超站仪检定技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会和经济的发展,人们对空间信息的需求越来越迫切,空间信息是建立在空间数据的基础之上的,空间数据的质量直接决定获取空间信息是否真实可靠,作为空间数据采集工具之一的超站仪是一种兼有自动测距、测角、计算和数据自动记录及传输功能的自动化、数字化的三维坐标测量和定位系统。参加采集空间数据的超站仪的性能是否能够满足数据采集的需要,是决定所采集数据质量高低的一个重要关键环节。《中华人民共和国计量法》、《中华人民共和国测绘法》和《测绘计量暂行管理办法》都对计量器具的检定作出了规定。《测绘计量暂行管理办法》规定,承担测绘任务的单位和个体测绘业者,其所使用的测绘计量器具必须经政府计量行政主管部门考核合格的测绘计量检定机构或测绘计量标准检定合格,方可申领测绘资格证书。无检定合格证书的,不予受理资格审查申请。上述测绘单位和个体测绘业者使用的测绘计量器具,必须按照规定周期检定合格,才能用于测绘生产。未经检定、检定不合格或超过检定周期的测绘计量器具,不得使用。教学示范用测绘计量器具可以免检,但须向省级测绘主管部门登记,并不得用于测绘生产。在测绘计量器具检定周期内,可由使用者依据仪器使用状况自行检校。因此,研究超站仪各个部件和功能的检定理论和方法,为超站仪投入测绘生产提供计量技术保障,对于保障国家计量单位制的统一量值的准确可靠和生产、贸易和科学技术的发展具有重要的意义。本文在详细叙述测量与计量、测量误差和测量不确定度的基础上,从以下几个方面对超站仪进行检定研究:
     (1)根据超站仪中三轴系统误差的规律,通过单轴补偿、双轴补偿和三轴补偿的电子补偿措施,对超站仪的角度测量值进行误差改正以削弱由轴系位置不正确而产生的系统误差进行了研究,并对超站仪的视准轴、横轴、竖轴的位置不正确对角度测量的影响进行机理分析,并探讨减弱措施。通过垂线法对三轴误差补偿模拟实验,证明通过基于误差理论的三轴补偿模型能够很好的起到补偿作用。
     (2)分析了超站仪测距部分的误差源,一部分是与待测距离成比例的误差,称为比例误差;另一部分是仪器固有的误差,与被测距离长度无关,称为固定误差。针对超站仪测距部分的误差源,探讨了超站仪测距部分加常数和乘常数检定的方法。并讨论了三段法单独检定加常数、基线比较法同时测定仪器的加、乘常数和加、乘常数非等权线性回归计算方法,在等权线性回归计算中采用显著性检验理论进行加常数和乘常数计算。
     (3)论述了编码度盘测角,光栅度盘测角、动态法测角等测角的基本原理和方法,并从系统误差和偶然误差两个方面对超站仪的角度测量误差规律进行了分析,进行了基于德国工业标准DIN18723-3、基于检定规程JJG100-2003和基于国际标准ISO8322—4的一测回竖直角标准偏差测定实验,最后通过对几种求解一测回竖直角标准偏差方法的对比分析,提出了“三步法”竖直角标准差的求定方法。同时还进行了基于德国工业标准DIN18723-3的多目标法水平方向标准差的检定实验,探讨了垂直角和水平角测量不确定度的评定方法。
     (4)阐述了误差椭圆和假设检验理论,建立超站仪综合检定模型和第三检测模型。利用误差传播理论推导出第三检测的最佳图形和测角、测距及坐标功能检测限差,并用实例验证了检测过程。
With the development of society and economy, the need for spatial information has been receiving more and more attention. The quality of spatial data decides the reliability of the acquired spatial information directly. As one of the equipment of spatial data collection, the superstation is a kind of 3-d coordinate measuring and positioning system, with the features of automatic distance measurement, angle measurement, calculation, automatic record, automatic transformation, as well as digitalization. Whether the property of the used total station of collecting spatial data can meet the need of data collection is a key part to decide the data quality. The law and regulation of《PRC Measurement Law》、《PRC Surveying and Mapping Law》and《Temporary Management of Mapping Measurement》all have made regulation on the detection of measuring tools. Temporary Management of Mapping Measurement has the regulation like this:as for the units or individuals that do the work concerning measuring and surveying, the measuring tools they use should be tested by Verification institution of mapping measurement of measurement administration department of government, to meet their requirement. Only in this way can they apply for the mapping qualification. It is impossible to apply for qualification examination without qualified certificate. The above measuring tools of measuring and surveying units and individuals should be tested period according to the rules. Only in this way can the measuring tools be used in production. While the measuring tools that haven't been got through the test or exceeded the test period can not be used in any aspect. The teaching measuring and surveying tools can be exemption from check. However, they should be registered in the provincial measuring and surveying bureau, and they can not be used in production. During the test period of the measuring and surveying tools, they can be tested and adjusted by individual according to the use of the tools. Therefore, it is significant to study the test theory and method of each part and function of superstation, which can provide technological guarantee for production. In addition, it is important for the unification of national measurement unit, the accuracy of measuring and the development of production, trade and scientific technology. In this paper, on the basis of elaborating on the measuring and surveying, measuring errors and uncertainty, the following aspects have been studied of superstation.
     Firstly, according to the regulation of systematic error regarding shafting superstation middle triaxis, the angle measuring values have been rectified by the electronic compensation measures of uniaxial compensation, double-axis compensation and triaxial compensation, in order to lessening the systematic errors caused by incorrection of axis location. In addition, mechanical analysis of the angle measurement influence caused by incorrect position of collimation axis, lateral axis, vertical axis and the relieving measures have been discussed as well. According to the compensation simulation experiment of three axises error by plummet method, it is proved that the three-axis compensation model based on error theory can play pleasant compensationary function.
     Secondly, the error sources of ranging part of superstation is analyzed. One part is called the ratio error, namely the error of ratio concerning measuring distance. Another part is the inherent error of the equipment, having no relationship with measuring distance. According to the error sources of ranging part of superstation, the methods of test concerning additive constants and multiplicative of ranging part has been discussed. What's more, the paper has discussed the separate verification of three-segment method, and constant and baseline comparison. Meanwhile,the non-equal weight linear regression calculation method of additive and multiplicate constant, additive constant and multiplicate constant concerning determinative equipmen. In equal-weight linear regression calculation, the significant test theory is used to do the calculation of additive constant and multiplicative constant.
     Thirdly, the basic principals and methods of angle measurement concerning coding disk angle measurement, grating disk angle measurement and dynamic angle measurement have been discussed. In addition, the error regularity of angle measurement has been analyzed concerning the systematic error and occasional error of superstation. In addition, the measuring experiment of standard deviation of one measuring-process vertical angle has been carried out on the basis of German industrial standard of DIN8723-3, verification regulation of JJG100-2003, as well as international standard of ISO 8322-4. Finally, according to the comparative analysis of several methods of solving standard deviation regarding one measuring-process vertical angle, the method of three-step vertical angel standard error has been proposed. Meanwhile, the test experiment regarding multi-target measuring standard error of horizontal angle on the basis of the standard of Industrial Standard of German of DIN8723-3 has been carried out, which discussed the estimating method of the uncertainty of vertical angle and horizontal angle.
     Fourthly, the paper elaborates on the theories of error ellipse and hypothesis testing, and set up the comprehensive testing model and the third testing model of total station.Error transforming theory is used to deduct the best graph and the testing limited error of angle measurement, distance measurement, as well as coordinate function of the third test. In addition, the specific is used to prove the testing process.
引文
1.王新洲,陶本藻,邱卫宁,姚宜斌[M].高等测量平差.北京:测绘出版社,2006,8.
    2.王妍.Topcon GTS-600AF/600系列全站仪及其检定[J].测绘信息与工程,2002,27(4):43-44.
    3.王中宇,刘智敏,夏新涛,祝连庆.测量误差与不确定度评定[M].北京:科学出版社.2008.
    4.孔祥元,梅是义.控制测量学(上册)(第二版)[M].武汉:武汉大学出版社,2002,2.
    5.叶晓明,凌模,谢方.全站仪轴系补偿原理及检验方法探讨[J],测绘信息与工程,2003(6),28(3):40-43.
    6.叶晓明.关于全站仪一测回垂直角标准偏差测试原理的思考[J].2003年全国测绘仪器综合学术年会论文集,117-119.
    7.林景星.测量误差与测量不确定度[J],福建技术监督,2000(1):11-11.
    8.叶晓明,凌模.全站仪原理误差[M].武汉:武汉大学出版社,2004,13
    9.付子傲,包欢.全站仪检定中测距常数有关问题探讨[J],中国计量,2007,1,61-2.
    10.冯仲科.全站仪第三检测[J],工程勘察,1996,5:60-62.
    11.刘智敏.误差与数据处理[M].北京:原子能出版社,1981.
    12.刘智敏,刘风.合成不确定度与展伸不确定度的表示[J].计量技术,1995,(11):40—41.
    13.刘胜林.全站仪一测回竖直角测角标准差的测量不确定度[J],北京测绘,2002,4:45-47.
    14.刘胜林.全站仪(测距仪)周期误差振幅的测量结果不确定度[J].中国计量,2007,7:47-48.
    15.沙定国.误差分析与测量不确定度[M].北京¨中国计量出版社,2003,8.
    16.李金海.测量误差与测量不确定度评定[M].北京:中国计量出版社,2003,11.
    17.豆秀梅,卢西魁.全站仪三角高程精度分析[J].科技信息,2006,6:14-15.
    18.杨俊志.全站仪的原理及其检定[M].北京:测绘出版社,2004,5.
    19.杨俊志.全站仪检定规程JJG100—2003存在的若干问题及改正措施[J],矿山测量,2005,4:38-45.
    20.杨俊志,张贵和.电子经纬仪电子补偿问题[J],测绘通报,1995.(5):23-28.
    21.杨德驎.红外测距仪原理及检测[M].北京:测绘出版社,1990.
    22.杨俊志.经纬仪竖直角检定方法的研究[J],中国计量,2002.8:40-42.
    23.徐忠阳.全站仪原理与应用[M].北京:解放军出版社,2004.
    24.张坤宜.光电测距[M].长沙:中南工业大学出版社,1991,8.
    25.赵吉先,邹自力,臧得彦.电子测绘仪器原理与应用[M].北京:科学出版社,2008,5.
    26.武汉测绘科技大学测量平差教研室著.测量平差基础(第三版)[M].北京:测绘出版社,1996,5.
    27.须鼎兴,倪涵,虞润身.电子测量仪器原理及应用技术[M].上海:同济大学出版社,2002,11.
    28.国家质量监督检验检疫总局.中华人民共和国国家计量检定规程JJG100-2003全站型电子速测仪[M].2003,03,23.
    29.武汉测绘科技大学《测量学》编写组(第三版).测量学[M].北京:测绘出版社,1995,4.
    30.国家质量技术监督局计量司组编.测量不确定度评定与表示指南[M].北京:中国计量出版社,2001,1.
    31.师会生,周维虎,兰俊国等.全站仪检测数据管理系统[J],航空计测技术,2000,20(3)::
    33-35.
    32.彭振中.点位落入误差椭圆的概率检验[J],测绘工程,2004,13(2):12-14.
    33.梅连友,马平平.对边测量的精度与观测图形的探讨[J].四川测绘,2001,24(2):81-83.
    34.中华人民共和国计量法.全国人大常委会,1985.
    35.测绘计量暂行办法.国家测绘局,1996.
    36.石磊.全站仪检定中必须注意的几个问题[J].中国计量,2005(6):63-64.
    37.杨红霞,刘川平.基于.NET框架下的全站仪检定\校准数据处理系统[J].上海计量测试,2005,186(2):20-22.
    38.尚云东.全站仪三轴误差的检验分析[J].测绘技术装备,2006,8(2):45-46.
    39.徐锐.全站仪水平角观测精度自我测定的方法探讨[J].安徽建筑,2005,3:99-100.
    40.鲁雪松,陈义.GPS接收机噪声对天线相位中心检测的影响分析[J].测绘工程,2003,12(3):29-30.
    41.陈逸群,刘大杰.GPS接受天线相位中心偏差的一种检定与计算方法[J].测绘通报,2000(12):15-16.
    42.龚志红.全站仪一测回竖直角测角标准偏差的测量结果不确定度评定[J].计量与测试技术,2008(35)10.
    43.JJG100-2003,全站型电子速测仪检定规程[S].
    44.JJG703-2003,光电测距仪检定规程[S].
    45.Angus-Leppan P.V.& Brunner F.K. Atmospheric temperature models for short range EDM[J]. Canadian Surveyor,1980, 134 (2).
    46. Covell P.C.& Rueger J.M. Multiplicity of eyelic errors in electro-optical distance meters[J]. Survey review,1995,256 (4):130-131,
    47. Done P.& Methley B.D.F. The use of acrylic reflector with electro-optical measuring equipment[J]. Survey review,1980,195 (1):215-222.
    48. Emenike E. N. On the calibration of EDM instrument[J]. Australian Surveyor,1982,31 (3): 175-185.
    49. Fraster C. S. A simple atmospheric model for electro-optical EDM reduction[J]. Australian Surveyor,1981,31 (6):352-362.
    50. Gorham B. Recommended procedures for routine checks of electro optical distance meters[J].Survey review,1982,203 (1):209-224.
    51. GeoCOM Reference Manual TPS1100-Version 1,04,Leica Geosystems AG,2000,2002,16(7) 653-671(19), Publisher:VSP, an imprint of Brill.
    52. GeoBasic For TPS 1100 User Manual Version 1,30, Leica Geosystems AG,2000.
    58. Hoglund R. Practical use of a one man total station[J]. FIG Congress Melbourne Paper 502,1, 1994.
    53. H ifle J. C.& Dodson A.H. Refraction effects on precise EDM observation[J]. Survey review, 226(10):181-190,1987.
    54. ISO 17123-3, Optics and optical instruments-Field Procedures for testing geodetic and surveying instruments-part3:Theodolites[S].
    55. J. R. Smith.Geodimeter 1947-1997[M],3nd edition Sweden,1998.
    56. John A, Greenwood, IS Experience With An Active Target Totation for Precise Angle[M].Ferni National Accelerator Laboratory, Batavia.
    57. Karl Zciske. Anew Generation of Total Station from Leica Geosvstems[J]. Leica Geosystems AC, 1999.
    58. Lichti, D. D, Lampard, J. Reflectorless total station self-calibration[M], SURVEY REVIEW, 2008,40 (309):244-259.
    59. M.Mueller. GIS ONLINE For leica TPS[M], Leica Geosystems AG,1999.
    60. Turzeniecka D. Comments on the accuracy of somme approximate methods of evaluation of expanded uncertainty[J]. Metrologia,1999,36(2):113-116.
    61. Turzeniecka D. Error in the evaluation of the coverage factor as a criterion of application of a pproximate methods of evaluation of expanded uncertainty[J]. Measurement,2000,27(4):223-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700