铜锗合金的深过冷、枝晶生长速率及晶粒细化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深过冷熔体的快速凝固是金属凝固领域的前沿研究课题。研究深过冷熔体中的枝晶生长动力学和凝固组织演化规律对于人们认识和利用液态金属的快速凝固过程具有重要的理论和实际意义。
     本文首先采用纯金属Cu及Cu-10%Ge、Cu-14.8%Ge合金在熔融玻璃净化工艺条件下的过冷行为,就加热方式、保护气氛、冷却速率以及合金成分的影响进行了研究。在此基础上,本文采用红外测温技术和高速摄影技术研究了Cu-10%Ge和Cu-14.8%Ge合金深过冷熔体的快速凝固过程,对深过冷熔体中的枝晶生长速率进行了实验测定,并对其凝固组织中出现的晶粒细化现象进行了研究。
     深过冷实验结果表明,无论是纯金属Cu还是Cu-10%Ge和Cu-14.8%Ge合金,其在感应加热条件下获得的最大过冷度值都明显高于电阻炉加热下的最大过冷度。分析认为,这一差别可能与感应加热条件下样品内存在的强迫对流有关。通过对感应加热下熔融玻璃净化工艺的实验发现,除加热方式外,保护气氛的种类和合金成分是影响熔融玻璃净化条件下液态金属过冷度的关键因素。
     实验测量结果表明,Cu-10%Ge合金深过冷熔体中初生相α-(Cu)的枝晶生长速率随过冷度的增大而持续增大。在实验所能达到的过冷度范围内,枝晶生长速率与过冷度之间符合幂函数关系:V=0.00009×△T~(2.34)(m/s)。同样,Cu-14.8%Ge合金深过冷熔体中初生相α-(Cu)的枝晶生长速率也随过冷度的增大而持续增大。在实验所能达到的过冷度范围内,枝晶生长速率与过冷度之间符合幂函数关系:V=0.00001×△T~(2.57)(m/s)。在相同的过冷度条件下,Cu-14.8%Ge合金中初生相α-(Cu)的枝晶生长速率明显低于Cu-10%Ge合金中的数值。这是由于在中低过冷度条件下,枝晶生长速率主要受溶质扩散控制。合金中的溶质含量越高,枝晶生长速率越缓慢。
     微观组织分析表明,Cu-10%Ge合金的凝固组织为单相组织,并在特定的过冷度范围内出现明显的晶粒细化现象。在电阻炉加热条件下,合金凝固组织出现晶粒细化的过冷度为45K~77K;而在感应加热下,合金凝固组织出现晶粒细化的最低临界过冷度为83K。Cu-14.8%Ge合金的凝固组织由初生相α-(Cu)和包晶相ζ-Cu_5Ge相组成。在深过冷条件下,其凝固组织中初生相α-(Cu)的晶粒也发生明显的细化现象。在电阻炉加热条件下,合金凝固组织出现晶粒细化的过冷度为74K~85K;而在感应加热下,合金凝固组织出现晶粒细化的最低临界过冷度为83K~103K。分析认为,Cu-Ge合金深过冷快速凝固组织中的晶粒细化现象不仅与过冷度有关,而且还和合金成分、冷却速率密切相关。
     此外,对不同成分的Cu-Ge合金快速凝固过程的原位观察表明,在特定的过冷度内,样品表面的宏观固液界面发生了由锯齿状向平滑状的转变。其中,Cu-10%Ge合金宏观固液界面特征发生转变的过冷度范围为74K~83K,而Cu-14.8%Ge合金中宏观固液界面特征发生转变的过冷度范围则为83K~103K。分析认为,这种差异很可能与快速凝固过程中的溶质截留现象有关。
Rapid solidification of undercooled melts has been one of frontier research topics in the field of solidification of metals.Studies on dendritic growth kinetics and microstructure evolution in undercooled melts are of great importance not only to an understanding,but also to applications,of rapid solidification of liquid metals.
     In the present thesis,the undercooling behavior of glass fluxed melted of pure Cu and Cu-10%Ge and Cu-14.8%Ge alloys was investigated with respect to heating mode, atmosphere,cooling rate and alloy chemistry.On this ground,the rapid solidification process of the undercooled melts of the two alloy compositions was in-situ monitored using a pyrometer and a high-speed camera.The dendritic growth velocities were determined,and grain-refinement of the solidification microstructure was examined.
     The results of undercooling experiments showed that both for pure Cu and for Cu-10%Ge and Cu-14.8%Ge alloys,the maximum undercoolings of the induction-melted samples were always larger than those of the samples melted in an electrical resistance furnace.The larger maximum undercooling of the induction-melted samples was related to forced convection induced by electromagnetic stirring.A set of undercooling experiments under the induction melting condition showed that in addition to heating mode,nature of the atmosphere and alloy chemistry were key factors that influenced the undercooling of the glass-fluxed melt samples.
     Measured data on Cu-10%Ge alloys showed that the dendritic growth velocity of primaryα-(Cu) phase increased with increasing undercooling,and followed a power law V=0.00009×△T~(2.34)(m/s) for undercoolings attained.The measured growth velocity data on Cu-14.8%Ge alloys showed the same tendency with increasing undercooling,and followed a power law V=0.00001×△T~(2.57)(m/s) for undercoolings attained.For an identical undercooling, the measured dendritic growth velocity on the Cu-14.8%Ge alloys was lower than that on the Cu-10%Ge alloys.The reason was that the dendritic growth velocity in low and medium undercooling regimes was controlled mainly by solutal diffusion ahead of the growth front. The higher the solutal content in the liquid phase,the lower the dendritic growth velocity was.
     The solidification microstructure of the Cu-10%Ge alloys consisted of a singleα-Cu phase regardless of undercooling,but showed grain refinement for certain undercoolings. Under the resistance furnace-heating conditions,grain refinement phenomenon was observed for undercoolings between 45 K and 77 K.However,under the induction melting conditions, it was observed for undercoolings greater than 83 K.The solidification microstructure of the Cu-14.8%Ge alloys consisted of primary a-(Cu) phase and peritecticζ-Cu_5Ge phase.A grain refinement phenomenon similar to that of Cu-10%Ge alloys was observed.The corresponding undercooling regime varied from 74 K to 85 K for the induction-melted samples,whereas it ranged between 83 K and 103 K for the resistance furnace-heated samples.It was suggested that grain refinement in undercooled melts of Cu-Ge alloys depended not only on undercooling,but also on alloy chemistry and cooling rate.
     In-situ monitoring of the rapid solidification process of the samples showed that the advancing macroscopic liquid/solid interface had a zigzag feature for low undercoolings,but transited to a smooth one at increased undercoolings.The undercooling regime for the transition of the interfacial feature ranged from 74 K to 83 K for the Cu-10%Ge alloys,but from 83 K to 103 K for the Cu-14.8%Ge alloys.It was supposed that the difference in the undercooling regime between the two alloy compositions might be related to solute trapping during rapid solidification.
引文
1.陈光,傅恒志.非平衡凝固新型金属材料[M],科学出版社,2004.
    2.谢发勤,张军,毛协民等.深过冷熔体激发快速定向凝固[J],材料科学与工艺,1996:4(3):102.
    3.程天一,章守华.快速凝固技术与新型合金[M],宇航出版社,1990.
    4.Turubull D J,Chem Phys,1952,20:41.
    5.Turubull D J.Applied Physics Letters,1950,21(10):1022.
    6.周尧和,胡壮麒,介万奇.凝固技术[M],机械工业出版社,1998:282-283.
    7.Kui H W,Greer A L,Tumbull D.Formation of Bulk Metallic Glass by Fluxing[J],Applied Physics Letters,1984,45(6):615-616.
    8.Flemings M C,Shiohara Y.Solidification of Undereooled Metals[J],Materials Science and Engineering,1984,65(1):157-170.
    9.李金富,杨根仓,吕衣礼.深过冷Cu-30%Ni合金的定向凝固组织的力学性能[J],材料研究学报,1997,11(2):137-139.
    10.Hunt J D,Fu Z.Metal Numerical Modeling of Cellular and Dendritic Array Growth:Structure Prediction[J],Materials Science and Engineering A,1993,173:79.
    11.陈亮,罗兴宏.一种新的利用落管实验分析微重力效应方法的的探讨[J],金属学报,2007,43(7):769-774.
    12.马卫红,坚增运,严文.净化工艺对铜过冷度的影响[J],西安工业学院学报,1999,19(2):137-141.
    13.Bardenheuer P,Blackman R,Mitteilg.KWI f Eisenforschung,21,1939:20173.
    14.Tumbull D,Cech R E.Microscopic observation of the solidification of small metal droplets[J].J Appl Phys,1950,21:804.
    15.Powell L,Hogan L M.The undercooling of copper and copper-oxygen alloys[J],Trans Met Soc AIME,1968,242:2133.
    16.Kojiro F,Kobayashi,Paul H S.The solidification process of highly undercooled bulk Cu-O melts[J].
    17.惠增哲,杨根仓,周尧和.大体积Ni-Sn共晶合金的化学净化与过冷[J],材料研究学报,1998,12(1):37-41.
    18.曹崇德,鲁晓宇,魏炳波等.深过冷液态Co_(85)Cu_(15)亚包晶合金的快速凝固[J],金属 学报,1998,34(5):489-495.
    19.马卫红,坚增运,严文.净化工艺对铜过冷度的影响[J],西安工业学院学报,1999,19(2):137-141.
    20.常芳娥,坚增运,王峰,陈山川.锗在熔融玻璃中的循环过热后的凝固过冷度及组织特征[J],铸造技术,2005,26(11):1042-1044.
    21.Kalin I,Dragnevski,Andrew M,Robert F.The effect of experimental variables on thelevelS of melt undercooling[J],Materials Science and Engineering A,2004,375-377:485-487.
    22.张振忠,宋广生,杨根仓,周尧和.深过冷净化的影响因素及工艺优化[J],铸造技术,1999,3:40-43.
    23.Wilde G,Sebright J L,Perepezko J H.Bulk liqid undercooling and nucleation in gold[J],Acta Materialia,2006,(54):4759-4769.
    24.Lipton J,Glicksman M E,Kure W.Dendritic growth into undercooled alloy metals[J],Materials Science and Engineering,1984,65(1):57-63.
    25.Lipton J,Kruz W,Trivedi R.Rapid dendrite growth in undercooled alloys[J],Acta Metallurgica,1987,35(4):957-964.
    26.Willnecker R,Herlach D M,Feuerbacher B.Materials Science and Engineering,1988,98:85-87.
    27.Boettinger W J,Coriell S R,Trivedi R,in:R.Mehrabian P.A.Parrish(Eds),Claitor's,Baton Rouge,LA,1988:13-14.
    28.Walker J L,Pierre G R S.AIME,International of Science Publishers,NY,1961:845.
    29.Bassler B T,Hofmeister W H,Bayuzick R J.The solidification velocity of pure nickel[J],Materials Science and Engineering,2003,342:A80-92.
    30.Battersloy S E,Cohrance R F,Mullis A M.Microstructural evolution and growth velocity-undercooling relationships in the cystems Cu,Cu-O and Cu-Sn at high undercooling[J],Journal of Materials Science,2000,35:1365-1373.
    31.Battersby S E,Cochrane R F,Mullis A M.Highly undercooled germanium:growth velocity measurements and microstructural analysis[J],Materials Science and Engineering A,1997,226-228:443-447.
    32.Algoso P R,Hofmeister W H,Bayuzick R J.Solidification velocity of undercooled Ni-Cu alloys[J],Acta Materialia,2003,51:4307-4318.
    33.Suzuki T,Kim S G,Kim W T.Two-dimensional facet crystal growth of silicon from undercooled melt of Si-Ni alloy[J],Materials Science and Engineering A,2007,449-451:99-104.
    34.Galenko P K,Phanikumar G,Funke O,Chernova L,Reutzel S,Kolbe M,Herlach D M.Dendritic solidification and fragmentation in undercooled Ni-Zr alloys[J],Materials Science and Engineering A,2007,449-451:649-653.
    35.Altgilbers A,Hofmeister W,Bayuzick R.Materials Science and Engineering A,2003,360:26.
    36.Walker J L.The physical Chemistry of Process Metallurgy[J],Interscience New York,1959:845.
    37.陈辉,蒲健,肖建中.深过冷合金中的晶粒细化[J],材料导报,2004,18:201-203.
    38.陈豫增,杨根仓,刘峰等.过冷Fe_(75)Ni_(25)合金晶粒细化机制的研究[J],金属学报,2006,42(7):703-707.
    39.Lu S Y,Li J F,Li X L.Grain boundaries in the refined solidification structure of undercooled Ni_(75)Pd_(25)[J],Physica B,2008,403:2609-2613.
    40.李金富,杨根仓,周尧和.深过冷Ni-50%Cu合金的晶粒细化[J],金属学报,1998,34(2):113-118.
    41.刘宁,杨根仓,陈豫增,周尧和.深过冷Fe-30%Co合金的组织演化[J],自然科学进展,2006,16(1):120-123.
    42.Horvay G.Tension field created by spherical nucleus freezing into its less dense undercooled melt[J],Int J Heat Mass Transfer,1965,8:195-243.
    43.Jackson K A,Hunt J D,Uhlmann D R.On origin of equiaxed zone in castings[J],Met Soc of AIME-Trans,1966,236:149-158.
    44.Powell G L F.Undercooling of Cu-20.wt%Ag alloy[J],Met Soc of AIME-Trans,1969,245:1785-1788.
    45.Hogan L M,Powell G L F.Undercooling of copper and copper-oxygen alloys,Met Soc of AIME-Trans,1968,242:2133-2138.
    46.Powell G L F,Hogan L M.Influence of oxygen content on grain size of undercooled Silver[J],Met Soc of AIME-Trans,1969,245:407-412.
    47.Jones B L,Weston G M.Grain refinement in undercooled copper[J],J Aust Inst Met,1970,15:167-170.
    48.Jones B L,Weston G M.Structural features of undercooled nickel and nickel-oxygen Alloys[J],J Aust Inst Met,1970,15:189-194.
    49.Karma A.Model of grain refinement in solidification of undercooled melts[J],International Journal of Non-Equilibrium Processing,1998,11:201-233.
    50.Nagasaki S,Hirabayashi M.Binary Alloy Phase Diagrams,AGNE Gijutsu Center Co Ltd,Tokyo,2002:7.
    51.Wang N,Wei B.Rapid solidification of undercooled Cu-Ge peritectic alloy[J],Acta Materialia,2000,48:1931-1938.
    52.范金.铜基包晶合金深过冷熔体中的相选择研究[D],东北大学硕士学位论文,2006.
    53.程守珠,江之水.普通物理学[M],高等教育出版社,2000,3 14-327.
    54..Dorab N B,Terry S K,Renato G B.The normal spectral emittance of yttrium,lanthanum,cerium,praseodymium and neodymium above 1000K[J],Metallurgical Transactions B,1976,7:577-580.
    55.Dokko W,Bautista R G.The normal spectral emittance of liquid cerium-copper alloys[J],Metallurgical Transactions B,1979,11:309-312.
    56.Siegel R,Howell J R.Thermal radiation heat transfer[J],McGraw-Hill Book Co NY,1923,23.
    57.Watanbe H,Susa M,Nagata K.Discontinuity in normal spectral emissivity of solid and liquid copper at the melting point[J],Metallurgical and Materials Transactions A,1997,28:2507-2513.
    58.阮莹.铜锗合金中相的形成规律[J],科学通报,2006,51(22):2607-2611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700