechanical twinning on the stress-strain behavior of Cu-4.9at. Pct Sn alloy [J], Metallurgical Transactions A,1990, 11:565-572.
    71. Herlach D M. Solidification from undercooled melts [J], Materials Science and Engineering, 1997, A226-228:348-356.
    72.陈亮,罗兴宏.一种新的利用落管实验分析微重力效应方法的探讨[J],金属学报,2007,43(7):769-774.
    73. Holland-Moritz D, Schroers J, Herlach D M,Grushko B, Urban K. Undercooling and solidification behaviour of melts of the Quasicrystal-forming alloys Al-Cu-Fe and Al-Cu-Co [J], Acta Materialia,1998,46(5):1601-1615.
    74. Strohmenger J, Volkmann T, Gao J, Herlach D M. Phase selection in undercooled Fe-Nd alloy melts[J], Materials Science and Engineering,2004, A(375-377):561-564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700