聚合物粒子的结构控制及其高级自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大分子自组装是软物质科学研究中的最重要领域之一,自组装指的是构筑基元借助于分子内或分子间的相互作用自发形成周期有序结构。这些弱相互作用主要有氢键、亲水-疏水作用、静电作用、主-客体包结作用以及π-π相互作用等,可用于组装的构筑基元包括无机分子、有机小分子、生物大分子、高分子以及粒子等。其中π-π相互作用是生命体中存在的一类重要相互作用,在一定程度上决定了生物大分子的结构与功能。有关π-π相互作用诱导有机小分子的组装在文献中多有报道,而鲜见于大分子组装。其次,以粒子的结构控制和作为组装基元的研究最近受到越来越多的关注,其高级组装体在光电材料、功能性纳米器件等研究中具有重要的潜在应用价值。
     近年来我们课题组建立了一种高效制备结构可控聚合物胶束的方法,还对杂化粒子、聚合物粒子等的高级组装进行了富有成效地研究。本论文在此基础上,将非共价键交联诱导胶束化方法和π-π相互作用等引入共聚物组装体系的研究中,制备了结构可控的聚合物粒子,并以聚合物初级粒子为构筑单元,对其高级自组装行为和规律进行了探索。论文主要分为以下几个方面:
     1,不对称聚合物粒子的制备新机制及其高级组装
     我们将非共价键交联法引入混合壳胶束的制备中,高效率制得具有疏松核结构的混合壳胶束。再利用混合壳胶束核的非共价键交联特点,通过核交联结构的解离、胶束内的核壳相互络合并与疏水嵌段的微相分离与聚集等协同作用,制备了双亲性不对称聚合物纳米粒子。1,2-丙二胺(PDA)是我们选用的非共价键交联剂,在共同溶剂DMF中,PDA可以高效率交联混合的嵌段聚合物P2VN-b-PAA和PEO-b-PAA的PAA嵌段,从而得到具有疏松核结构的且以P2VN和PEO嵌段为壳的混合壳胶束。通过调节胶束水溶液的PH值至3.1,PDA交联的PAA核发生解离,同时壳层的PEO嵌段与核内的PAA嵌段络合并与疏水的P2VN嵌段发生相分离,最终形成双亲性不对称聚合物粒子。制备的双亲性不对称粒子可以进行多维的高级自组装,形成以不对称粒子为构筑基元的聚合物纳米管以及半圆形的纳米片层结构。这一高级组装体的形成是不对称粒子自组装的新进展。
     2,单分子链不对称粒子的制备及其在共同溶剂中的组装行为
     运用化学交联诱导胶束化机制,高效率制备了双亲性的单分子链不对称聚合物粒子,并研究了它们在共同溶剂中独特的组装行为。我们用1,4-二溴丁烷作交联剂,对PS-b-P2VP-b-PEO的中间嵌段P2VP实施了有效地交联。并详细研究了浓度、温度、交联剂用量等参数对交联结果的影响。制备了理论上“最小”的聚合物粒子,研究了它们在共同溶剂中随浓度变化的独特的自组装行为。单分子链不对称粒子随着浓度增加,会逐渐聚集组装形成以PS为核,PEO为壳,交联的P2VP为中间层的超胶束(R_h=50~100 nm)结构。单分子链不对称粒子的高效制备为其可能的应用提供了必要的前提条件。
     3,π-π相互作用诱导的嵌段聚合物分级自组装
     我们将π-π相互作用引入到聚合物自组装体系中,利用π-π相互作用与氢键的协同效应,在嵌段聚合物(P2VN-b-PAA)的良溶剂中实现了其胶束化。在嵌段聚合物P2VN-b-PAA的DMF溶液中,加入小分子1-萘甲胺(NMA),首先发生的是氨基与羧基的氢键络合,络合后,NMA分子中的萘环与嵌段分子中的P2VN发生π-π相互作用,发生相互作用的络合部分形成了胶束的核,未相互作用的部分以壳层形式保持了胶束在溶剂中的稳定分散。经过适当热处理,我们进一步研究了以初级聚合物粒子作为基本构筑单元的自组装行为。在溶剂挥发过程中,各向同性的聚合物初级粒子可以在各类不同性质的基底上定向生长,形成了垂直阵列的柱状聚合物超级结构。研究并探索了该高级组装体作为荧光探针对酸、碱以及过渡金属离子等的化学响应。
Molecular self-assembly is one of the most important research areas in the field of soft matter. Through self-assembly of various building blocks including inorganic and organic molecules, macromolecules, biomacromolecules, complex structures can be formed. The driving forces for self-assembly involve hydrogen bonding, hydrophobic and electrostatic interactions, the host-guest inclusions andπ-πstacking. Among them,π-πinteractions are especially important in the self-assembly of biomolecules to form specific structures with desirable functions in biological systems. Recently, assembly using nanoparticles as building blocks has drawn great attention, because "colloidal building blocks will be the "atoms" and "molecules" of tomorrow's materials." For the self-assembly of nanoparticles, it is necessary to control their structure and properties, i.e. we have to endow nanoparticles with anisotropy or flexibility that makes anisotropic assembly of nanoparticles possible. This thesis mainly focuses on the structure and property-controlling as well as the self-assembly of nanoparticles. It includes three sections. Section 1: A novel approach to polymeric Janus nanoparticles and their self-assembly into tubular and sheet-like superstructure; Section 2: Preparation of unimolecular Janus micelles and their self-assembly in common solvent; Section 3: Vertically aligned nanofibers formed byπ-πinteraction induced self-assembly of nanoparticles and the application of the nano-array as a chemical sensor.
     Section 1: A novel approach to polymeric Janus nanoparticles and their self-assembly into tubular and sheet-like superstructure:
     Here, a novel mechanism for forming polymeric Janus particles from mixed-shell micelles (MSMs) and template-free self-assembly of the Janus particles into tubular superstructure and nanosheets was developed. By noncovalent crosslinking of poly (acrylic acid) (PAA) blocks in a mixture of PEO-b-PAA and P2VN-b-PAA using 1, 2-propanediamine (PDA) in DMF, micelles with mixed P2VN/PEO shells were prepared. After switching the solvent from DMF to neutral water, P2VN in the mixed shell collapsed into separated microdomains. In neutral water, P2VN microdomains were surrounded and protected by solvated PEO chains so that MSMs were individually dispersed. By decreasing the pH value of the aqueous solution to 3.1, intra-micellar complexation occurred between PEO and PAA, resulting in an asymmetric intramicellar phase separation between PEO/PAA complex and P2VN. As a result, amphiphilic Janus nanoparticles with hydrophobic P2VN at one side and hydrophilic PEO/PAA complex at the opposite side were formed. These Janus nanoparticles were able to self-assemble in water to produce tubular and sheet-like superstructures. These novel superstructures from amphiphilic Janus nanoparticle self-assembly are promising candidates for future nanodevices and sensors.
     Section 2: Prepration of unimolecular Janus micelles and their self-assembly in common solvent:
     The "smallest" (i.e., unimolecular) polymeric Janus nanoparticles were prepared with a high efficiency by intramolecular crosslinking the middle P2VP block of a PS-b-P2VP-b-PEO(SVEO) triblock copolymer in a common solvent DMF using 1, 4-dibromobutane (DBB) as the cross-linker . The intramolecular cross-linking could occur because of the steric shielding of PS and PEO end blocks. After intramolecular crosslinking, DMF changed from a good to a slightly poor solvent. As a result, concentration dependent self-assembly in DMF was observed. When the concentration gradually increased, the unimolecular polymeric Janus nanoparticles started to aggregate into supermicelles (R_h = 50-100 nm), where PS formed the supercore and PEO formed the corona with crosslinked P2VP nanoparticles in between. The amphiphilic nature of these unimolecular Janus nanoparticles will enable us to study programmable and hierarchical self-assembly of asymmetrically modified polymeric nanoparticles in various solvents.
     Section 3: Vertically aligned nanofibers formed byπ-πinteraction induced self-assembly of nanoparticles and the application of the nano-array as a chemical sensor:
     In this section, we demonstrated that primary polymeric nanoparticles could self-assemble anisotropically into vertically aligned nanofibers. The primary polymeric nanoparticles formed when a diblock copolymer poly (2-vinyl naphthalene)-block-poly (acrylic acid) (P2VN-b-PAA) was mixed with 1-aminomethyl naphthalene (1-NMA) in DMF. Upon the mixing, hydrogen bonding formed between amino groups of 1-NMA and carboxyl groups of the PAA block. Then, subsequentπ-πinteraction between naphthalene groups of the 1-NMA hydrogen bound to the PAA block and these of the P2VN block led to the complexation between P2VN block and PAA/1-NMA block, resulting in the primary nanoparticles. Theπ-πinteraction stabilized the structure of the primary nanoparticles, while the un-interacted units of the block copolymer led to their dispersibility. These primary spherical nanoparticles, annealed at 70℃, could self-assemble on various substrates into vertical aligned nanofibers during solvent evaporation. Theπ-πinteraction between the primary nanoparticles and re-distribution of naphthalene groups during the self-assembly are responsible for the anisotropic growth of the nanoparticles along the direction vertical to the substrates. It was also confirmed that the nano-array could be used as chemosensor responsible to protons and some metallic cations.
引文
[1]a) Lehn,J.M.Supramolecular Chemistry - Scope and Perspectives Molecules,Supermolecules,and Molecular Devices(Nobel Lecture).Angew.Chem.Int.Ed.1989,27,89-112.
    b) De Gennes,P.G.Soft Matter,Rev.Mod.Phys.1992,64,645.
    c) 闫寿科,聚合物多层次结构构筑与调控中的基本软物质科学问题,双清论坛,2008,30,9-11.
    [2]F(o|¨)rster S.,Plantenberg T.From self-organizing polymers to nanohybrid and biomaterials.Angew.Chem.Int.Ed.2002,41,688-714.
    [3]Whitesides,G.M.,Mathias,J.P.,Seto,C.T.Molecular Self-Assembly And Nanochemistry-A Chemical Strategy For The Synthesis Of Nanostructures.Science 1991,254,1312-1319.
    [4]Whitesides,G.M.,Grzybowski,B.Self-assembly at all scales.Science 2002,295,2418-2421.
    [5]Fendler,J.H.Self-Assembled Nanostructured Materials.Chem.Mater.1996,8(8),1616-1624.
    [6]Alper,J.Chemists Look to Follow Biology Lead.Science 2002,295,2396-2397.
    [7]Mucic,R.C.;Storhoff,J.J.;Mirkin,C.A.;Letsinger,R.L.DNA-Directed Synthesis of Binary Nanoparticles Network Materials.J.Am.Chem.Soc.1998,120(48),12674-12675.
    [8]Iijima,S.Helical Microtubules of Graphitic Carbon.Nature 1991,354,(6348),56-58.
    [9]Ball P.The Self-Made Tapestry:Pattern Formation in Nature(Oxford Univ.Press,Oxford,1999)
    [10]Drexler,K.E.Molecular engineering:An approach to the development of general capabilities for molecular manipulation.Proceedings of the National Academy of Sciences USA 1981,78,(9),5275-5278.
    [11]Matsen M.W.The standard Gaussian model for block copolymer melts.J.Phys.:Condens.Matter,2002,14:R21
    [12]Matsen,M.W.;Bates,F.S.Unifying weak- and strong-segregation block copolymer theories.Macromolecules 1996,29,(4),1091-1098.
    [13]Matsen,M.W.;Schick,M.Stable and unstable phases of a linear multiblock copolymer melt.Macromolecules 1994,27,(24),7157-7163.
    [14]Matsen,M.W.;Schick,M.Stable and unstable phases of a diblock copolymer melt.Phys.Rev.Lett.1994,72,(16),2660-2663.
    [15]Goldacker,T.;Abetz,V.Core-shell cylinders and core-shell gyroid morphologies via blending of lamellar ABC triblock and BC diblock copolymers.Macromolecules 1999,32,(15),5165-5167.
    [16]Breiner,U.;Krappe,U.;Stadler,R.Evolution of the "knitting pattern"morphology in ABC triblock copolymers.Macromolecular Rapid Communications 1996,17,(8),567-575.
    [17]Breiner,U.;Krappe,U.;Thomas,E.L.;Stadler,R.Structural characterization of the "knitting pattern" in polystyrene-block-poly(ethylene-co-butylene)-block-poly (methylmethacrylate) triblock copolymers.Macromolecules 1998,31,(1),135-141.
    [18]Goldacker,T.;Abetz,V.A new way to the "knitting pattern" via blending of ABC triblock copolymers.Macromolecular Rapid Communications 1999,20,(8),415-418.
    [19]Lee,M.;Cho,B.K.;Zin,W.C.Supramolecular structures from rod-coil block copolymers.Chemical Reviews 2001,101,(12),3869-3892.
    [20]Park,J.W.;Thomas,E.L.Multiple ordering transitions:Hierarchical selfassembly of rod-coil block copolymers.Adv.Mate.2003,15,(7-8),585-588.
    [21]He,X.;Liang,H.;Huang,L.;Pang,C.Complex microstructures of amphiphilic diblock copolymerin dilute solution.J.Phys.Chem.B 2004,108(5),1731-1735.
    [22]Chen P.;Liang,H.;Shi,A.Origin of microstructures from confined asymmetric diblock copolymers.Macromolecules 2007,40(20),7329-7335.
    [23]Chen P.;Liang,H.Monte Carlo simulations of cylinder-forming ABC triblock terpolymer thin films.J.Phys.Chem.B.2006,110(37),18212-18224.
    [24]Zhu,J.;Jiang,Y.;Liang H.;et al.Self-assembly of ABA amphiphilic triblock copolymers into vesicles in dilute solution J.Phys.Chem.B 2005,109(18),8619-8625.
    [25]Tang,P.;Qiu,F.;Zhang,H.;Yang,Y.Morphology and phase diagram of complex block copolymers:ABC linear triblock copolymer.Phys.Rev.E.2004,69,031803.
    [26]Tang,P.;Qiu,F.;Zhang,H.;Yang,Y.Morphology and phase diagram of complex block copolymers:ABC linear triblock copolymer.J.Phys.Chem.B 2004,108,8434.
    [27]Hong,B.;Qiu F.;Zhang,H.;Yang,Y.Budding dynamics of individual domains in multicomponent membranes simulated by N-varied dissipative particle dynamics.J.Phys.Chem.B 2007 111(21):5837-5849.
    [28]Guo,Z.;Zhang,G.;Qiu,F.;Zhang,H.;Yang,Y.;Shi,A.Discovering Ordered Phases of Block Copolymer:New Results from a Generic Fourier-Space Approach.Phys.Rev.Lett.2008,101(2),028301.
    [29]Breiner,U.;Krappe,U.;Thomas,E.L.;Stadler,R.Structural Characterization of the "Knitting Pattern" in Polystyrene-block-poly(ethylene-co-butylene)-block-poly (methyl methacrylate) Triblock Copolymers.Marcromolecules 1998,31,135-141.
    [30]Cao,T.;Munk,P.;Ramireddy,C.;Tuzar,Z.;Webber,S.E.Fluorescence studies of amphiphilic poly(methacrylic acid)-block-polystyrene-block-poly(methacrylic acid) micelles.Macromolecules,1991,24,(23),6300-6305.
    [31]Zhang,L.F.;Eisenberg,A.Multiple morphologies and characteristic of crew-cut micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions.Science,1995,268,(5218),1728-1730
    [32]Zhang,L.F.;Eisenberg,A.Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions.Macromolecules 1996,29,(27),8805-8815.
    [33]Zhang,L.F.;Eisenberg,A.Multiple morphologies and characteristics of "crewcut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions.J.Am.Chem.Soc.1996,118,(13),3168-3181.
    [34]Yu,K.;Zhang,L.F.;Eisenberg,A.Novel morphologies of "crew-cut"aggregates of amphiphilic diblock copolymers in dilute solution.Langmuir 1996,12,(25),5980-5984.
    [35]Riegel,I.C.;Eisenberg,A.;Petzhold,C.L.;Samios,D.Novel bowl-shaped morphology of crew-cut aggregates from Amphiphilic block copolymers of styrene and 5-(N,N-diethylamino)isoprene.Langmuir 2002,18,(8),3358-3363
    [36]Shen,H.W.;Eisenberg,A.Control of architecture in block-copolymer vesicles.Angew.Chem.Int.Ed.2000,39,(18),3310-3312.
    [37]Zhang,L.F.;Bartels,C.;Yu,Y.S.;Shen,H.W.;Eisenberg,A.Mesosized crystal-like structure of hexagonally packed hollow hoops by solution self-assembly of diblock copolymers.Phys.Rev.Lett.1997,79,(25),5034-5037.
    [38]Szijtli,J.;Osa,T.Comprehensive Supramolecular Chemistry.Pergamon:Oxford UK,1996.
    [39]Wang,J.;Jiang,M.Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation.J.Am.Chem.Soc.2006,128(11),3703-3708.
    [40]Guo M.;Jiang M.;Pispas,S.;Yu,W.;Zhou,C.Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG and α-Cyclodextrin and Their Hybridization with SiO_2 Nanoparticles through Host-Guest Interaction.Macromolecules,2008,41(24),9744-9749.
    [41]Guo M.;Jiang M.;Zhang,G.Surface Modification of Polymeric Vesicles via Host-Guest Inclusion Complexation.Langmuir,2008,24(19),10583-10586.
    [42]Hunter,C.A.;Sanders,J.K.M.The Nature of π-π Interactions.J.Am.Chem.Soc.1990,112,(14),5525-5534.
    [43]Hunter,C.A.;Meah,M.N.;Sanders,J.K.M.Dabco-metalloporphyrin binding:ternary complexes,host-guest chemistry and the measurement of π-π interactions.J.Am.Chem.Soc.1990,112,(15),5773-5780.
    [44]Packer,M.J.;Hunter,C.A.Sequence-Structure Relationships in DNA Oligomers:A Computational Approach.J.Am.Chem.Soc.2001,123,7399-7406.
    [45]Song,B.;Wang,Z.Q.;Chen,S.L.;Zhang,Fu,X.Y.;Smet,M.;Dehaen,W.The Interaction of π-π Stacking Moieties for Fabricating Stable Micellar Structure:Formation and Dynamics of Disklike Micelles.Angew.Chem.Int.Ed.2005,44,4731-4735.
    [46]Song,B.;Wei,H.;Wang,Z.;Zhang,X.;Smet,M.;Dehaen,W.Supramolecular Nanofibers by Self-Organization of Bola-amphiphiles through a Combination of Hydrogen Bonding and π-π Stacking Interactions.Adv.Mater.2007,19,416-420.
    [47]Zhang,Y.H.;Liu,C.J.;Shi,W.Q.;Wang,Z.Q.;Dai,L.M.;Zhang,X.Direct Measurements of the Interaction between Pyrene and Graphite in Aqueous Media by Single Molecule Force Spectroscopy:Understanding the π-πInteractions.Langmuir 2007,23,7911-7915.
    [48]Dou,R.;Ma,X.;Xi,L.et al.Self-Assembled Monolayers of Aromatic Thiols Stabilized by Parallel-Displaced π-π Stacking Interactions.Langmuir 2006,22,3049-3056.
    [49]a) Zezin,A.B.;Rogacheva,V.B.;Novoskoltseva,O.A.;Kabanov,V.A.Self-assembly in ternary system:cross-linked polyelectrolyte,linear polyelectrolyte and surfactant.Macromol.Symp.2004,211(1),157-174.
    b) Kasaikin,V.A.;Zakharova,J.A.;Litmanovich,E.A.;Ivleva,E.M.;Zazin,A.B.;Kabanov,V.A.Aggregation of ionic amphiphils in dilute solutions controlled by oppositely charged polyelectrlyte templates.Macromol.Symp.2003,195(1),269-274.
    c) Bronich,T.K.;Keifer,P.A.;Shlyakhtenko,L.S.;Kabanov,A.V.Polymer Micelle with Cross-Linked Ionic Core.J.Am.Chem.Soc.2005,127(23),8236-8237.
    [50]Harada,A.;Kataoka,K.Chain Length Recognition:Core-Shell Supramolecular Assembly from Oppositely Charged Block Copolymer.Science,1999,283(5398),65-67.
    [51]Wang G.;Tong X.;Zhao Y.Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates.Macromolecules,2004,37,(24),8911-8917.
    [52]Liu X.K.,Jiang M.Optical switching of self-assembly:micellization and micelle-hollow-sphere transition of hydrogen-bonded polymers.Angew.Chem.Int.Ed.2006,45,3846-3850.
    [53]Yao,X.M.;Chen,D.Y.;Jiang,M.Formation of PS-b-P4VP/formic acid coreshell micelles in chloroform with different core densities.J.Phys.Chem.B 2004,108,(17),5225-5229.
    [54]Jia,X.;Chen,D.Y.;Jiang,M.Preparation of PEO-b-P2VPH~+-S_2O_8~(2-) micelles in water and their reversible UCST and redox-responsive behavior.Chem.Commun.2006,1736-1738.
    [55]Wan,S.;Jiang,M.;Zhang,G.Dual temperature- and pH-dependent self-assembly of cellulose-based copolymer with a pair of complementary grafts.Macromolecules 2007,40(15),5552-5558.
    [56]a)江明等著,大分子自组装,科学出版社,2006,9.
    b)王竞,基于包结作用的高分子及纳米晶体自组装的研究,复旦大学博士学位论文,2007.
    c)侯国玲,聚合物胶束的结构控制及其行为研究,复旦大学博士学位论文,2006.
    d)解荡,含树枝状大分子体系的自组装及基于包结络合作用的超分子多嵌段聚合物研究,复旦大学博士学位论文,2007.
    [57]a) Chen,D.Y.;Jiang,M.Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intemaolecular Interactions.Acc.Chem. Res.2005,38,499-507.
    b) Guo,M.;Jiang,M.Non-covalently connected micelles(NCCM):the origins and development of a new concept.Soft Matter,2009,5,495-500.
    [58]Liu,S.Y.;Pan,Q.M.;Xie,J.W.;Jiang,M.Intermacromoleclar complexs due to specific interactions graft-like hydrogen bonding complex based on pyridyl-containing polymers and end-functionlized polystyrene oligomers.Polymer,2000,41,6919-6917.
    [59]Liu,S.Y.;Jiang,M.;Liang,H.J.;Wu,C.Intermacromoleclar complexs due to specific interactions Formation of micellelike structure from hydrogen bonding graft-like complex in seledctive solvent.Polymer,2000,41,8697-8702.
    [60]Wang,M.;Zhang,G.Z.;Chen,D.Y.;Jiang,M.;Liu,S.Y.Noncovalently connected polymeric micelles based on a homoolymer pair in solutions.Macromolecules,2001,34,7172-7178.
    [61]Wang,M.;Jiang,M.;Ning,F.;Chen,D.Y.;Liu,S.;Duan,H.Block-copolymer-free Strategy for Preparing Micelles and Hollow Spheres:Self-assembly of Poly(4-vinylpyridine) and Modified polystyrene.Macromolecules,2002,35,5980-5989.
    [62]Duan,H.;Chen,D.;Jiang,M.;Gan,W.;Li,S.;Wang,M.;Gong,J.Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent.J.Am.Chem.Soc.2001,123,(48),12097-12098.
    [63]Zhang,Y.W.;Jiang,M.;Zhao,J.X.;Ren,X.;Chen D.Y.;Zhang,G.A Novel Route to Thermo-Sensitive Polymeric Core-shell Aggregates and Hollow Spheres in Aqueous Media.Adv.Funct.Mater.2005,15,695-699.
    [64]Zhang,Y.W.;Jiang,M.;Zhao,J.X.;Zhou,J.;Chen,D.Y.Hollow spheres from shell cross-linked,noncovalently connected micelles of carboxyl-terminated polybutadiene and poly(vinyl alcohol) in water.Macromolecules,2004,37,1537-1543.
    [65]Chen,D.Y.;Peng,H.S.;Jiang,M.A novel one-step approach to core-stabilized nanoparticles at high solid contents.Macromolecules,2003,36,2576.
    [66]Peng,H.S.;Chen,D.Y.;Jiang M.A One-Pot Approach to the Preparation of Organic Core-Shell Nanoobjects with Different Morphologies.Macromolecules,2005,38,3550.
    [67]Wu,C.;Niu,A.Z.;Leung,L.M.;Lam,T.S.Preparation of narrowly distributed stable and soluble polyacetylene block copolymer nanoparticles.J.Am.Chem. Soc.1999,121,(9),1954-1955.
    [68]Hui,T.;Chen,D.Y.;Jiang,M.A one-step approach to the highly efficient preparation of core-stabilized polymeric micelles with a mixed shell formed by two incompatible polymers Macromolecules,2005,38,5834-5837.
    [69]Gu,C.;Chen,D.Y.;Jiang,M.Short-life core-shell structured nanoaggregates formed by the self-assembly of PEO-b-PAA/ETC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide) and their stabilization.Macromolecules,2004,37,1666-1669.
    [70]Yao,X.;Chen,D.Y.;Jiang,M.Formation of PS-b-P4VP/formic acid core-shell micelles in chloroform with different core densities.J.Phys.Chem.B,2004,108,5225-5229.
    [71]Yao,X.;Chen,D.Y.;Jiang,M.Micellization of PS-b-P4VP/formic acid in chloroform without or with the premixing of the copolymer with decanoic acid.Macromolecules,2004,37,4211-4217.
    [72]Peng,H.S.;Chen,D.Y.;Jiang,M.Self-assembly of formic acid/polystyreneblock -poly(4-vinylpyridine) complexes into vesicles in a low-polar organic solvent chloroform.Langmuir,2003,19,10989-10992.
    [73]Jones,M.C.;Leroux,J.C.Polymeric micelles - a new generation of colloidal drug carriers.Eur.J.Pharm.Biopharm.1999,48,(2),101-111.
    [74]Allen,C.;Han,J.;Yu,Y.S.;Maysinger,D.;Eisenberg,A.Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone.J.Control.Rel.2000,63,(3),275-286.
    [75]Francis,M.F.;Lavoie,L.;Winnik,F.M.;Leroux,J.C.Solubilization of cyclosporin A in dextran-g-polyethyleneglycolalkyl ether polymeric micelles.Eur.J.Pharm.Biopharm.2003,56,(3),337-346.
    [76]Sharma,P.K.;Bhatia,S.R.Effect of anti-inflammatories on Pluronic(?) F127:micellar assembly,gelation and partitioning,Int.J.Pharm.2004,278,(2),361-377.
    [77]Antonietti,M.;Goltner,C.Superstructures of Functional Colloids:Chemistry on the Nanometer Scale.Angew.Chem.Int.Ed.Engl.1997,36,(9),910-928.
    [78]Antonietti,M.;Forster,S.;Hartmann,J.;Oestreich,S.Novel Amphiphilic Block Copolymers by Polymer Reactions and Their Use for Solubilization of Metal Salts and Metal Colloids.Macromolecules,1996,29,(11),3800-3806.
    [79]Moffitt,M.;Eisenberg,A.Size Control of Nanoparticles in Semiconductor-Polymer Composites.1.Control via Multiplet Aggregation Numbers in Styrene-Based Random Ionomers.Chem.Mater.1995,7,(6),1178-1184.
    [80]Mohanty,B.;Watanabe,J.;Ando,I.;Sato,K.Proton NMR relaxation study of molecular motion in poly(.gamma.-n-octadecyl L-glutamate) and poly(gamma.-oleyl L-glutamate).Macromolecules,1990,23,(23),4908-4911.
    [81]Cheng,F.;Yang,X.;Peng,H.;Chen,D.;Jiang,M.Well-Controlled Formation of Polymeric Micelles with a Nanosized Aqueous Core and Their Applications as Nanoreactors.Macromolecules,2007,40(22),8007-8014.
    [82]a) Ma,X.;Xia,Y.;Chen,E.Q.;Mi,Y.G.;Wang,X.R.;Shi,A.C.Crust effect on multiscale pattern formations in drying micelle solution drops on solid substrates.Langmuir,2004,20,(22),9520-9525.
    b) Ge,Z.;Zhou,Y.;Xu,J.;Liu,H.;Chen,D.;Liu,S.High-efficiency preparation of macrocyclic diblock copolymers via selective click reaction in micellar media.J.Am.Chem.Soc.2009,131(5),1628-1629.
    [83]Wu,C.;Niu,A.;Leung,L.M.;Lam,T.S.Preparation of Narrowly Distributed Stable and Soluble Polyacetylene Block Copolymer Nanoparticles.J.Am.Chem.Soc.1999,121,(9),1954-1955.
    [84]Hensejlwood,F.;Wang,G.C.;Liu,G.J.Removal of perylene from water using block copolymer nanospheres or micelles.J.Appl.Polym.Sci.1998,70,(2),397-408.
    [85]Liu,X.;Hu,Q.;Fang,Z.;Zhang,X.;Zhang,B.Magnetic Chitosan Nanocomposites:A Useful Recyclable Tool for Heavy Metal Ion Removal.Langmuir,2008,25(1),3-8.
    [86]Glotzer,S.C.Some assembly required.Science 2004,306,(5695),419-420.
    [87]Zhang,Z.L.;Glotzer,S.C.,Self-assembly of patchy particles.Nano Letters,2004,4,(8),1407-1413.
    [88]Zhang,Z.L.;Horsch,M.A.;Lamm,M.H.;Glotzer,S.C.Tethered nano building blocks:Toward a conceptual framework for nanoparticle self-assembly.Nano Letters,2003,3,(10),1341-1346.
    [89]Xia,Y.N.;Gates,B.;Yin,Y.D.;Lu,Y.Monodispersed colloidal spheres:Old materials with new applications.Adv.Mater.2000,12,(10),693-713.
    [90]Boal,A.K.;Ilhan,F.;DeRouchey,J.E.;Thurn-Albrecht,T.;Russell,T.P.;Rotello,V.M.,Self-assembly of nanoparticles into structured spherical and network aggregates. Nature, 2000, 404, (6779), 746-748.
    [91] Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials.Nature, 1996, 382, (6592), 607-609.
    [92] Connolly, S.; Fitzmaurice, D. Programmed assembly of gold nanocrystals in aqueous solution. Adv. Mater. 1999, 11, (14), 1202-1205.
    [93] Maye, M. M.; Chun, S. C.; Han, L.; Rabinovich, D.; Zhong, C. J. Novel spherical assembly of gold nanoparticles mediated by a tetradentate thioether. J. Am. Chem.Soc. 2002,124, (18), 4958-4959.
    [94] Maye, M. M.; Luo, J.; Lim, I.I. S.; Han, L.; Kariuki, N. N.; Rabinovich, D.; Liu,T. B.; Zhong, C. J. Size-controlled assembly of gold nanoparticles induced by a tridentate thioether ligand. J. Am. Chem. Soc. 2003, 125, (33), 9906-9907.
    [95] Maye, M. M.; Lim, I.I. S.; Luo, J.; Rab, Z.; Rabinovich, D.; Liu, T. B.; Zhong, C.J. Mediator-template assembly of nanoparticles. J. Am. Chem. Soc. 2005, 127,(5), 1519-1529.
    [96] Jiang, C. J.; Cardin, D. J.; Tsang, S. C. Conductive three-dimensional material assembled from silver nanoparticles using a conjugated dithiol linker. Chemistry of Materials, 2008, 20, 14-16.
    [97] Velev, O. D.; Furusawa, K.; Nagayama, K. Assembly of latex particles by using emulsion droplets as templates .1. Microstructured hollow spheres. Langmuir,1996, 12, (10), 2374-2384.
    [98] Velev, O. D.; Furusawa, K.; Nagayama, K. Assembly of latex particles by using emulsion droplets as templates .2. Ball-like and composite aggregates. Langmuir 1996, 12, (10), 2385-2391.
    [99] Velev, O. D.; Lenhoff, A. M.; Kaler, E. W. A class of microstructured particles through colloidal crystallization. Science, 2000, 287, (5461), 2240-2243.
    [100] Manoharan, V N.; Elsesser, M. T.; Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science, 2003, 301, (5632), 483-487.
    [101] Saito, R.; Fujita, A.; Ichimura, A.; Ishizu, K. Synthesis of microspheres with microphase-separated shells. Journal of Polymer Science Part a-Polymer Chemistry, 2000, 38, (11), 2091-2097.
    [102] Zubarev, E. R.; Xu, J.; Sayyad, A.; Gibson, J. D. Amphiphilicity-driven organization of nanoparticles into discrete assemblies. J. Am. Chem. Soc. 2006,128,(47), 15098-15099.
    [103] Genson, K. L.; Holzmueller, J.; Jiang, C. Y.; Xu, J.; Gibson, J. D.; Zubarev, E. R.; Tsukruk, V. V. Langmuir-Blodgett monolayers of gold nanoparticles with amphiphilic shells from V-shaped binary polymer arms. Langmuir, 2006, 22, (16),7011-7015.
    [104] Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 2002,297, (5579), 237-240.
    [105] Cayre, O.; Paunov, V. N.; Velev, O. D. Fabrication of asymmetrically coated colloid particles by microcontact printing techniques. Journal of Materials Chemistry, 2003,13, (10), 2445-2450.
    [106] Hong, L.; Cacciuto, A.; Luijten, E.; Granick, S. Clusters of charged Janus spheres. Nano Letters, 2006,6, (11), 2510-2514.
    [107] Takei H.; Shimizu N. Gradient Sensitive Microscopic Probes Prepared by Gold Evaporation and Chemisorption on Latex Spheres. Langmuir, 1997, 13, 1865-1868.
    [108] Binks B. P.; Fletcher P. D. I. Particles Adsorbed at the Oil-Water Interface: A Theoretical Comparison between Spheres of Uniform Wettability and "Janus" Particles Langmuir, 2001, 17,4708-4710.
    [109] Erhardt R.; Zhang M.; Boker A.; Zettl H.; Abetz C.; Frederik P.; Krausch G.;Abetz V.; M(?)ller A. H. E. Amphiphilic Janus Micelles with Polystyrene and Poly(methacrylic acid) Hemispheres J. Am. Chem. Soc. 2003,125, 3260-3267.
    [110] Behrend C. J.; Anker J. N.; McNaughton B. H.; Roberts T. G.; Brasuel M.;Philbert M. A.; Kopelman R. Metal-Capped Brownian and Magnetically Modulated Optical Nanoprobes (MOONs): Micromechanics in Chemical and Biological Microenvironments J. Phys. Chem. B 2004,108,10408-10414.
    [111] Himmelhaus M.; Takei H. Cap-shaped gold nanoparticles for an optical biosensor. Sens. Actuators, B 2000, 63, 24-30.
    [112] Nie Z.; Li W.; Seo M.; Xu S.; Kumacheva E. Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis, and Self-Assembly J.Am. Chem. Soc. 2006,128, 9408-9412.
    [113] Nisisako T.; Torii T.; Takahashi T.; Takizawa Y. Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system Adv. Mater. 2006,18, 1152-1156.
    [114] Dendukuri D.; Pregibon D. C.; Collins J.; Hattan T. A.; Doyle P. S.Continuous-flow lithography for high-throughput microparticle synthesis. Nat. Mater.2006,5,365-369.
    [115]Cayre O.J.;Paunov V.N.;Velev,O.D.Fabrication of asymmetrically coated colloid particles by microcontact printing techniques.J.Mater.Chem.2003,13(10),2445-2450.
    [116]Lu Y.;Xiong H.;Jiang X.;Xia Y.;Prentiss M.;Whitesides G.M.Asymmetric Dimers Can Be Formed by Dewetting Half-Shells of Gold Deposited on the Surfaces of Spherical Oxide Colloids.J.Am.Chem.Soc.2003,125,12724-12725.
    [117]Cayre O.;Paunov V.N.;Velev O.D.Fabrication of dipolar colloid particles by microcontact printing.Chem.Commu.2003,18,2296-2297.
    [118]Fujimoto K.;Nakahama K.;Shidara M.;Kawaguchi H.Preparation of Unsymmetrical Microspheres at the Interfaces.Langmuir,1999,15,4630-4635.
    [119]Perro A.;Reculusa S.;Ravaine S.;Bourgeat-Lami E.B.;Duguet E.Design and synthesis of Janus micro- and nanoparticles.J.Mater.Chem.,2005,15,3745-3760.
    [120]Hong,L.;Jiang,S.;Granick,S.Simple Method to Produce Janus Colloidal Particles in Large Quantity.Langmuir 2006,22,9495-9499.
    [121]Liu,B.;Wei,W.;Qu,X.;Yang,Z.Janus Colloids Formed by Biphasic Grafting at a Pickering Emulsion Interface.Angew.Chem.Int.Ed.2008,47,3973-3975.
    [122]Erhardt,R.;Boker,A.;Zettl,H.;Kaya,H.;Pyckhout-Hintzen,W.;Krausch,G.;Abetz,V.;Mueller,A.H.E.Janus micelles.Macromolecules,2001,34,(4),1069-1075.
    [123]Xu,H.;Erhardt,R.;Abetz,V.;Muller,A.H.E.;Goedel,W.A.Janus micelles at the air/water interface.Langmuir,2001,17,(22),6787-6793.
    [124]Liu,Y.F.;Abetz,V.;Muller,A.H.E.,Janus cylinders.Macromolecules 2003,36,(21),7894-7898.
    [125]Walther,A.;Andre,X.;Drechsler,M.;Abetz,V.;Muller,A.H.E.,Janus discs.J.Am.Chem.Soc.2007,129,(19),6187-6198.
    [126]Giersig,M.;Ung,T.;Liz-Marzan,L.M.;Mulvaney,P.Adv.Mater.,1997,9,570-575.
    [127]Liz-Marsan,L.M.;Giersig,M.;Mulvaney,P.J.Chem.Soc.,Chem.Commun.,1996,731.
    [128]Nie L.;Liu S.;Shen W.;Chen D.Jiang M.One-Pot Synthesis of Amphiphilic Polymeric Janus Particles and Their Self-Assembly into Supermicelles with a Narrow Size Distribution.Angew.Chem.Int.Ed.2007,46,6321-6324.
    [129]Chen,T.;Yang,M.;Wang,X.;Tan,L.H.;Chen,H.Y.Controlled Assembly of Eccentrically Encapsulated Gold Nanoparticles.J.Am.Chem.Soc.2008,130(36),11858-11859.
    [130]Frederik,W.;Hannah,M.;Stenfan,H.;Andreas,F.Janus Micelles Induced by Olefin Metathesis.J.Am.Chem.Soc.2008,130(18),5876-5877.
    [131]Peng,Q.;Qu,L.;Dai,L.;Park,K.;Vaia,R.A.Asymmetrically Charged Carbon Nanotubes by Controlled Functionalization.ACS Nano,2008,2(2),1833-1840.
    [132]Walther,A.;Hoffmann,M.;M(u|¨)ller,A.H.E.Emulsion Polymerization Using Janus Particles as Stabilizers.Angew.Chem.Int.Ed.2008,47,711 -714.
    [1]Walther,A.;Andre,X.;Drechsler,M.;Abetz,V.;Muller,A.H.E.Janus Discs.J.Am.Chem.Soc.2007,129(19),6187-6198.
    [2]Takei,H;Shimizu,N.Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres Langmuir,1997,13,1865-1868.
    [3]Behrend,CJ,Anker,JN et al.Metal-capped Brownian and magnetically modulated optical nanoprobes(MOONs):Micromechanics in chemical and biological microenvironments J.Phys.Chem.B.2004,108,10408-10414.
    [4]Himmelhaus,M;Takei,H.Cap-shaped gold nanoparticles for an optical biosensor Sens.Actuators,B.2000,63,24-30.
    [5]Glotzer,SC.Some assembly required Science,2004,306,419-420.
    [6]Suzuki,D;Tsuji,S;Kawaguchi,H.Janus microgels prepared by surfactant-free picketing emulsion-based modification and their self-assembly J.Am.Chem.Soc.2007,129,8088-8089.
    [7]Nie,L;Liu,S;Shen,W;Chen,D;Jiang,M.One-pot synthesis of amphiphilic polymeric Janus particles and their self-assembly into supermicelles with a narrow size distribution Angew.Chem.Int.Ed.,2007,46,6321-6324.
    [8]a) Hong,L.;Cacciuto,A.;Luijten,E.;Granick,S.Clusters of charged Janus spheres.Nano Letters,2006,6(11),2510-2514.
    b) Glotzer,S.C.,Some assembly required.Science 2004,306(5695),419-420.
    c) Zhang,Z.L.;Glotzer,S.C.,Self-assembly of patchy particles.Nano Letters 2004,4(8),1407-1413.
    d) Zhang,Z.L.;Horsch,M.A.;Lamm,M.H.;Glotzer,S.C.,Tethered nano building blocks:Toward a conceptual framework for nanoparticle self-assembly.Nano Letters 2003,3(10),.1341-1346.
    [9]Erhardt,R;Zhang,M;B(o|¨)ker,A;Zettl,H;Abetz,C;Frederik,P;Krausch,G;Abetz,V;M(u|¨)ller,AHE.Amphiphilic Janus micelles with polystyrene and poly(methacrylic acid) hemispheres J.Am.Chem.Soc.2003,125,3260-3267.
    [10]Hui,T.;Chen,D.;Jiang,M.A one-step approach to the highly efficient preparation of core-stabilized polymeric micelles with a mixed shell formed by two incompatible polymers.Macromolecules,2005,38,5834-5837.
    [11]a) Chen,D.;Peng,H.;Jiang,M.A novel one-step approach to core-stabilized nanoparticles at high solid contents.Macromolecules,2003,36,2576-2578.
    b) Gu,C.;Chen,D.;Jiang,M.Short-life core-shell structured nanoaggregates formed by the self-assembly of PEO-b-PAA/ETC(1-(3-dimethylaminoprpyl)-3-ethylcarbodiimide methiodide) and their stabilization.Macromolecules,2004,37,1666-1669.
    [12]Liu,F.;Eisenberg,A.Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-b-polystyrene-block-poly(4-vinyl pyridine).J.Am.Chem.Soc.2003,125(49),15059-15064.
    [13]Lee,S.C.;Kim,K.J.;Jeong,Y.;Chang,J.;Choi,J.pH-induced reversible complexation of poly(ethylene glycol) and poly(ε-caprolactone)-b-poly (methacrylic acid) copolymer micelles.Macromolecules,2005,38(22),9291-9297.
    [1]Takei,H;Shimizu,N.Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres,Langmuir,1997,13,1865-1868.
    [2]Binks,BP;Lumsdon,SO.Picketing emulsions stabilized by monodisperse latex particles:Effects of particle size,Langmuir,2001,17,4540-4547.
    [3]Glotzer,SC.Some assembly required Science,2004,306,419-420.
    [4]a) Erhardt,R;Zhang,M;B(o|¨)ker,A;Zettl,H;Abetz,C;Frederik,P;Krausch,G;Abetz,V;Mi.iller,AHE.Amphiphilic Janus micelles with polystyrene and poly(methacrylic acid) hemispheres,J.Am.Chem.Soc.2003,125,3260-3267.
    b) Erhardt,R;B(o|¨)ker,A;Zettl,H;Kaya,H;Pyckhout-Hintzen,W;Krausch,G;Abetz,V;M(u|¨)ller,AHE.Janus micelles,Macromolecules,2001,34,1069-1075.
    c) Xu,H;Erhardt,R;Abetz,V;M(u|¨)ller,AHE;Goedel,WA.Janus micelles at the air/water interface,Langmuir,2001,17,6787-6793.
    d) Saito,R.;Fujita,A.;Ichimura,A.;Ishizu,K.Synthesis of microspheres with microphase-separated shells,J.Polym.Sci.,Part A:Polym.Chem.2000,38,2091-2097.
    [5]Behrend,CJ,Anker,JN et al.Metal-capped Brownian and magnetically modulated optical nanoprobes(MOONs):Micromechanics in chemical and biological microenvironments,J.Phys.Chem.B.2004,108,10408-10414.
    [6]Himmelhaus,M;Takei,H.Cap-shaped gold nanoparticles for an optical biosensor,Sens.Actuators,B.2000,63,24-30.
    [7]Suzuki,D;Tsuji,S;Kawaguchi,H.Janus microgels prepared by surfactant-free picketing emulsion-based modification and their self-assembly,J.Am.Chem.Soc.2007,129,8088-8089.
    [8]Nie,L;Liu,S;Shen,W;Chen,D;Jiang,M.One-pot synthesis of amphiphilic polymeric Janus particles and their self-assembly into supermicelles with a narrow size distribution,Angew.Chem.Int.Ed.,2007,46,6321-6324.
    [9]Perro A;Reculusa S;Ravaine S;Bourgeat-Lami EB;Duguet E.Design and synthesis of Janus micro- and nanoparticles,J.Mater.Chem.,2005,15,3745-3760.
    [10]Nisisako,T;Torii,T;Takahashi,T;Takizawa,Y.Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system,Adv.Mater.2006,18,1152-1156.
    [11]Paunov,VN;Cayre,OJ.Supraparticles and "Janus" particles fabricated by replication of particle monolayers at liquid surfaces using a gel trapping technique,Adv.Mater.2004,16,788-791.
    [12]Lu,Y;Xiong,H;Jiang,X;Xia,Y;Prentiss,M;Whitesides,GM.Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids,J.Am.Chem.Soc.2003,125,12724-12725.
    [13]Hong,L;Jiang,S;Granick,S.Simple method to produce Janus colloidal particles in large quantity,Langmuir,2006,22,9495-9499.
    [14]a) Zhang,Z;Horsch,M;Lamm,M;Glotzer,S.Tethered nano building blocks:Toward a conceptual framework for nanoparticle self-assembly,Nano Lett.2003,3,1341-1346.
    b) Zhang,ZL;Glotzer,SC.Self-assembly of patchy particles,Nano Lett.2004,4,1407-1413.
    [15]a) Harth,E;Van Horn,B;Lee,VY;Germack,DS;Gonzales,CP;Miller,RD;Hawker,CJ.A facile approach to architecturally defined nanoparticles via intramolecular chain collapse,J.Am.Chem.Soc.2002,124,8653-8660.
    b) Cherian,AE;Sun,FC;Sheiko,SS;Coates,GW.Formation of nanoparticles by intramolecular cross-linking:Following the reaction progress of single polymer chains by atomic force microscopy,J.Am.Chem.Soc.2007,129,11350-11351.
    [16]Cherian,A.E.;Sun,F.;Sheiko,S.;Coates,G W.formation of nanoparticles by intramolecular cross-linking:following the reaction progress of single polymer chains by atomic force microscopy.J.Am.Chem.Soc.2007,129(37),11350-11351.
    [17]Chen,D;Peng,H;Jiang,M.A novel one-step approach to core-stabilized nanoparticles at high solid contents,Macromolecules,2003,36,2576-2578.
    [18]Flory,P.J.,Principles of Polymer Chemistry.Comell University Press:Ithaca,1953.
    [1] Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y. Monodispersed colloidal spheres: Old materials with new applications, Adv. Mater. 2000,12, (10), 693-713.
    [2] Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M. Self-assembly of nanoparticles into structured spherical and network aggregates, Nature 2000,404, (6779), 746-748.
    [3] Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature 1996, 382, (6592), 607-609.
    [4] Connolly, S.; Fitzmaurice, D. Programmed assembly of gold nanocrystals in aqueous solution, Adv. Mater. 1999, 11, (14), 1202-1205.
    [5] Maye, M. M.; Chun, S. C.; Han, L.; Rabinovich, D.; Zhong, C. J. Novel spherical assembly of gold nanoparticles mediated by a tetradentate thioether, J.Am. Chem. Soc. 2002, 124, (18), 4958-4959.
    [6] Maye, M. M.; Luo, J.; Lim, I.I. S.; Han, L.; Kariuki, N. N.; Rabinovich, D.; Liu, T.B.; Zhong, C. J. Size-controlled assembly of gold nanoparticles induced by a tridentate thioether ligand, J. Am. Chem. Soc. 2003, 125, (33), 9906-9907.
    [7] Maye, M. M.; Lim, I.I. S.; Luo, J.; Rab, Z.; Rabinovich, D.; Liu, T. B.; Zhong, C.J. Mediator-template assembly of nanoparticles, J. Am. Chem. Soc. 2005, 127,(5), 1519-1529.
    [8] Jiang, C. J.; Cardin, D. J.; Tsang, S. C. Conductive three-dimensional material assembled from silver nanoparticles using a conjugated dithiol linker, Chem. Mater. 2008, 20, 14-16.
    [9] Velev, O. D.; Lenhoff, A. M.; Kaler, E. W. A class of microstructured particles through colloidal crystallization, Science 2000, 287, (5461), 2240-2243.
    [10] Manoharan, V. N.; Elsesser, M. T.; Pine, D. J. Dense packing and symmetry in small clusters of microspheres, Science 2003, 301, (5632), 483-487.
    [11] Saito, R.; Fujita, A.; Ichimura, A.; Ishizu, K. Synthesis of microspheres with microphase-separated shells, J. Polym. Sci. Part A: Polym. Chem 2000, 38, (11),2091-2097.
    [12] Zubarev, E. R.; Xu, J.; Sayyad, A.; Gibson, J. D. Amphiphilicity-driven organization of nanoparticles into discrete assemblies, J. Am. Chem. Soc. 2006, 128,(47), 15098-15099.
    [13] Nie, L.; Liu, S. Y.; Shen, W. M.; Chen, D. Y.; Jiang, M. One-pot synthesis of amphiphilic polymeric Janus particles and their self-assembly into supermicelles with a narrow size distribution,Angew.Chem.Int.Ed.2007,46,6321-6324.
    [14]Tang,Z.Y.;Kotov,N.A.;Giersig,M.Spontaneous organization of single CdTe nanoparticles into luminescent nanowires,Science 2002,297,(5579),237-240.
    [15]Cayre,O.;Paunov,V.N.;Velev,O.D.Fabrication of asymmetrically coated colloid particles by microcontact printing techniques,J..Mater.Chem.2003,13,(10),2445-2450.
    [16]Hong,L.;Cacciuto,A.;Luijten,E.;Granick,S.Clusters of charged Janus spheres,Nano Letters 2006,6,(11),2510-2514.
    [17]Liu,B.;Wei,W.;Qu,X.;Yang,Z.Janus Colloids Formed by Biphasic Grafting at a Picketing Emulsion Interface,Angew.Chem.Int.Ed.2008,47,3973-3975.
    [18]Liu,Z.;Jiang,M.Reversible aggregation of gold nanoparticles driven by inclusion complexation,J.Mater.Chem.2007,13(40),4249-4254.
    [19]Glotzer,S.C.Some assembly required,Science 2004,306,(5695),419-420.
    [20]Zhang,Z.L.;Glotzer,S.C.Self-assembly of patchy particles,Nano Letters 2004,4,(8),1407-1413.
    [21]Zhang,Z.L.;Horsch,M.A.;Lamm,M.H.;Glotzer,S.C.Tethered nano building blocks:Toward a conceptual framework for nanoparticle self-assembly,Nano Letters 2003,3,(10),1341-1346.
    [22]Zhang,G;Wang,D.Y.;M(o|¨)hwald,H.Decoration of Microspheres with Gold Nanodots-Giving Colloidal Spheres Valences,Angew.Chem.Int.Ed.2005,44,7767-7770.
    [23]Song,B.;Wei,H.;Wang,Z.;Zhang,X.;Smet,M.;Dehaen,W.Supramolecular Nanofibers by Self-Organization of Bola-amphiphiles through a Combination of Hydrogen Bonding and π-π Stacking Interactions,Adv.Mater.2007,19,416-420.
    [24]Dou,R.;Ma,X.;Xi,L.et al.Self-Assembled Monolayers of Aromatic Thiols Stabilized by Parallel-Displaced π-π Stacking Interactions,Langmuir,2006,22,3049-3056.
    [25]Zhao,Y.;Wu,J.;Huang,J.Vertical Organic Nanowire Arrays:Controlled Synthesis and Chemical Sensors,J.Am.Chem.Soc.2009,131(9),3158-3159.
    [26]Guillet,J.E.;Wang,J.;Gu,L.Studies of the Antenna Effect in Polymer Molecules.10.Preparation and Luminescence Studies of Sulfonated Poly (2-vinylnaphthalene),Macromolecules,1986,19,2793-2798.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700