高性能低银电真空钎料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对B-Ag72Cu28钎料银含量高,不利于资源的可持续发展,设计出一种高性能低银钎料应用于电真空器件中,力图取代B-Ag72Cu28。采用急冷快速凝固技术制备出厚度为15-60μm、宽为3-5mm的Ag (40-45wt%)-Cu-Sn-Ni钎料合金箔,分析钎料合金的熔点、润湿性、电学、力学性能和钎焊工艺,研究合金元素Sn、Ni对钎料性能的影响规律,并对钎接接头力学性能进行表征。结果表明:
     常规凝固Ag-Cu-Sn钎料合金微观组织均由面心立方的(Ag)、α-Cu和少量的Cu13.7Sn三相组成;凝固组织中,粗大枝晶为先析相α-Cu,在枝晶间弥散分布着白、灰相间的((Ag)+α-Cu)共晶;急冷Ag-Cu-Sn-Ni钎料合金微观组织由面心立方的(Ag)、α-Cu和少量的Cu13.7Sn、Ni17Sn3四相组成,急冷钎料合金组织细小均匀,以等轴晶为特征。
     随着Sn含量的增加,(Ag-Cu) 100-xSnx钎料合金箔的固、液相线温度降低,Ts=590-616℃、T1=615-622℃,熔化温度区间△T增大;合金箔的电阻升高,抗拉强度增高,σb=280-360MPa,伸长率减小,δ=2.8-5%。随着Ni含量的增加,(Ag-Cu-Sn)100-xNix钎料合金箔的固、液相线温度增加,Ts=690-718℃、T1=715-727℃,温度区间△T减小;合金箔的抗拉强度增高,σb=345-515MPa,伸长率减小,δ=3-6%。
     在800℃保温30s条件下,急冷(Ag-Cu-Sn)100-xNix钎料合金对可伐合金的润湿效果良好,且随着Ni含量的增加,铺展面积减小,S=0.8634-1.4033cm2,润湿角增大,θ=9.4-23.3°;对比试验结果表明,急冷合金箔在可伐合金上的润湿性明显优于常规凝固合金。
     采用Ag42CuSn10Ni0.4钎料合金箔真空高频感应钎焊0Cr18Ni9Nb,获得接头组织主要以(Ag)和α-Cu固溶体为主相,少量Cu13.7Sn相、Ni17Sn3相和γ-Fe相分布其中。在加热电流为25A,升温时间15s,保温时间10s工艺条件下,钎接接头的抗拉强度高达σb=189.29MPa。
In this paper, for the more silver content in B-Ag72Cu28 brazing filler used to the vacuum devices have confined sustainable development of noble metal resources. It's worthy of designing a new silver based filler with lower silver content to substitute B-Ag72Cu28 in order to save product cost. Ag(40-45wt%)-Cu-Sn-Ni alloy foil with the size of 15-60μm thickness and 3-5mm width were prepared by rapid solidified technology. The solidus and liquidus temperature, wettability, electrical resistivity performance, mechanical properties of brazing alloys and brazing process were analysed, and the stannum and nickel elements influence on properties of brazing filler were studied, meanwhile, the mechanical properties of joint were also tested and measured. The results indicated as follows:
     The microstructure of regular solidified Ag-Cu-Sn alloy are composed of face-centered cubic (Ag)、α-Cu and little Cu13.7Sn; in the structure of regular solidified alloy, rough dendrite isα-Cu phase appearing first, and the white and gray alternate ((Ag)+α-Cu) eutectic distribute in the interdendritic space. Ag-Cu-Sn-Ni alloy foil is constituted of face-centered cubic (Ag)、α-Cu and little Cu13.7Sn、Ni17Sn3, the microstructure of rapid solidifying alloy is fine and homogeneous equiaxed crystal.
     With stannum content in(Ag-Cu)100-xSnx(x=12.23,12.94,13.65)increasing, temperature of solidus and liquidus of alloy foil becomes lower, the value range of which are Ts=590-616℃and Tl=615-622℃respectively, temperature interval△T is bigger; Electric resistivity and tensile strength of alloy foil are larger, but elongation ratio is smaller, the value range of which areσb=280-360MPa andδ=2.8-5% respectively. With nickel content in (Ag-Cu-Sn)100-xNix (x=0.4,0.6,0.8,1.0) increasing, temperature of solidus and liquidus of alloy foil becomes higher, the value of which are Ts=690-718℃and Tl=715-727℃respectively, but temperature interval△T is smaller; the tensile strength of alloy foils becomes stronger but elongation ratio is smaller, the value range of which areσb=345-515MPa andδ=3-6% respectively.
     In the conditions of heating up to 800℃and holding for 30s, (Ag-Cu-Sn)100-xNix brazing alloy foil displays good wettability on Kovar alloy, and with the nickel content increasing, spread areas are smaller gradually but the wetting angle is bigger, the value ranges are S=0.8634-1.4033cm2 andθ=9.4-23.3°respectively; otherwise, the brazing alloy have better wettability on Kovar by rapid solidified technology than regular solidified technology.
     Using Ag42CuSn10Ni0.4 brazing alloy foil brazed the stainless steel by high-frequency induction brazing technology, the microstructure of brazing seam is mainly made up of (Ag)、α-Cu, and, little Cu13.7Sn、Ni17Sn13 andγ-Fe phases distributed into them; the value of tensile strength of joint is up to 189.29MPa, under the conditions of heating time for 15s and holding for 10s and the heating current is 25A during experimental process.
引文
[1]张启运,庄洪涛.钎焊手册[M].北京:机械工业出版社,2008.
    [2]D. Q. Yu, H. P. Xie, L. Wang. Investigation of interfacial microstructure and wetting property of newly developed Sn-Zn-Cu solders with Cu substrate[J]. Journal of Alloys and Compounds,2004, 385:119-125.
    [3]O. Kozlova, R. Voytovych, M-F. Devismes. Wetting and brazing of stainless steels by copper-silver eutectic[J]. Materials Science and Engineering,2008,495:96-101.
    [4]李亚江,王娟,刘鹏.异种难焊材料的焊接及应用[M].北京:化学工业出版社,2004.
    [5]李卓然,矫宁,冯吉才,陆成虹.合金元素对AgCuZn系钎料合金组织与性能的影响[J].焊接学报,2008,29(3):65-68.
    [6]王世伟.合金元素对铜基低银钎料性能的影响[J].中国有色金属学报,1995,5(2):108-110.
    [7]P.F.Timmins. Themechanism of tough-pitch copper embitterment by silver brazing alloys[J]. Welding Journal,1990,69(10):378-419.
    [8]钱宝光,耿浩然,郭忠全等,杨勤达,陶珍东.电触头材料的研究进展与应用[J].机械工程材料,2004,28(3):7-9.
    [9]蒋传贵,欧阳远良,王海燕.化学除油在电真空焊料中的应用[J].云南大学学报,2002,24(1A):221-223.
    [10]王恭年,高陇桥.焊料在电子器件中的应用[J].真空电子技术,2001,(2):16-18.[11]池梦骊.非晶型金属箔的特性及其在焊接中的应用[J].焊接技术,1995,(2):46.[12]白培康,李志勇,丁京滨,刘斌.材料连接技术[M].北京:国防工业出版社,2007.[13]谢忠英.等离子弧焊接和微束等离子弧焊接的应用[J].赤峰学院学报,2005,21(6):76-77.[14]高魁玉.焊接技术的现状和发展趋势综述[J].现代焊接,2007,1(49):8-9.[15]张以忱.真空工程用焊接技术[J].真空,2005,42(5).[16]蒋传贵,欧阳远良,土海燕.电真空器件用贵金属钎料溅散性影响因素[J].云南大学学报,2002,24(1A):224-227.[17]王福田,王天宇.银基钎料真空钎焊效果的研究[J].电焊机,2001,31(6):31-33.[18]李靖华.电真空焊料的熔炼[J].贵金属,2001,22(2):13-15.[19] Y Puza, J Kroupova. Silver-based brazing alloys with low melting point[J]. Welding News,1991, 41(1):13-20. [20] W J R Milligan. Silver brazing alloys design and selecting for brazing[J]. The Art & Sicence of Welding,1985, (10):378-419.[21]赵越.钎焊技术及应用[M].北京:化学工业出版社,2004.[22]钟文晨.低银铜基钎料化学成分的设计[J].广东有色金属学报,2005,15(4):16-19.[23] P M Roberts. Recent developments in cadmium-free silver brazing alloys[J]. Welding Journal,1978, 57(10):23-30.
    [24]韩宪鹏,薛松柏,赖忠民, 顾文华,顾立勇.无镉银钎料研究现状与发展趋势[J].焊接,2007,(6):19-22.
    [25]S K Chatterjee, Z Mingxi. Tin-Containing brazing alloys[J]. Welding Journal,1984,63(10):37-42.
    [26]Shunsuke Makimura, Hidetsugu Ozaki, Hisanori Okamura. The development of silver-brazing method for graphite[J]. Journal of Nuclear Materials,2008,377:28-33.
    [27]Lixia Zhang, Jicai Feng, Baoyou Zhang. Ag-Cu-Zn alloy for brazing TiC cermet/steel[J]. Materials Letters,2005, (59):110-113.
    [28]薛松柏,钱乙余,赵振清.银基钎料中铈与杂质元素铅、铋作用机制[J].中国稀土学报,2002,20(5):436-438.
    [29]陈燕.稀土铈对锡银铜无铅钎料组织性能的影响[D].哈尔滨焊接研究所,2006.
    [30]龚代涛,刘晓波,王勇.Sn-Zn-Ag系无铅钎料焊接性能研究[J].电子工艺技术,2003,24(3):96-99.
    [31]贵金属材料加工手册编写组.贵金属材料加工手册[M].北京:冶金工业出版社,1976.
    [32]李卓然,刘彬,冯吉才.镍对Ag20CuZnSnP钎料铺展润湿性和接头抗剪强度的影响[J].焊接学报,2008,29(9):19-22.
    [33]Weigert, MKarl. Physical properties of metallurgical phases of the Ag-Cd-Cu-Zn quaternary alloy[J]. Welding Journal,1955,34(5):420.
    [34]史益平,薛松柏,王俭辛,顾立勇,顾文华.稀土元素Ce对Sn-Cu-Ni无铅钎料铺展性能及焊点力学性能的影响[J].焊接学报,2007,28(11):73-77.
    [35]Songbai XUE, Yiyu QIAN, Xiaoping HU, et al. Behavior and influence of Pb and Bi in the Ag-Cu-Zn brazing alloy [J]. China welding,2000,19(1):42.
    [36]薛松柏,顾文华,顾立勇.含铟和铈的无镉银钎料[P].中国,CN1836823,2006-09-27.
    [37]甘卫平,陈慧,杨伏良.Ag-Cu-In-Sn钎料加工工艺的研究[J].材料导报,2007,21(3):156-158.
    [38]柏文超,李明利,李银娥,党红云.银基钎料的特性及应用发展[J].兰州理工大学学报,2004,30:118-120.
    [39]T B Massalski, J L Murray, L H Bennett et al 1986 Binary Alloy phases diagrams ASM international 21110.
    [40]韩宪鹏,薛松柏,顾立勇,顾文华,张昕.镓对Ag-Cu-Zn钎料组织和力学性能的影响[J].焊接学报,2009,29(2):45-48.
    [41]Feng-Jiang Wang, Zhi-Shui Yu, Kai Qi. Intermetallic compound formation at Sn-3.0Ag-0.5Cu-1.0Zn lead-free solder alloy/Cu interface during as-soldered and as-aged conditions[J]. Journal of Alloys and Compounds,2007,438:110-115.
    [42]顾文华,薛松柏.含镓、铟和铈的无镉银钎料[P].中国专利:CN1775459,2006-05-24.
    [43]顾文华,薛松柏,顾立勇.一种含镓和铈的无镉银钎料[P].中国专利:CN1836824,2006-09-27.
    [44]顾文华,薛松柏,顾立勇,顾建昌.含镓和稀土铈的无镉银钎料[P].中国专利:CN1887502,2007-01-03.
    [45]李卓然,冯吉才,张理成,许桂法,钱乙余,何鹏.一种中温铜基无镉钎料及其制备方法[P].中国专利:CN1759974,2006-4-19.
    [46]王仕勤,朱平.Cu-Sn基电真空代银钎焊料的研究[J].江苏冶金,1996,(2):12-15.
    [47]韩逸生,邹家生,陈铮,汪先华.Ag-P-Cu钎料中Ag的作用分析[J].焊接材料与设备,2000,29(3):23-24.
    [48]路文江.非晶Cu-P钎料的制备及性能研究[D].兰州理工大学,2004.
    [49]张静.非晶Cu-P钎料的性能及钎焊机理研究[D].兰州理工大学,2006.
    [50]唐国保.合金元素锡和磷对低银钎料钎焊性能的影响[J].电焊机,2001,31(7):23-24.
    [51]李刚,路文江,俞伟元,陈学定.非晶新型代银钎料的制备及性能研究[J].兰州理工大学学报,2004,30(5):9-12.
    [52]龙伟民,于新泉,赵建昌.基于ROHS指令的绿色钎料[C].贵阳:中西南十省焊接学术会议,2006.18-71.
    [53]张强,龙伟民,赵建昌,于新泉,邹伟.基于ROHS指令的有害物质控制技术[C].合肥:第十五届全国钎焊及特种连接技术交流会论文集,2007.301-304.
    [54]梁伟,劳远侠,徐云庆,孙仙奇.快速凝固技术在新材料开发中的应用及发展[J].广西大学学报,2007,32:36-40.
    [55]周尧和,胡壮麟,介万奇.凝固技术[M].北京:机械工业出版社,1998.
    [56]张荣生,刘海洪.快速凝固技术[M].北京:冶金工业出版社,1991.
    [57]陈光,傅恒志.非平衡凝固金属材料[M].北京:科学出版社,2004.
    [58]关绍康,王利国,朱世杰,王西科,沈宁福.快速凝固合金的研究发展趋势[J].现代铸铁,2004:23-27.
    [59]潘清跃,李延民,黄卫东,林鑫,丁国陆,周尧和.激光快速熔凝技术及其应用[J].材料导报,1996,(4):1-7.
    [60]龙伟民,乔培新,李涛,刘文明,曾大本,王海滨.PCD用钎料及钎焊工艺的研究[J].金刚石与磨料磨具工程,2002,(130):27-29.
    [61]殷涵玉,鲁晓宇.深过冷Cu60Sn30Pb10偏晶合金的快速凝固[J].物理学报,2008,57(7):4341-4346.
    [62]王卫杰,何晓梅.Ag-Cu-Ni焊料在真空开关管中的应用研究[J].真空电子技术,2004,(4):45-48.
    [63]胡星福,柏小平.AgCu28真空焊料原料银脱气工艺的研究[J].电工材料,2003,(4):24-28.
    [64]张新平,史耀武,任耀文.镍基非晶态及晶态钎料真空钎焊工艺性能的比较[J].焊接学报,1996,17(4):205-210.
    [65]颜秀文,丘泰,李良峰,张振忠.纳米Ag-Cu-In-Sn合金粉末的制备及其热分析[J].稀有金属材料与工程,2008,37(2):330-331.
    [66]姚启均.金属机械性能试验常用数据手册[M].北京:机械工业出版社,1985.
    [67]田莳.材料物理性能[M].北京:北京航空航天大学出版社,2004.
    [68]贾进国,余泽兴.高频感应钎焊的研究分析[J].机电工程技术,2003,32(1):23-25.
    [69]戴永年,杨斌.有色金属材料的真空冶金[M].北京:冶金工业出版社,2000.
    [70]翟秋亚,杨扬,徐锦锋,郭学锋.快速凝固Cu-Sn亚包晶合金的电阻率及力学性能[J].物理学报,2007,56(10):6118-6123.
    [71]邱成军,王元化,王义杰.材料物理性能[M].黑龙江:哈尔滨工业大学出版社,2007.
    [72]Phlip C Wingert, Chi-Hung Leung. The development of silver-based cadmium-free contact maerials[J]. Journal of Alloys and Compounds,2004,72(3):148-157.
    [73]张国栋,俞伟元,路文江.快凝锡基软钎料的浸润性研究[J].甘肃工业大学学报,1999,25(4):7-10.
    [74]王大勇,冯吉才.杨氏方程的能量求解及润湿角计算模型[J].焊接学报,2002,23(6):59-61.
    [75]周晓薇,陈金玉.液态金属粘滞性的研究进展[J].沈阳师范大学学报,2003,21(4):254-256.
    [76]刘燕,耿浩然,孙民华,崔红卫.液态金属粘滞性的研究现状与展望[J].铸造,2000,49(12):875-877.
    [77]黄继华.金属及合金中的扩散[M].北京:冶金工业出版社,1996.
    [78]夏立芳,张振信.金属中的扩散[M].哈尔滨:哈尔滨工业大学出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700