Al-Ni_2O_3系铝基复合材料微波合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波合成法是一种高效节能的材料制备方法。本文以Al、Ni2O3粉末为原料,采用常规及微波加热两种技术分别合成了Al-Ni2O3系铝基复合材料,利用多种现代测试技术对反应过程及反应产物进行观察分析,并通过自制软件测定微波加热过程的升温曲线,探索微波合成的工艺及其合成机理。
     Al-Ni2O3系反应由两步组成,首先Al与Ni203反应生成Al203和活性Ni原子,接着活性Ni原子与Al反应生成Ni2Al3。增强体体积分数由20%增加到100%时,反应活化能由139.963 kJ/mmol增加到331.320 kJ/mol。增强体体积分数为20%的复合材料凝固时Ni2Al3长大,液态中析出NiAl3,反应产物由铝基体和细小颗粒Al203、大块Ni2Al3以及细条状NiAl3三种增强体组成。体积分数为50%的复合材料凝固到一定温度时,液相与Ni2Al3发生包晶反应产生了包晶相NiAl3。
     相比于常规合成,微波合成时起爆温度降低134℃以上,反应速度显著加快,制备时间仅为常规合成的1/20。微波合成的产物组织致密、分布均匀且晶粒细小。增强体体积分数为10%的复合材料比起铝基体抗拉强度增加至145.3MPa,延伸率下降到为8%,断口上有大量细小韧窝,属韧性断裂。增强体体积分数为20%的材料抗拉强度为126.1MPa,延伸率1.75%,断口可见明显大块物,属脆性断裂。以上两种材料比起铝基体平均线膨胀系数分别降低了2.11%和8.05%。加入稀土氧化物,能提高材料的抗拉强度并降低其热膨胀系数。
Microwave synthesis is an efficient and energy conservation method for material preparation. In this paper, the Al-Ni2O3 system of aluminum matrix composites were prepared by microwave and conventional synthesis method respectively, with Al and Ni2O3 powders as raw material. The reaction process and the production of the Al-Ni2O3 system were analyzed by many modern methods. The temperature-time curves of microwave heating process were tested by the self-developed software, which used to study the processing and mechanism of microwave synthesis.
     The reaction process of the Al-Ni2O3 system followed in two steps. Al reacted with Ni2O3 firstly and formed Al2O3 and active Ni atoms. Then Al reacted with active Ni atoms and resulted in Ni2Al3.When volume fraction increased from 20% to 100%, the amount of reactive activation energy increased from 139.963 kJ/mol to 331.320 kJ/mol.When 20% reinforcement volume fraction material solidified,Ni2Al3 grew up, NiAl3 separated out from the liquid phase. The production was consisted of Al matrix and three reinforcements:fine particle of Al2O3,massive Ni2Al3, shredded NiAl3.When 50% reinforcement volume fraction material cooled to a certain centigrade, peritectic reaction happened with Ni2Al3 in liquid state and resulted in NiAl3.
     Compared with conventional synthesis, the initiation temperature of microwave synthesis reduced more than 134℃,the reactive speed increased evidently, the total time reduced to 1/20. The production's structure was dense, dispersion was uniform, and crystalline grain was fine. The tensile strength of the composites was higher than the matrix, and elongation reduced. The tensile strength of 10% reinforcement volume fraction material was 145.3MPa, elongation was 8%, fracture contained many dimples, belong to gliding fracture. The tensile strength of 20% reinforcement volume fraction material was 126.1MPa, elongation was 1.75%, fracture contained massive blocks clearly, belong to brittle rupture. The coefficient of linear expansion was reduced 2.11% and 8.05% respectively. Add rare earth, can improve the tensile strength of the material and reduce the coefficient of thermal expansion.
引文
[1]吴人洁.复合材料[M].天津:天津大学出版社.2002.6.
    [2]艾桃桃.颗粒强化金属基复合材料的原位合成工艺[J].稀有金属快报.2008,27(7),1-6.
    [3]S.C. Tjong, Z.Y. Ma. Microstructural and mechanical characteristics of in situ metal matrix composites[J].Materials Science and Engineering.2000,29:49-113.
    [4]Mohamed A. Taha. Practicalization of cast metal matrix composites[J]..Materials & Design 2001,22(6):431-441.
    [5]C. Ponzi. Metal matrix composite fabrication processes for high performance aerospace structures[J].Composites Manufacturing.1992,3(1):32-42.
    [6]J. W. Kaczmar, K. Pietrzak, W. Wlosi(?)ski.The production and application of metal matrix composite materials[J]. Journal of Materials Processing Technology.2000,106(1-3):58-67.
    [7]D.J. Lahaie, J. D. Embury, F. W. Zok. Damage accumulation and mechanical properties of-particle-reinforced metal-matrix composites during hydrostatic extrusion[J].Composites Science and Technology.2004,64(10-11):1539-1549.
    [8]A. Rabiei, L. Vendra, T. Kishi.Fracture behavior of particle reinforced metal matrix composites[J].Composites Part A:Applied Science and Manufacturing.2008,39(2):294-300.
    [9]Sedat Ozden, Recep Ekici, Fehmi Nair. Investigation of impact behaviour of aluminium based SiC particle reinforced metal-matrix composites[J].Composites Part A:Applied Science and Manufacturing.2007,38(2):484-494.
    [10]T.G. Durai, Karabi Das, Siddhartha Das. Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates[J].Materials Science and Engineering: A.2007,445-446(15):100-105.
    [11]田志宇.颗粒增强金属机复合材料的研究及应用[J].金属材料及冶金工程.2008,36(1):3-7.
    [12]刘江,彭晓东,刘相果,等.原位合成铝基复合材料的研究现状[J].重庆大学学报.2003,26(10):2-5.
    [13]C.F. Feng, L. Froyen. Formation of Al3Ti and Al2O3 from an Al-TiO2 system for preparing in-situ aluminium matrix composites[J].Composites Part A:Applied Science and Manufacturing.2000,31(4):385-390.
    [14]M. Emamy, M. Mahta, J.Rasizadeh. Formation of TiB2 particles during dissolution of
    TiAl3 in Al-TiB2 metal matrix composite using an in situ technique[J].Composites Science and Technology.2006,66(7-8):1063-1066.
    [15]朱和国,王恒志,吴申庆.Al-TiO2-B2O3系XD合成铝基复合材料研究[J].特种铸造及有色合金.2005,25(4):196-198.
    [16]朱和国,王恒志,吴申庆.Al-TiO2-B2O3-C系XD合成铝基复合材料的反应机理及力学性能[J].材料科学与工艺.2008,16(6):835-839.
    [17]朱和国,袁运站,王恒志,等.Al-TiO2-C系XD合成铝基复合材料的反应机理及拉伸性能[J].材料科学与工程学报.2006,24(5):658-661.
    [18]李荣久,主编.陶瓷-金属复合材料[M].北京:冶金工业出版社.2003,3.
    [19]金云学,张二林.自蔓延合成技术及原位自生复合材料[M].哈尔滨:哈尔滨工业大学出版社.2002.6.
    [20]霍小卫,王树奇,陈康敏.熔体内原位制备Al3Ti增强铝基复合材料的研究[J].特种铸造有色合金.2007,27(7):547-550.
    [21]姜文辉,C. BADINI. XD法合成TiC/Al复合材料的机制[J].复合材料学报.1998,15(1):52-55.
    [22]王海龙,张锐,汪长安,等.微波烧结SiC-Cu/Al复合材料的工艺及机理[J].硅酸盐学报.2006,34(12):1431-1436.
    [23]S.G Lee, H.C.Park, B.S.Kang,G.S.Seo, S.S.Hong, S.S.Park. Synthesis of a-alumina platelets from y-alumina with and without microwaves[J].Materials Science and Engineering: A.2007,466(1-2):79-83.
    [24]S.Schlabach, D.V. Szabo, D. Vollath, P. de la Presa, M. Forker. Zirconia and titania nanoparticles studied by electric hyperfine interactions, XRD and TEM[J].Journal of Alloys and Compounds.2007,434-435 (31):590-593.
    [25]刘韩星,欧阳世翕.无机材料微波固相合成方法与原理[M].北京:科学出版社.2006,9.
    [26]M. Panneerselvam, K. J.Rao.A microwave method for the preparation and sintering of β'-SiAlON[J].Materials Research Bulletin.2003,38(4):663-674.
    [27]T.P. Deksnys, R.R. Menezes, E.Fagury-Neto, R.H.G.A. Kiminami.Synthesizing Al2O3/SiC in a microwave oven:A study of process parameters[J].Ceramics International. 2007,33(1):67-71.
    [28]W.L.E. Wong, M. Gupta. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering[J].Composites Science and Technology.2007,67 (7-8):1541-1552.
    [29]Zheng Yong Liang, Chun Xu Lu, Jun Luo, Li Bin Dong. A polymer imidazole salt as phase-transfer catalyst in halex fluorination irradiated by microwave[J].Journal of Fluorine Chemistry.2007,128(6):608-611.
    [30]范景莲,黄伯云,刘军,等.微波烧结原理与研究现状[J].粉末冶金工业.2004,14(1):29-33.
    [31]彭元东,易健宏,吴彬,等.微波烧结W-Ni-Fe高比重合金及其机理研究[J].稀有金属材料与工程.2008,37(1):125-129.
    [32]李巧玲,李琳,郭祀远,等.微波生物效应研究的现状及应用[J].生命科学.2001,13:126-128.
    [33]张进,王枫,史永亮,等.卫生学与航空卫生.西安:第四军医大学出版社[M].2001.
    [34]王绍林,编著.微波加热技术的应用—干燥和杀菌[M].北京:机械工业出版社.2003,10.
    [35]Janney M A, Kimery H D, Schmidt M A et al.Grain Growth in Microwave-Annealed Alumina[J].J Am Ceram Soc.1991,74(7):75-81.
    [36]M A Janney, W R Kimvey Allen. Enhanced diffusion in sapphire during microwave heating[J].Journal of Materials Science.1997,32,1347-1355
    [37]J H Booske, R F Cooper, I Dobson. Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids[J].Journal Material Research.1992,7(2): 495-501
    [38]K Saitou. Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders[J].Scripta materialia.2006,54:875-879
    [39]易建宏,罗述东,唐新文,等.金属基粉末冶金零件的微波烧结机理[J].粉末冶金材料科学与工程.2002,7(3):180-184.
    [40]蔡正千.热分析[M].北京:高等教育出版社,1993:124~125.
    [41]叶大伦,胡健华.实用无机热力学数据手册[M].北京:冶金工业出版社,2002.
    [42]彭华新,王德尊,耿林,等.反应自生Al3Ni-Al203-Al复合材料[J].材料科学与工艺.1996,4(3):12-16.
    [43]殷声,主编.自蔓延高温合成技术和材料[M].北京:冶金工业出版社.1995.
    [44]LF蒙多尔福.铝合金组织与性能[M].北京:冶金工业出版社,1987.
    [45]周玉.材料分析方法[M].北京:机械工业出版社.2000,5.
    [46]孙建俊,田卫星,侯纪新,等.不同冷却速率下包晶合金Al3Ni凝固组织的变化[J].铸造.2005,54(6):553-555.
    [47]孙建俊,田学雷,夏继梅.非平衡凝固时包晶反应滞后现象的研究[J].凝固技术特种铸造及有色合金.2009,29(8):754-756.
    [48]X.L. Dong, etal.Surface characteristic of ultrafine Ni particles[J].Nanostr. Mater.1998 (10):585.
    [49]巴发海,沈宁福,虞.Ni25Al75合金快速凝固过程中的包晶反应与凝固进程[J].中国 有色金属学报.2003,13(2):335-338.
    [50]沈兴.差热、热重分析与非等温固相反应动力学[M].北京:冶金工业出版社,1995.
    [51]刘爱辉,李邦盛,隋艳伟,等.Ti/Zr02和TiAl/Zr02反应的差热分析[J].中国有色金属学报.2008(5):794-798
    [52]常爱民,李岩荣.微波处理技术在材料科学工程中的应用[J].物理与工程.2002,23(2):36.
    [53]刘艳平,尹海清,曲选辉.粉末烧结冶金铜微波烧结的研究[J].材料导报.2008,5(22):217-219.
    [54]黄向东,李建保,谢志鹏,等.微波与无机非金属介质的相互作用[J].无机材料学报.1998,13(2):282-290.
    [55]晋勇,王玉环,胡希川,等.微波烧结金属陶瓷材料的工艺研究[J].工具技术.2004,38(9):96-107.
    [56]刘智,杨林,于传斌,等.微波混合加热中SiC预加热体工艺参数对升温特性的影响[J].大连轻工业学院学报.2006,25(2):135-138.
    [57]刘继胜.微波烧结工作原理及工业应用研究[J].机电产品开发与创新.2007,20(2):20-23.
    [58]程羽,郭生武,郭成,等.热挤压对颗粒增强金属基复合材料组织和性能的影响[J].兵器材料科学与工程.2000,23(2):31-34.
    [59]曲寿江,耿林,曹国剑,等.挤压铸造法制备可变形SiCp/Al复合材料的组织与性能[J].复合材料学报.2003,20(3):69-73.
    [60]E.A. Feest. Interfacial phenomena in metal-matrix composites[J].Composites.1994, 25(2):75-86.
    [61]A. Miserez, A. Rossoll, A. Mortensen. Investigation of crack-tip plasticity in high volume fraction particulate metal matrix composites[J].Engineering Fracture Mechanics.2004, 71(16-17):2385-2406.
    [62]T. J. A. Doel, P. Bowen. Tensile properties of particulate-reinforced metal matrix composites[J].Composites Part A:Applied Science and Manufacturing.1996,27(8):655-665.
    [63]Rajendra U Vaidya, K.K Chawla. Thermal expansion of metal-matrix composites. [J] Composites Science and Technology.1994,50(1):13-22.
    [64]Joshua Pelleg, M. Ruhr, M. Ganor. Control of the reaction at the fibre-matrix interface in a Cu/SiC metal matrix composite by modifying the matrix with 2.5 wt.% Fe[J].Materials Science and Engineering:A.1996,212(1):139~148.
    [65]崔春翔,吴人杰,王浩伟.稀土元素的热力学特性及在金属基复合材料中的应用[J].稀有金属材料与工程.1997,3(26):53-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700