Al-Si合金的非平衡凝固机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于合金非平衡凝固机理的研究是凝固学研究领域的重要组成部分。大量研究表明,铸造合金的熔体结构对其非平衡凝固过程及组织都具有显著影响,而熔体结构又与过热状态有关。所以研究铸造合金熔体的过热状态对其非平衡凝固机理的影响具有重要理论意义。Al-Si系铸造合金在铝基铸造合金系列中占有非常重要的地位,本论文以共晶Al-Si合金为主要研究对象,结合亚共晶及过共晶Al-Si合金,在总结前人研究结果的基础上结合DSC及金相法分析了Al-Si合金的熔体结构随过热状态变化的规律。研究了不同过热状态及凝固速率条件下Al-Si合金在非平衡凝固过程中熔体结构的变化规律,讨论了过热状态及凝固速率对Al-Si合金非平衡凝固组织及共晶共生区的影响。目前由于在实际生产过程中很少采用改变熔体过热状态的方法来达到改善合金凝固组织的目的,所以本论文研究对Al-Si系铸造合金的实际生产也具有一定的实践意义。
     DSC实验结果表明:共晶及过共晶Al-Si合金内初生硅的析出效应都随过热度的升高而逐渐增强。过热度对Al-Si合金内各相初始凝固温度的影响很小,而凝固焓变值随过热度的升高经历了由大变小再变大的过程。保温时间对Al-Si合金内各相初始凝固温度的影响也很小,而凝固焓变值随保温时间的延长经历了由小变大再变小的过程。凝固速率对Al-Si合金各初生相初始凝固温度的影响较为显著,而对共晶组织初始凝固温度的影响很小,凝固焓变值则随凝固速率的提高经历了先减小再增大的过程。随着凝固速率的提高,合金的凝固逐渐由平衡过程向非平衡过程转变,从而导致凝固机理方面的变化。
     凝固组织形态研究表明:Al-7%Si合金随着过热度的升高,α(Al)枝晶形态逐渐规则化,共晶组织也逐渐呈完全离散状分布。Al-12%Si合金在过热度较低时凝固组织中出现了初生硅与α(Al)枝晶,在过热度较高时这两种组织逐渐消失。凝固组织中还出现了初生硅与α(Al)枝晶共存的晕圈现象。Al-20%Si合金凝固组织中的初生硅随着过热度的升高经历了由小尺寸多边形状转变为大尺寸五瓣星状再回归为小尺寸多边形状的变化。过热保温对非平衡凝固组织的影响程度较弱且规律性不强。
     理论及实验分析结果表明:随着过热度的提高,Al-Si合金熔体逐渐均匀化。Al-Si合金熔体结构参数在近共晶点成分处会发生反常突变,反映了熔体结构由亚共晶向过共晶转变的过程。Al-Si合金在液相线以上存在铝、硅原子集团的结构转变温度区间。合金的熔体结构会影响其非平衡凝固过程及凝固组织。亚共晶及共晶Al-Si合金熔体的结构特征与纯铝类似,在低过热度范围内会发生基体铝“收缩”的现象。硅原子集团对过共晶Al-Si合金熔体结构的影响要大于其对亚共晶及共晶Al-Si合金熔体结构的影响。
     理论分析表明:过热度对熔体内原子间距影响较弱,但对原子配位数的影响较为显著。铝熔体在低过热度范围内发生“收缩”的根本原因在于熔体在过热初期会自发收缩以抵消体系由于体积膨胀而导致能量的增加效应,与熔体内氢含量的变化无关。Al-Si合金熔体内原子团簇的种类及数量因成分而异。成分与熔体内原子间距及最近邻原子配位数之间均呈复杂的非线性关系。随着成分的逐渐增大,在熔体结构转变区内成分与熔体内原子间距及最近邻原子配位数之间呈近似无规律的状态,而在熔体结构转变区以外则呈现出一定的函数关系。
     理论分析表明:过热度会对合金共晶共生区产生影响,提高过热度将使合金共晶共生区左右边界扩大,反之则缩小。随着凝固速率的变化,Al-Si合金的非平衡凝固组织会出现显著差异。共晶及过共晶Al-Si合金中易出现α(Al)依附于初生硅析出的晕圈组织。Al-Si合金共晶凝固机理将随凝固速率及过热度的变化而改变。共晶合金在结构上比较特殊,其中包含了合金的结构由亚共晶向过共晶过渡的关键信息。
Studying of non-equilibrium solidification mechanism of alloy plays an important role in the solidification science field. Many studying have indicated that melt structure has a remarkable effect on non-equilibrium solidification process and structure of cast alloy and melt structure has to do with overheating state. So studying the influence of overheating state of melt to non-equilibrium solidification mechanism of cast alloy has a remarkable theoretical significance. Al-Si cast alloy takes an important part in all kinds of Al cast alloys, in this thesis, eutectic Al-Si alloy is studied as the main object and some other typical kinds of hypoeutectic and hypereutectic Al-Si alloys are also studied based on the predecessor’s research results and combining DSC and metallographic method and the law of melt structure changing with overheating state is also discussed. Studying the evolution discipline of Al-Si alloy’s melt structure with overheating state and solidification rate in non-equilibrium solidification process and the effects of overheating state and solidification rate on Al-Si alloy’s non-equilibrium solidification structure and eutectic coupled zone. Now the method which improves solidification structure of alloy through changing overheating state of melt is seldom used in actual production process, so all studyings of this thesis also have certain practical significance to actual production Al-Si cast alloy.
     The DSC experimental results show that the precipitation effect of primary Si in the eutectic and hypereutectic Al-Si alloy is strengthened by elevation of overheating degree. Overheating degree has a little of effect on initial precipitation temperature of all kinds of phases in the Al-Si alloy, the solidification caloric value changes from big to small and then to big as the overheating degree rises. Holding time also has a little of effect on initial precipitation temperature of all kinds of phases in the Al-Si alloy, the solidification caloric value changes from small to big and then to small as the holding time extends. The solidification rate has a remarkable effect on the initial precipitation temperature of primary phases but it has little effect on initial precipitation temperature of eutectic phase, the solidification caloric value changes from small to big and then to small as the solidification rate rises. As solidification rate rises, the solidification process varys from equilibrium state to non-equilibrium state and the solidification mechanism will change.
     The studying of structure morphology shows that as overheating degree rises, morphology ofα(Al) in the Al-7%Si alloy becomes more and more regular, eutectic phase’s distribution is discrete. There are some primary Si andα(Al) in the solidification structure of Al-12%Si alloy at low overheating degree and this two kinds of structure disappear at high overheating degree. Moreover, halos which are composed ofα(Al) and primary Si are found in Al-12%Si and Al-20%Si alloy. The morphology of primary Si in Al-20%Si alloy changes from small size regular and polygonal to big size five-petal star-shaped and then to small size regular and polygonal as overheating degree rises. The effect of holding time to non-equilibrium solidification organization of Al-Si alloy is weak and ruleless to some extent.
     The theoretical and experimental results show that Al-Si alloy melt becomes homogeneous as the overheating degree ascends. The structural parameter of Al-Si alloy changed abnormally at the eutectic point, reflecting the changing process of melt structural from hypoeutectic to hypereutectic alloy. There are structure transformation temperature intervals of Al and Si atom clusters above liquidus line of Al-Si alloy. The state of alloy melt affects the alloy’s non-equilibrium solidification process and structure. The structure characteristics of hypoeutectic and eutectic Al-Si alloy are similar to that of pure Al and“contraction”of Al matrix is found at low overheating degree range. Si clusters have more remarkable effect on melt structure of hypereutectic Al-Si alloy than on hypoeutectic Al-Si alloy.
     The results of theoretical analyze show that overheating degree has a remarkable effect on neighboring atom coordination number but little effect on atomic separation. The ultimate reason why Al melt“contracts”at low overheating degree is that melt contracts spontaneously at initial stage of overheating which contra increasing of energy caused by augmentation of volume of system and it is found that this phenomenon is not related to hydrogen content varation in melt. The kinds and number of atom clusters in Al-Si alloy melt are changed by component. Component has a complicated and non-linear connection to do with atomic spacing and ligancy. As component rises, the connections between atomic spacing or arest neighbors ligancy and component are approximatively ruleless when component is in the transition zone of melt structure and are somewhat functionally when component is out of the transition zone of melt structure.
     The results of theoretical analyze show that overheating degree has some effects on eutectic coupled zone of alloy. The rising of overheating degree will broaden the eutectic coupled zone, reduce it conversely. As solidification rate changes, the non-equilibrium solidification structure Al-Si alloy will also be vary. Halos in whichα(Al) tend to grow and attach at primary Si are easily found in near eutectic and hypereutectic Al-Si alloy. The solidification mechanism of eutectic phase in the Al-Si alloy varys with solidification rate and overheating degree. When we study the law of alloy’s structure changing from hypoeutectic to hypereutectic state, the structure of eutectic alloy will provide the key information.
引文
[1]陈平昌,朱六妹,李赞.材料成型原理[M].北京:机械工业出版社, 2003.
    [2]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社, 2006.
    [3] Ejiofor J U, Keddy R G. Development in the processing and Properties of Particulate Al-Si Composites[J]. JOM, 1997, 49(??): 33-38.
    [4] Vineyard G H. Liquid Metals and Solidification[M]. Cleveland: ASM, 1958.
    [5]何树先,王俊,孙宝德,周尧和.熔体温度处理对不同成分铝合金凝固组织和性能的影响,中国有色金属学报[J], 2002 12(4): 699-773.
    [6]裴忠冶,李俊涛,田彦文,赵明汉.合金熔体过热处理的研究进展[J],材料导报, 2006 20(9): 83-85.
    [7]边秀房,刘相法,马家骥.铸造金属遗传学[M].济南:山东科学技术出版社, 1999.
    [8] U. Dahlborg, M. Bessr. Structure of molten Al–Si alloys[J]. Non-Crystalline Solids, 2007, 353: 3005-3010.
    [9]桂满昌,宋广生,贾均,李庆春. Al-18%Si过共晶合金熔体结构特征及磷的影响[J].金属学报, 1995, 31(4): 177-182.
    [10]谢壮德,沈军,董寅生,周彼德,李庆春.快速凝固铝硅合金的制备、组织特征及断裂行为[J].粉末冶金技术, 2000, 18(2): 111-116.
    [11]赵爱民,毛卫民,甄子胜,姜春梅,钟雪友.冷却速度对过共晶铝硅合金凝固组织和耐磨性能的影响[J].中国有色金属学报, 2001, 11(5): 827-833.
    [12] Peijie Li, V.I. Nikitin, E.G. Kandalova, K.V. Nikitin. Effect of melt overheating, cooling and solidification rates on Al–16wt.%Si alloy structure. Materials Science and Engineering[J], 2002, A332: 371-374.
    [13] H.K. Jung, P.K. Seo, C.g. Kang. Microstructural characteristics and mechanical properties of hypo-eutectic and hyper-eutectic Al-Si alloys in the semi-solid forming process[J]. Materials Processing Technology, 2001, 113: 568-573.
    [14] Sumanth Shankar, Yancy W. Riddle, Makhlouf M. Makhlouf. Nucleation mechanism of the eutectic phases in aluminum–silicon hypoeutectic alloys[J]. Acta Materialia, 2004, 52: 4447-4460.
    [15] Paul L. Schaffer, Lars Arnberg, Arne K. Dahle. Segregation of particles and its influence on the morphology of the eutectic silicon phase in Al–7 wt.% Si alloys[J]. Scripta Materialia, 2006, 54: 677–682.
    [16]郭景杰.合金熔体及其处理[M].北京:机械工业出版社, 2005.
    [17]王家?,黄积荣,林建生.金属的控制及其控制[M].北京:机械工业出版社, 1983.
    [18]下地光雄.液态金属[M].北京:科学出版社, 1987.
    [19] J. Enderby. Direct method for the determination of atomic-scale structure of amorphous solids (X-ray, Electron and Neutron Scattering)[J]. J. Non-Cryst. Solids, 1978, 31: 1-40.
    [20] Y Waseda. The Structure of Non-Crystalline Materials[M]. McGraw-Gill: New York, 1980.
    [21]杨传铮,谢达材, J.M. Neewsam, J.F Fisher.用中子散射法研究凝聚态物质的新进展[J].物理学进展, 1994, 14: 231-280.
    [22] T. Iida, R.LL. Guthrie, The Properties of Liquid Metals[M]. Clarendon: Oxford, 1993.
    [23]陈镜私,李传儒.热分析及其应用[M].北京:科学出版社, 1985.
    [24]于伯龄,姜胶东.实用热分析[M].北京:纺织工业出版社, 1990.
    [25]郑采星.湖南大学博士学位论文[D], 2001.
    [26]赵岩,齐锦刚,刘兴江,王建中.分子动力学模拟技术及其在金属熔体结构研究中的应用[J].金属热处理, 2006, 31(1): 13-16.
    [27] A. Das, Z. Fan. A Monte Carlo simulation of solidification structure formation under melt shearing[J]. Materials Science and Engineering, A365 (2004) 330–335.
    [28] Donghai Chen, Wayne L. Mattice. A Monte Carlo simulation of coarse-grained poly melts[J]. Polymer 45 (2004) 3877–3883.
    [29]谷延申.山东大学博士论文[D], 2005.
    [30]张云鹏,苏俊义,王贻青.共晶合金凝固组织数值模拟的研究进展[J].西安理工大学学报, 1997, 13(2): 179-183.
    [31]陶静梅.重庆大学硕士论文[D], 2004.
    [32] J. Bletery. Geometrical models for liquid metals and alloys[J]. Z. Naturforsch. 33A (1978): 327-333.
    [33]赵岩.山东大学博士论文[D], 2007.
    [34] D. Turnbull. The gram-atomic volumes of alloys of transition metals with Al and Si[J]. Acta Metall. Mater. 38(1990)243-249.
    [35] G. Kahl, J. Hafner. The influence of medium- and long-range binary alloys[J]. Phys. Chem. Liq. 17 (1988) 267-277 on the structure of liquid.
    [36]田学雷.山东工业大学博士论文[D], 1999.
    [37]徐祖耀.金属材料热力学[M].北京:科学出版社, 1981.
    [38] S.R. Elliott. Medium-range structural order in covalent amorphous solids[J]. Nature, 354(1991): 445-452.
    [39] W. Hoyer, R Jodicke. Short-range and medium-range order in liquid Au-Ge alloys[J]. J. Non-cryst. Solids 192-193 (1995)102-105.
    [40]潘学民,边秀房,秦敬玉,王伟民. Cu-12%Al合金熔体内中程有序原子团簇[J].物理化学学报, 2001, 17(8): 708-712.
    [41]程素娟,秦绪波,李赛强.金属熔体中程有序结构的演化及其遗传性[J].科学技术与工程, 2002, 2(5): 77-78.
    [42]边秀房,潘学民,秦绪波,蒋民华.金属熔体中程有序结构[J].中国科学, 2002, 32(2): 145-151.
    [43]王广厚.团簇物理的新进展[J].物理学进展, 1994, 14: 16-62.
    [44] G.H. Wang, L. Dou, Z.G. Liu, T.N. Zhou, Y.H. Jiang, J.H. Yang. Isotopic effect In the formation of copper-ion clusters by neutral-argon-atom bombardment[J]. Phys. Rev. B 37 (1988) 9093-9096.
    [45]王广厚.原子团簇科学[J].科技导报,1994,(10): 9-11.
    [46]王广厚.关于团簇之我见[J].科技导报,1994,(10): 12-13.
    [47]陈小华.重庆大学硕士论文[D], 2006.
    [48]蔡英文,范新会,李建国,傅恒志.原子簇在熔体晶体生长中的作用[J].西北工业大学学, 1996, 21(31): 63-64.
    [49]张蓉.西北工业大学博士论文[D], 2000.
    [50] Gabathuler J P, Steeb S .Z. Naturforsclr[M], 1979, 34A: 1314.
    [51] Gabathuler J P, Steeb S. Lamparter P. Uber die struktur von Aluminiun-Silizium-schmelzen[J]. Z.Nat, 1979, 34A: 1305-1313.
    [52] V A.Izmailov, A.A. Vertman. State of silicon in aluminium[J]. Metally, 1971, 6: 217-220.
    [53]王伟民.山东工业大学博士论文论文[D], 1998.
    [54] G.M.Kuznetsov, V.A.Rotenberg. Structure of molten alloys of silicon metal systems near the liquidus temperature[J]. Materialy, 1971, 7(11): 1909-1913.
    [55] Singh.M, Kumar.R. Structure of liquid aluminium-silicon alloys[J]. J.Mat.Sci., 1973, 8: 317-323.
    [56]张林,边秀房,马家骥.铝硅合金的液相结构转变[J].铸造, 1995, 10: 7-12.
    [57] W.库尔兹, D. J.费希尔.凝固原理[M], 1987.
    [58]胡汉起.金属凝固原理[M].北京:机械工业出版社, 1993.
    [59]李培杰,桂满昌,贾均等. Al-16%Si合金熔体的电阻率及其结构遗传[J].铸造, 1995, 9: 15-20.
    [60]魏朋义.合金凝固新技术及理论的研究—熔体处理组织改性及高梯度单晶制备:博士后研究工作报告[D].西安:西北工业大学, 1995.
    [61]何树先,王俊,孙宝德等.熔体温度处理细化亚共晶Al-Si合金组织[J].上海交通大学学报, 2002, 36(1): 51-54.
    [62]叶春生,张新平.熔体温度处理对初生Si相细粒化的研究[J].汽车工艺与材料, 2001, 1: 25-27.
    [63]王寿彭.铸件形成理论及工艺基础[M].陕西:西北工业大学出版社, 1994.
    [64]胡汉起.金属凝固[M].北京:冶金工业出版社, 1985: 294.
    [65]陈达.深过冷Ni-Sn合金的组织演化及非规则共晶的形成.西北工业大学硕士论文[D], 2006.
    [66] Elliott R. Eutectic Solidification Processing[J]. Butterworth, 1983: 294.
    [67]李顺朴,陈熙琛. Al-Si合金的共晶共生区及组织形成规律[J].金属学报, 1995, 31(2): 47-55.
    [68]曹丽云等.冷却速度对共晶铝硅合金凝固组织形态的影响[J].辽宁工学院学报, 2001, 21(4): 40-42.
    [69] Waseda Y. Inst Phys Conf Ser[J]. 1977, 30: 230.
    [70]卡恩.物理金属学(上)[M].北京:科学出版社, 1985: 157.
    [71] Eyring H. Viscosity, plasticity, difFusion as examples of absolute reaction rates[J]. J. Chem. Phys, 1936, 4: 283-241.
    [72] Doolittle A K. Studies in Newtonian Flow. I. The Dependence of the viscosity of Liquids on temperature[J]. J. Appl. Phys, 1951, 22(12): 1031-1035.
    [73] Cohen M H, Grest G S. Liquid-glass transition, a free-volume approach[J]. phys. Rev. B, 1979, 20(3): 1077-1098.
    [74]孙民华,耿浩然,边秀房,刘燕. Al熔体粘度的突变点及与熔体微观结构的关系[J].金属学报, 2000, 36(11): 1134-1138.
    [75] Ronsley C E, Talbot D E J. Z Metallkd[J], 1955, 46: 329.
    [76]杨志怀.西北工业大学硕士论文[D], 2007.
    [77]姚允斌.物理化学手册[M].上海:上海科学技术出版社, 1985: 103-112.
    [78]张伟强.金属电磁凝固原理有技术[M].北京:冶金工业出版社, 2004.
    [79] Li Q C. Theoretical Foundations of Solidification of Castings[M]. Beijing: Mechanical Industry Press, 1982: 24.
    [80]安阁英.铸件形成理论[M].北京:机械工业出版社, 1990: 147.
    [81]余永宁.金属学原理[M].北京:冶金工业出版社, 2000: 264.
    [82]闵乃本.晶体生长的物理基础[M].第一版,上海:上海科学技术出版社, 1982: 256.
    [83] Kobayashi K, Hogan L M. Fivefold twinned silicon crystal in an Al-16% Si melt[J]. Phil. Mag, 1979, 40: 399-407.
    [84] Kobayashi K, Hogan L M. The crystal growth of silicon in Al-Si alloys[J]. J. Mat. Sci, 1985, 20: 1961- 1975.
    [85] Kobayashi K F, Hogan L M. J Mater Sci[J], 1985, 20: 1961.
    [86] Hellawell A. Prog Mater Sci[J], 1970, 15: 3.
    [87] Kobayashi K F, Hogan L M. Philos Mag[J], 1979, 40A: 399.
    [88]李顺朴,陈熙琛. Al-Si合金凝固过程中的生核与分枝[J].物理学报, 1995, 44(2): 233-237.
    [89]桂满昌,贾钧,李庆春.金属学报[J], 1996, 32(11): 1177-1183.
    [90]魏朋义.西北工业大学博士学位论文[D], 1993.
    [91]刘启阳,李庆春,张吉人. A1-Si合金变质机理及共晶硅形态控制的研究与发展[J].铸造, 1988, 6: 4-6.
    [92]李如生.非平衡态热力学和耗散结构[M].北京:清华大学出版社, 1986.
    [93]李双明,马伯乐,李晓历,刘林,傅恒志.定向凝固下共晶合金中相的竞争生长[J].中国科学(E辑), 2005, 35(5): 479-489.
    [94] Burden M H, Hunt J D. Cellular and dendritic growth. J Cryst Growth[J], 1974, 22 (2): 109-116.
    [95] Magnin P, Trivedi R. Eutectic growth: A modification of the Jackson and Hunt theory[J]. Acta Metall Mater, 1991, 39(4): 453-467.
    [96] Gigliotti Jr. MFX, Colligan GA, Powell GLF. Metall[J]. Trans, 1970, 1: 891.
    [97] M.D. Nave, A.K. Dahle, D.H. StJohn. Halo formation in directional solidification[J]. Acta Materialia, 2002, 50: 2837-2849.
    [98] Barclay RS, Niessen P, Kerr HW. J. Cryst. Growth[J], 1973, 20: 175.
    [99] Elliott R. Eutectic Solidification Processing-Crystalline and Glassy Alloys[M]. London: Butterworths, 1983: 92-156.
    [100]K. Nogita, A.K. Dahle. Eutectic solidification in hypoeutectic Al-Si alloys: electron backscatter diffraction analysis[J]. Materials Characterization, 2001, 46: 305-310.
    [101]苏彦庆,骆良顺,毕维生,郭景杰,傅恒志.共晶和包晶合金定向凝固过程中共生生长的形态稳定性[J].中国有色金属学报, 2006, 16(7): 1125-1135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700