响应性聚合物超分子组装体的构筑与功能化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子自组装体由于在催化化学、材料制备、生物医药等多方面存在着极为重要而广泛的应用价值,已经成为21世纪最重要的研究课题之一。在本论文中,我们结合可控/活性自由基聚合和点击化学等先进合成技术,制备了多种结构明确具有特定功能的全亲水性聚合物,包括多温敏全亲水性三嵌段聚合物、可以用来构筑多重响应性超分子全亲水性嵌段聚合物的端基官能化聚合物以及结合有反应型检测基元的温度敏感全亲水性两嵌段聚合物,并利用它们成功构筑了各种功能性聚合物自组装体。另外还实现了对聚合物自组装体的表面修饰。具体来说,本论文的工作包括以下四个方面:
     1.基于温敏性大分子引发剂,通过原子转移自由基聚合(ATRP)合成了两种多温敏全亲水性ABC三嵌段聚合物,它们分别含有两个和三个LCST不同的温度敏感性嵌段。首先对聚环氧丙烷单丁醚(PPO42-OH)进行端基改性,制备了氯端基的PPO大分子引发剂(PPO-Cl),随后通过连续投料的方法依次聚合N-异丙基丙烯酰胺(NIPAM)与N,N-二甲基丙烯酰胺(DMA),制备了含有两种温度敏感性嵌段的双温敏全亲水性ABC三嵌段聚合物PPO-b-PNIPAM-b-PDMA,其在水溶液中会表现出两阶的温度敏感胶束化行为;另外,利用PPO大分子引发剂聚合二甘醇单甲醚甲基丙烯酸酯(MEO2MA)得到聚环氧丙烷-6-聚二甘醇单甲醚甲基丙烯酸酯(PPO-b-PMEO2MA),再以其为大分子引发剂聚合三甘醇单甲醚甲基丙烯酸酯(MEO3MA),制备了含有三种温度敏感性嵌段且完全生物相容的三温敏全亲水性ABC嵌段聚合物PPO-b-PMEO2MA-b-PMEO3MA,其在水溶液中也会表现出多阶的温度敏感聚集行为。我们通过紫外-可见(UV-vis)光谱、核磁氢谱(1H NMR)以及光散射(LLS)等多种手段细致研究了它们的温度诱导多阶自组装过程,并揭示了每个阶段中的相转变。
     2.基于β-环糊精(β-CD)与金刚烷(Ad)之间的包结络合作用,结合多重刺激响应性全亲水聚合物与超分子聚合物概念,构筑了两种多重响应性的超分子全亲水性共聚物,它们分别具有嵌段共聚物与接枝共聚物的拓扑结构。首先,利用点击化学与ATRP,制备了端基β-CD官能化的温度敏感聚合物(β-CD-PNIPAM)与pH敏感的端基Ad官能化的聚(N,N-二乙基氨乙基甲基丙烯酸酯)(Ad-PDEAEMA);在水溶液中通过包结络合作用,两种聚合物可以形成在很宽的pH与温度范围内稳定的超分子嵌段共聚物,并表现出多重响应性自组装行为;通过调节溶液的温度与pH值,这种超分子嵌段聚合物可以实现胶束-囊泡的可逆结构转化。
     3.使用苯甲醛衍生的ATRP引发剂,通过连续投料的方法依次聚合寡聚乙二醇单甲醚甲基丙烯酸酯(OEGMA)、N,N-二甲基氨乙基甲基丙烯酸酯(DMAEMA)和DEAEMA,合成了端基醛基官能化的全亲水性三嵌段聚合物Ald-POEGMA-b-PDMAEMA-b-PDEAEMA;在碱性条件下,该嵌段聚合物可以自组装得到以pH敏感的PDEAEMA为内核、可交联的PDMAEMA为壳层、生物相容的POEGMA为亲水性外层的“洋葱型”多层胶束,并可以通过1,2-双(2-碘代乙氧基)乙烷与PDMAEMA壳层的季铵化反应很方便的实现壳交联;进一步利用壳交联胶束表面的醛基官能团可以实现其与溶菌酶的生物偶联。
     4.最后,将反应型小分子探针的设计理念融入环境响应聚合物的设计与功能化中,制备了基于嵌段聚合物胶束组装体的多功能(巯基、温度等)环境响应聚合物基化学传感器。基于香豆素设计了一种带有羟基官能团的巯基检测探针,这种探针可以与巯基发生加成反应而发出荧光;从PEG大分子链转移剂出发,通过可逆加成-断裂链转移(RAFT)聚合得到一种温度敏感全亲水性两嵌段聚合物,其中温敏嵌段中共聚有侧链带有羧基的单体;通过羚基与羟基的缩合反应可以将巯基检测基元共价引入温敏全亲水性聚合物中,利用这种聚合物可以在水溶液中选择性定量检测含有巯基的生物分子,同时由于聚合物具有温度响应性,改变温度会影响荧光强度,通过监测荧光强度的变化就可以实现对温度的检测。
Supramolecular assemblies have attracted considerable interests in the past decedes due to their promising applications in diverse fields, such as catalysis, material preparation, and biomedicine, which renders this interdisciplinary research subject as one of the promising scientific issues in the 21st century. This dissertation mainly focuses on the fabrication and functionalization of supramolecular assemblies from stimuli-responsive double hydrophilic block copolymers. A series of well-defined specific functionalized polymers with varying chemical architectures were prepared in the combination of controlled/living radical polymerizations and click chemistry, include multiple thermo-responsive double hydrophilic triblock copolymers, end-functionalized polymers which can be used to construct multi-responsive supramolecular double hydrophilic block copolymers, and thermo-responsive double hydrophilic diblock copolymers functionalized by fluorescent turn-on probes. Besides the construction of the assemblies, novel approache in the surface modification of self-assembled micelles was also investigated. The dissertation includes the following four parts:
     1. Well-defined double thermo-responsive triblock copolymer poly(propylene glycol)-b-poly(N-isopropylacrylamide)-b-poly(N,N-dimethylacrylamide), PPO-b-PNIPAM-b-PDMA, was synthesized via sequential atom transfer radical polymerization (ATRP) technique using a PPO-based macroinitiator. The double thermo-responsive ABC triblock copolymer contains PDMA as one permanently hydrophilic block, with PPO and PNIPAM as two different thermo-responsive blocks.Thermo-responsive micellization behavior of the PPO-b-PNIPAM-b-PDMA triblock copolymer was then investigated by a combination of spectroscopic techniques and dynamic light scattering (DSL). A thermally induced two-step association is observed when heating beyond the first and second cloud points of the thermo-responsive blocks. The critical micellization temperature (CMT) and critical micellization concentration (CMC) values at different temperatures of the PPO-b-PNIPAM-b-PDMA triblock copolymer were determined. Moreover, a triply thermo-responsive biocompatible ABC triblock copolymer poly(propylene glycol)-b-poly(di(ethylene glycol) methyl ether methacrylate)-b-poly(tri(ethylene glycol) methyl ether methacrylate), PPO-b- PMEO2MA-b-PMEO3MA, was also synthesized via sequential ATRP. The thermo-responsive characteristics of the aqueous solution of the triblock copolymer have been studied in comparison with the corresponding mono-and diblocks by spectroscopic techniques and DSL. The hydrophilicity of the blocks influences each other, rendering each block a phase transition temperature different from that of the corresponding homopolymers. The cloud points of the three steps of the phase separations were determined to be 10,41, and 49℃for steps one to three, respectively, while heating the aqueous solution of the triblock copolymer.
     2. Supramolecular double hydrophilic block copolymer (DHBC) with multi-responsive self-assembling behavior was fabricated fromβ-CD-terminated PNIPAM (β-CD-PNIPAM) and adamantyl-terminated poly(2-(diethylamino)ethyl methacrylate) (Ad-PDEAEMA). Two alternate strategies, direct ATRP of NIPAM usingβ-CD-based initiator (β-CD-Br) and click reaction of mono-6-deoxy-6-azido-β-cyclodextrin (β-CD-N3) with alkynyl-terminated PNIPAM, were employed for the preparation ofβ-CD-PNIPAM. The latter strategy afforded well-definedβ-CD-PNIPAM with narrow polydispersity. Ad-PDEAEMA was synthesized via ATRP technique using adamantane-based initiator. Host-guest inclusion complexation betweenβ-CD and adamantyl moieties spontaneously drives the formation of supramolecular DHBC fromβ-CD-PNIPAM and Ad-PDEAEMA. Possessing well-known thermoresponsive PNIPAM and pH-responsive PDEAEMA sequences, the obtained supramolecular PNIPAM-b-PDEAEMA diblock copolymer exhibits intriguing multi-responsive and reversible micelle-to-vesicle transition behavior in aqueous solution by dually playing with solution pH and temperatures.
     3. Two approaches were attempted for the syntheses of a-aldehyde terminally functionalized double hydrophilic diblock or triblock copolymers of 2-(dimethyl-amino)ethyl methacrylate (DMAEMA), DEAEMA, and oligo(ethylene glycol) methyl ether methacrylate (OEGMA) via ATRP. The first approach employed 2-(2,2-dimethoxyethoxy)ethyl a-bromoisobutyrate as the ATRP initiator for the sequential polymerization of DMAEMA and DEAEMA monomers. However, after deprotection of the terminal acetal into aldehyde groups, the obtained Ald-PDMAEMA-b-PDEAEMA diblock copolymer was prone to aldol condensation at alkaline pH, leading to the extensive formation of dimmers. Directly using 4-aldehydephenyl a-bromoisobutyrate as the ATRP initiator, the sequential polymerization of OEGMA, DMAEMA, and DEAEMA resulted in the successful preparation of a-aldehyde terminally functionalized triblock copolymer, Ald-POEGMA-b-PDMAEMA-b-PDEAEMA. This triblock copolymer molecularly dissolves in acidic media, and self-assembles into three-layer "onion-like" micelles consisting of PDEAEMA cores, PDMAEMA inner shells, and POEGMA outer coronas at alkaline pH. Selective cross-linking of the PDMAEMA inner shell with 2-bis(2-iodoethoxy)ethane leads to structurally stabilized shell cross-linked (SCL) micelles surface functionalized with aldehyde groups. Possessing the PDEAEMA cores, the obtained SCL micelles exhibit reversible pH-responsive swelling/deswelling behavior, as revealed by LLS. The surface aldehyde groups enable the facile conjugation of SCL micelles with a model protein, lysozyme, via the formation of Schiff base.
     4. Novel DHBC-based multifunctional chemosensor to thiol and temperature was designed and synthesized. A new coumarin-based fluorescent thiol probe was constructed on the basis of the conjugate 1,4-addition of thiols toα,β-unsaturated ketones. Well-defined DHBC bearing the thiol-reactive moieties in the thermo-responsive block were synthesized by chemical modification of poly(ethylene glycol)-b-poly(di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate-co-2-succinyloxyethyl methacrylate) (PEG-b-P(MEO2MA-co-OEGMA-co-SEMA)), which was obtained via reversible addition-fragmentation chain transfer (RAFT) polymerization. The nonfluorescent probe moieties are subjected to selective Michael addition reaction upon addition of thiol, producing highly fluorescent species, and there is a linear relationship between temperatures and the fluorescence intensity. Thus, the thermo-responsive DHBC can serve as water-soluble multifunctional and efficient fluorescent chemosensors to thiol and temperature.
引文
[1]Lehn J-M. Supramolecular Chemistry-scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture)[J]. Angewandte Chemie International Edition in English,1988,27(1):89-112.
    [2]Lehn J M. Perspectives in Supramolecular Chemistry-from Molecular Recognition Towards Molecular Information-Processing and Self-Organization[J]. Angewandte Chemie-International Edition in English,1990,29(11):1304-1319.
    [3]Lehn J M. Supramolecular Chemistry[J]. Science,1993,260(5115):1762-1763.
    [4]Zeng F W, Zimmerman S C. Dendrimers in supramolecular chemistry:From molecular recognition to self-assembly [J]. Chemical Reviews,1997,97(5):1681-1712.
    [5]Forster S, Plantenberg T. From self-organizing polymers to nanohybrid and biomaterials[J]. Angewandte Chemie-International Edition,2002,41(5):689-714.
    [6]沈家骢.超分子层状结构(组装与功能)[M].北京:科学出版社,2004.
    [7]Philp D, Stoddart J F. Self-assembly in natural and unnatural systems[J]. Angewandte Chemie-International Edition,1996,35(11):1155-1196.
    [8]Singh R, Maru V M, Moharir P S. Complex chaotic systems and emergent phenomena[J]. Journal of Nonlinear Science,1998,8(3):235-259.
    [9]Whitesides G M, Grzybowski B. Self-assembly at all scales[J]. Science,2002, 295(5564):2418-2421.
    [10]Drexler K E. Molecular engineering:An approach to the development of general capabilities for molecular manipulation[J]. Proceedings of the National Academy of Sciences of the United States of America,1981,78(9):5275-5278.
    [11]Webber S E. Polymer micelles:An example of self-assembling polymers[J]. Journal of Physical Chemistry B,1998,102(15):2618-2626.
    [12]Discher D E, Eisenberg A. Polymer vesicles[J]. Science,2002,297(5583):967-973.
    [13]Tang P, Qiu F, Zhang H D, Yang Y L. Morphology and phase diagram of complex block copolymers:ABC star triblock copolymers[J]. Journal of Physical Chemistry B,2004,
    108(24):8434-8438.
    [14]Tang P, Qiu F, Zhang H D, Yang Y L. Morphology and phase diagram of complex block copolymers:ABC linear triblock copolymers[J]. Physical Review E,2004,69(3):-
    [15]Matsen M W, Schick M. Stable and Unstable Phases of a Diblock Copolymer Melt[J]. Physical Review Letters,1994,72(16):2660-2663.
    [16]Matsen M W. The standard Gaussian model for block copolymer melts[J]. Journal of Physics-Condensed Matter,2002,14(2):R21-R47.
    [17]Ilhan F, Galow T H, Gray M, Clavier G, Rotello V M. Giant vesicle formation through self-assembly of complementary random copolymers[J]. Journal of the American Chemical Society,2000,122(24):5895-5896.
    [18]Harada A, Kataoka K. Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-Charged Block Copolymers with Poly(ethylene glycol) Segments[J]. Macromolecules,1995,28(15):5294-5299.
    [19]Cao Y, Shen X, Chen Y, Guo J, Chen Q, Jiang X. pH-Induced Self-Assembly and Capsules of Sodium Alginate[J]. Biomacromolecules,2005,6(4):2189-2196.
    [20]Jenekhe S A, Chen X L. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes[J]. Science,1998,279(5358):1903-1907.
    [21]Duan H W, Chen D Y, Jiang M, Gan W J, Li S J, Wang M, Gong J. Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent[J]. Journal of the American Chemical Society,2001,123(48):12097-12098.
    [22]Nishiyama N, Yokoyama M, Aoyagi T, Okano T, Sakurai Y, Kataoka K. Preparation and Characterization of Self-Assembled Polymer-Metal Complex Micelle from cis-Dichlorodiammineplatinum(II) and Poly(ethylene glycol)-Poly(a,β-aspartic acid) Block Copolymer in an Aqueous Medium[J]. Langmuir,1998,15(2):377-383.
    [23]Thunemann A F, Beyermann J, Kukula H. Poly(ethylene oxide)-b-poly(1-lysine) Complexes with RetinoicAcid[J]. Macromolecules,2000,33(16):5906-5911.
    [24]Halperin A, Tirrell M, Lodge T P. Tethered Chains in Polymer Microstructures[J]. Advances in Polymer Science,1992,100:31-71.
    [25]Zhang L F, Yu K, Eisenberg A. Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers[J]. Science,1996,272(5269):1777-1779.
    [26]Zhang L F, Eisenberg A. Multiple Morphologies of Crew-Cut Aggregates of Polystyrene-B-Poly(Acrylic Acid) Block-Copolymers[J]. Science,1995, 268(5218):1728-1731.
    [27]Zhang L F, Eisenberg A. Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution[J]. Journal of Polymer Science Part B-Polymer Physics,1999,37(13):1469-1484.
    [28]Zhang L F, Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution[J]. Polymers for Advanced Technologies,1998, 9(10-11):677-699.
    [29]Zhang L F, Eisenberg A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions[J]. Macromolecules,1996, 29(27):8805-8815.
    [30]Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T. Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature[J]. Biomacromolecules,2003,4(2):344-349.
    [31]Nakajima K, Honda S, Nakamura Y, Lopez-Redondo F, Kohsaka S, Yamato M, Kikuchi A, Okano T. Intact microglia are cultured and non-invasively harvested without pathological activation using a novel cultured cell recovery method [J]. Biomaterials,2001, 22(11):1213-1223.
    [32]Yamato M, Konno C, Kushida A, Hirose M, Utsumi M, Kikuchi A, Okano T. Release of adsorbed fibronectin from temperature-responsive culture surfaces requires cellular activity[J]. Biomaterials,2000,21(10):981-986.
    [33]Nandkumar M A, Yamato M, Kushida A, Konno C, Hirose M, Kikuchi A, Okano T. Two-dimensional cell sheet manipulation of heterotypically co-cultured lung cells utilizing temperature-responsive culture dishes results in long-term maintenance of differentiated epithelial cell functions[J]. Biomaterials,2002,23(4):1121-1130.
    [34]Wu C, Zhou S Q. Thermodynamically Stable Globule State of a Single Poly(N-Isopropylacrylamide) Chain in Water[J]. Macromolecules,1995,28(15):5388-5390.
    [35]Chen G H, Hoffman A S. Graft-Copolymers That Exhibit Temperature-Induced Phase-Transitions over a Wide-Range of Ph[J]. Nature,1995,373(6509):49-52.
    [36]徐建.基于聚(N-异丙基丙烯酰胺)的多种拓扑结构水溶性高分子制备及其溶液性质研究[D].合肥:中国科学技术大学,2008.
    [37]Schild H G. Poly (N-Isopropylacrylamide)-Experiment, Theory and Application[J]. Progress in Polymer Science,1992,17(2):163-249.
    [38]Lutz J F. Polymerization of oligo(ethylene glycol) (meth)acrylates:Toward new generations of smart biocompatible materials[J]. Journal of Polymer Science Part A-Polymer Chemistry, 2008,46(11):3459-3470.
    [39]Lutz J F, Weichenhan K, Akdemir O, Hoth A. About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydiogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate[J]. Macromolecules,2007, 40(7):2503-2508.
    [40]Lutz J F, Stiller S, Hoth A, Kaufner L, Pison U, Cartier R. One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents[J]. Biomacromolecules,2006,7(11):3132-3138.
    [41]Pasut G, Veronese F M. Polymer-drug conjugation, recent achievements and general strategies[J]. Progress in Polymer Science,2007,32(8-9):933-961.
    [42]Arotcarena M, Heise B, Ishaya S, Laschewsky A. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity[J]. Journal of the American Chemical Society,2002,124(14):3787-3793.
    [43]Weaver J V M, Armes S P, Butun V. Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer[J]. Chemical Communications,2002, (18):2122-2123.
    [44]Martin T J, Prochazka K, Munk P, Webber S E. pH-dependent micellization of poly(2-vinylpyridine)-block-poly(ethylene oxide)[J]. Macromolecules,1996, 29(18):6071-6073.
    [45]Liu S Y, Armes S P. Polymeric surfactants for the new millennium:A pH-responsive, zwitterionic, schizophrenic diblock copolymer[J]. Angewandte Chemie-International Edition, 2002,41(8):1413-1416.
    [46]Cai Y L, Armes S P. A Zwitterionic ABC triblock copolymer that forms a "Trinity" of micellar aggregates in aqueous solution[J]. Macromolecules,2004,37(19):7116-7122.
    [47]Liu H, Li C H, Liu H W, Liu S Y. pH-Responsive Supramolecular Self-Assembly of Well-Defined Zwitterionic ABC Miktoarm Star Terpolymers[J]. Langmuir,2009, 25(8):4724-4734.
    [48]Wang G, Tong X, Zhao Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates[J]. Macromolecules,2004, 37(24):8911-8917.
    [49]Jiang J Q, Tong X, Zhao Y. A new design for light-breakable polymer micelles[J]. Journal of the American Chemical Society,2005,127(23):8290-8291.
    [50]Butun V, Billingham N C, Armes S P. Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer:Formation of micelles and reverse micelles in aqueous solution[J]. Journal of the American Chemical Society,1998,120(45):11818-11819.
    [51]Wang D, Wu T, Wan X J, Wang X F, Liu S Y. Purely salt-responsive micelle formation and inversion based on a novel schizophrenic sulfobetaine block copolymer:Structure and kinetics of micellization[J]. Langmuir,2007,23(23):11866-11874.
    [52]Bronich T K, Keifer P A, Shlyakhtenko L S, Kabanov A V. Polymer micelle with cross-linked ionic core[J]. Journal of the American Chemical Society,2005,127(23):8236-8237.
    [53]Wolcan E, Alessandrini J L, Feliz M R. On the quenching of MLCTRe-> bpy luminescence by Cu(II) species in Re(I) polymer micelles[J]. Journal of Physical Chemistry B,2005, 109(48):22890-22898.
    [54]Butun V, Liu S, Weaver J V M, Bories-Azeau X, Cai Y, Armes S P. A brief review of 'schizophrenic' block copolymers[J]. Reactive& Functional Polymers,2006,66(1):157-165.
    [55]Liu S Y, Armes S P. Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer[J]. Langmuir,2003,19(10):4432-4438.
    [56]Liu S Y, Billingham N C, Armes S P. A schizophrenic water-soluble diblock copolymer[J]. Angewandte Chemie-International Edition,2001,40(12):2328-+.
    [57]Cai Y L, Armes S P. Synthesis of well-defined Y-shaped zwitterionic block copolymers via atom-transfer radical polymerization[J]. Macromolecules,2005,38(2):271-279.
    [58]Cai Y L, Tang Y Q, Armes S P. Direct synthesis and stimulus-responsive micellization of Y-shaped hydrophilic block copolymers[J]. Macromolecules,2004,37(26):9728-9737.
    [59]Bories-Azeau X, Armes S P, van den Haak H J W. Facile synthesis of zwitterionic diblock copolymers without protecting group chemistry[J]. Macromolecules,2004,37(7):2348-2352.
    [60]Weaver J V M, Armes S P. Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer[J]. Abstracts of Papers of the American Chemical Society,2003,225:U573-U573.
    [61]Zhang Y F, Hao L, Hu J M, Li C H, Liu S Y. Synthesis and Aggregation Behavior of Multi-Responsive Double Hydrophilic ABC Miktoarm Star Terpolymer[J]. Macromolecular Rapid Communications,2009,30(11):941-947.
    [62]Rao J Y, Zhu Z Y, Liu S Y. Synthesis and micellization behavior of stimuli-responsive polypeptide hybrid triblock copolymer[J]. Chinese Science Bulletin,2009, 54(11):1912-1917.
    [63]Liu H, Zhang Y F, Hu J M, Li C H, Liu S Y. Multi-Responsive Supramolecular Double Hydrophilic Diblock Copolymer Driven by Host-Guest Inclusion Complexation between beta-Cyclodextrin and Adamantyl Moieties[J]. Macromolecular Chemistry and Physics,2009, 210(24):2125-2137.
    [64]Jiang X Z, Zhang G Y, Narain R, Liu S Y. Fabrication of Two Types of Shell-Cross-Linked Micelles with "Inverted" Structures in Aqueous Solution from Schizophrenic Water-Soluble
    ABC Triblock Copolymer via Click Chemistry[J]. Langmuir,2009,25(4):2046-2054.
    [65]Ge Z S, Xu J, Hu J M, Zhang Y F, Liu S Y. Synthesis and supramolecular self-assembly of stimuli-responsive water-soluble Janus-type heteroarm star copolymers[J]. Soft Matter,2009, 5(20):3932-3939.
    [66]Zhang Y F, Wu T, Liu S Y. Micellization kinetics of a novel multi-responsive double hydrophilic diblock copolymer studied by stopped-flow pH and temperature jump[J]. Macromolecular Chemistry and Physics,2007,208(23):2492-2501.
    [67]Rao J Y, Luo Z F, Ge Z S, Liu H, Liu S Y. "Schizophrenic" micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer[J]. Biomacromolecules,2007,8(12):3871-3878.
    [68]Jiang X Z, Ge Z S, Xu J, Liu H, Liu S Y. Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability[J]. Biomacromolecules,2007,8(10):3184-3192.
    [69]Ge Z S, Cai Y L, Yin J, Zhu Z Y, Rao J Y, Liu S Y. Synthesis and'Schizophrenic' micellization of double hydrophilic AB(4) miktoarm star and AB diblock copolymers: Structure and kinetics of micellization[J]. Langmuir,2007,23(3):1114-1122.
    [70]Xu J, Ge Z S, Zhu Z Y, Luo S Z, Liu H W, Liu S Y. Synthesis and micellization properties of double hydrophilic A(2)BA(2) and A(4)BA(4) non-linear block copolymers[J]. Macromolecules,2006,39(23):8178-8185.
    [71]Wang D, Yin J, Zhu Z Y, Ge Z S, Liu H W, Armes S P, Liu S Y. Micelle formation and inversion kinetics of a schizophrenic diblock copolymer[J]. Macromolecules,2006, 39(21):7378-7385.
    [72]Chen D Y, Jiang M. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions[J]. Accounts of Chemical Research,2005, 38(6):494-502.
    [73]Liu S Y, Jiang M, Liang H J, Wu C. Intermacromolecular complexes due to specific interactions.13. Formation of micelle-like structure from hydrogen-bonding graft-like complexes in selective solvents[J]. Polymer,2000,41(24):8697-8702.
    [74]Liu S Y, Pan Q M, Xie J W, Jiang M. Intermacromolecular complexes due to specific interactions.12. Graft-like hydrogen bonding complexes based on pyridyl-containing polymers and end-functionalized polystyrene oligomers[J]. Polymer,2000, 41(18):6919-6929.
    [75]Wang M, Zhang G Z, Chen D Y, Jiang M, Liu S Y. Noncovalently connected polymeric micelles based on a homopolymer pair in solutions[J]. Macromolecules,2001, 34(20):7172-7178.
    [76]Lehn J M.超分子化学概念和展望[M].沈兴海等,译.第一版.北京:北京大学出版社,2001.
    [77]刘育,尤长城,张衡益.超分子化学-合成受体的分子识别与组装[M].第一版.天津:南开大学出版社,2001.
    [78]Leung K C F, Mendes P M, Magonov S N, Northrop B H, Kim S, Patel K, Flood A H, Tseng H R, Stoddart J F. Supramolecular self-assembly of dendronized polymers:Reversible control of the polymer architectures through acid-base reactions [J]. Journal of the American Chemical Society,2006,128(33):10707-10715.
    [79]Morino K, Oobo M, Yashima E. Helicity induction in a poly(phenylacetylene) bearing aza-18-crown-6 ether pendants with optically active bis(amino acid)s and its chiral stimuli-responsive gelation[J]. Macromolecules,2005,38(8):3461-3468.
    [80]Tomatsu I, Hashidzume A, Harada A. Photoresponsive hydrogel system using molecular recognition of alpha-cyclodextrin[J]. Macromolecules,2005,38(12):5223-5227.
    [81]Tomatsu I, Hashidzume A, Harada A. Redox-responsive hydrogel system using the molecular recognition of beta-cyclodextrin[J]. Macromolecular Rapid Communications,2006, 27(4):238-241.
    [82]Ogoshi T, Takashima Y, Yamaguchi H, Harada A. Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins[J]. Journal of the American Chemical Society,2007, 129(16):4878-+.
    [83]Gohy J F, Lohmeijer B G G, Varshney S K, Schubert U S. Covalent vs metallo-supramolecular block copolymer micelles[J]. Macromolecules,2002, 35(19):7427-7435.
    [84]Gohy J F, Lohmeijer B G G, Schubert U S. Reversible metallo-supramolecular block copolymer micelles containing a soft core[J]. Macromolecular Rapid Communications,2002, 23(9):555-560.
    [85]Guillet P, Fustin C A, Mugemana C, Ott C, Schubert U S, Gohy J F. Tuning block copolymer micelles by metal-ligand interactions[J]. Soft Matter,2008,4(11):2278-2282.
    [86]Levins A D, Wang X F, Moughton A O, Skey J, O'Reilly R K. Synthesis of core functionalized polymer micelles and shell cross-linked nanoparticles[J]. Macromolecules, 2008,41(9):2998-3006.
    [87]Ievins A D, Moughton A O, O'Reilly R K. Synthesis of hollow responsive functional nanocages using a metal-ligand complexation strategy [J]. Macromolecules,2008, 41(10):3571-3578.
    [88]Wu C, Niu A Z, Leung L M, Lam T S. Preparation of narrowly distributed stable and soluble polyacetylene block copolymer nanoparticles[J]. Journal of the American Chemical Society, 1999,121(9):1954-1955.
    [89]Chen D Y, Peng H S, Jiang M. A novel one-step approach to core-stabilized nanoparticles at high solid contents[J]. Macromolecules,2003,36(8):2576-2578.
    [1]Uhlmann P, Ionov L, Houbenov N, Nitschke M, Grundke K, Motornov M, Minko S, Stamm M. Surface functionalization by smart coatings:Stimuli-responsive binary polymer brushes[J]. Progress in Organic Coatings,2006,55(2):168-174.
    [2]Luzinov I, Minko S, Tsukruk V V. Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers[J]. Progress in Polymer Science,2004, 29(7):635-698.
    [3]Osada Y, Gong J P. Stimuli-Responsive Polymer Gels and Their Application to Chemomechanical Systems[J]. Progress in Polymer Science,1993,18(2):187-226.
    [4]Wang C, Flynn N T, Langer R. Controlled structure and properties of thermoresponsive nanoparticle-hydrogel composites[J]. Advanced Materials,2004,16(13):1074-+.
    [5]Shi Q H, An Z S, Tsung C K, Liang H J, Zheng N F, Hawker C J, Stucky G D. Ice-templating of core/shell microgel fibers through'Bricks-and-Mortar'assembly[J]. Advanced Materials, 2007,19(24):4539-+.
    [6]Qin S H, Geng Y, Discher D E, Yang S. Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide)[J]. Advanced Materials,2006,18(21):2905-+.
    [7]Contreras-Caceres R, Sanchez-Iglesias A, Karg M, Pastoriza-Santos I, Perez-Juste J, Pacifico J, Hellweg T, Fernandez-Barbero A, Liz-Marzan L M. Encapsulation and growth of gold nanoparticles in thermoresponsive microgels[J]. Advanced Materials,2008,20(9):1666-+.
    [8]Chang J H, Shim C H, Kim B J, Shin Y, Exarhos G J, Kim K J. Bicontinuous, thermoresponsive, L-3-phase silica nanocomposites and their smart drug-delivery applications[J]. Advanced Materials,2005,17(5):634-+.
    [9]Zhou J H, Liu J, Wang G, Lu X B, Wen Z H, Li J H. Poly(N-isopropylacrylamide) interfaces with dissimilar thermo-responsive behavior for controlling ion permeation and immobilization[J]. Advanced Functional Materials,2007,17(16):3377-3382.
    [10]Zhang Y W, Jiang M, Zhao J X, Ren X W, Chen D Y, Zhang G Z. A novel route to thermosensitive polymeric core-shell aggregates and hollow spheres in aqueous media[J]. Advanced Functional Materials,2005,15(4):695-699.
    [11]Yang M, Chu L Y, Wang H D, Xie R, Song H, Niu C H. A thermoresponsive membrane for chiral resolution[J]. Advanced Functional Materials,2008,18(4):652-663.
    [12]Rahane S B, Floyd J A, Metters A T, Kilbey S M. Swelling behavior of multiresponsive poly(methacrylic acid)-block-poly (N-isopropylacrylamide) brushes synthesized using surface-initiated photoiniferter-mediated photopolymerization[J]. Advanced Functional Materials,2008,18(8):1232-1240.
    [13]Ionov L, Synytska A, Diez S. Temperature-induced size-control of bioactive surface patterns[J]. Advanced Functional Materials,2008,18(10):1501-1508.
    [14]Chung P W, Kumar R, Pruski M, Lin V S Y. Temperature responsive solution partition of organic-inorganic hybrid poly(N-isopropylacrylamide)-coated mesoporous silica nanospheres[J]. Advanced Functional Materials,2008,18(9):1390-1398.
    [15]Chu L Y, Kim J W, Shah R K, Weitz D A. Monodisperse thermoresponsive microgels with tunable volume-phase transition kinetics[J]. Advanced Functional Materials,2007, 17(17):3499-3504.
    [16]Butun V, Liu S, Weaver J V M, Bories-Azeau X, Cai Y, Armes S P. A brief review of 'schizophrenic' block copolymers[J]. Reactive& Functional Polymers,2006,66(1):157-165.
    [17]Li Y T, Tang Y Q, Narain R, Lewis A L, Armes S P. Biomimetic stimulus-responsive star diblock gelators[J]. Langmuir,2005,21(22):9946-9954.
    [18]Narain R, Armes S P. Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers[J]. Biomacromolecules,2003, 4(6):1746-1758.
    [19]Pilon L N, Armes S P, Findlay P, Rannard S P. Synthesis and characterization of shell cross-linked micelles with hydroxy-functional coronas:A pragmatic alternative to dendrimers?[J]. Langmuir,2005,21(9):3808-3813.
    [20]Truelsen J H, Kops J, Batsberg W, Armes S P. Novel polymeric surfactants:Synthesis of semi-branched, non-ionic triblock copolymers using ATRP[J]. Macromolecular Chemistry and Physics,2002,203(14):2124-2131.
    [21]Hasan E, Zhang M, Muller A H E, Tsvetanov C B. Thermoassociative block copolymers of poly(N-isopropylacrylamide) and poly(propylene oxide)[J]. Journal of Macromolecular Science-Pure and Applied Chemistry,2004, A41(5):467-486.
    [22]Kumar A, Srivastava A, Galaev I Y, Mattiasson B. Smart polymers:Physical forms and bioengineering applications[J]. Progress in Polymer Science,2007,32(10):1205-1237.
    [23]Galaev I, Mattiasson B. Thermoreactive water-soluble polymers, nonionic surfactants, and hydrogels as reagents in biotechnology[J]. Enzyme Microb Tech,1993,15(5):354-366.
    [24]Lozinsky V I, Simenel I A, Kulakova V K, Kurskaya E A, Babushkina T A, Klimova T P, Burova T V, Dubovik A S, Galaev I Y, Mattiasson B, Khokhlov A R. Synthesis and Studies of N-Vinylcaprolactam/N-Vinylimidazole Copolymers that Exhibit the鈥淧roteinlike鈥?Behavior in Aqueous Media[J]. Macromolecules,2003,36(19):7308-7323.
    [25]Lutz J F. Polymerization of oligo(ethylene glycol) (meth)acrylates:Toward new generations of smart biocompatible materials[J]. Journal of Polymer Science Part A-Polymer Chemistry, 2008,46(11):3459-3470.
    [26]Lutz J F, Stiller S, Hoth A, Kaufner L, Pison U, Cartier R. One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents[J]. Biomacromolecules,2006,7(11):3132-3138.
    [27]Pasut G, Veronese F M. Polymer-drug conjugation, recent achievements and general strategies[J]. Progress in Polymer Science,2007,32(8-9):933-961.
    [28]Kitano H, Hirabayashi T, Gemmei-Ide M, Kyogoku M. Effect of macrocycles on the temperature-responsiveness of poly[(methoxy diethylene glycol methacrylate)-graft-PEG][J]. Macromolecular Chemistry and Physics,2004,205(12):1651-1659.
    [29]Lutz J F, Akdemir O, Hoth A. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST:Is the age of poly(NIPAM) over?[J]. Journal of the American Chemical Society,2006,128(40):13046-13047.
    [30]Han S, Hagiwara M, Ishizone T. Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo(ethylene glycol) methyl ether methacrylates[J]. Macromolecules,2003,36(22):8312-8319.
    [31]Lutz J F, Hoth A. Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate [J]. Macromolecules,2006,39(2):893-896.
    [32]Li D J, Zhao B. Temperature-induced transport of thermosensitive hairy hybrid nanoparticles between aqueous and organic phases[J]. Langmuir,2007,23(4):2208-2217.
    [33]Yokoyama H, Miyamae T, Han S, Ishizone T, Tanaka K, Takahara A, Torikai N. Spontaneously formed hydrophilic surfaces by segregation of block copolymers with water-soluble blocks[J]. Macromolecules,2005,38(12):5180-5189.
    [34]Lutz J F, Weichenhan K, Akdemir O, Hoth A. About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl
    methacrylate and oligo(ethylene glycol) methacrylate[J]. Macromolecules,2007, 40(7):2503-2508.
    [35]Skrabania K, Kristen J, Laschewsky A, Akdemir 0, Hoth A, Lutz J F. Design, synthesis, and aqueous aggregation behavior of nonionic single and multiple thermoresponsive polymers[J]. Langmuir,2007,23(1):84-93.
    [36]Hua F J, Jiang X G, Li D J, Zhao B. Well-defined thermosensitive, water-soluble polyacrylates and polystyrenics with short pendant oligo (ethylene glycol) groups synthesized by nitroxide-mediated radical polymerization[J]. Journal of Polymer Science Part a-Polymer Chemistry,2006,44(8):2454-2467.
    [37]Uyama H, Kobayashi S. A Novel Thermosensitive Polymer-Poly(2-Iso-Propyl-2-Oxazoline)[J]. Chemistry Letters,1992, (9):1643-1646.
    [38]Shen Y, Kuang M, Shen Z, Nieberle J, Duan H W, Frey H. Gold nanoparticles coated with a thermosensitive hyperbranched polyelectrolyte:Towards smart temperature and pH nanosensors[J]. Angewandte Chemie-International Edition,2008,47(12):2227-2230.
    [39]Wu C, Zhou S Q. Thermodynamically Stable Globule State of a Single Poly(N-Isopropylacrylamide) Chain in Water[J]. Macromolecules,1995,28(15):5388-5390.
    [40]Chen G H, Hoffman A S. Graft-Copolymers That Exhibit Temperature-Induced Phase-Transitions over a Wide-Range of Ph[J]. Nature,1995,373(6509):49-52.
    [41]徐建.基于聚(N-异丙基丙烯酰胺)的多种拓扑结构水溶性高分子制备及其溶液性质研究[D].合肥:中国科学技术大学,2008.
    [42]Zhang Y J, Furyk S, Bergbreiter D E, Cremer P S. Specific ion effects on the water solubility of macromolecules:PNIPAM and the Hofmeister series[J]. Journal of the American Chemical Society,2005,127(41):14505-14510.
    [43]Zhang G Z, Wu C. The water/methanol complexation induced reentrant coil-to-globule-to-coil transition of individual homopolymer chains in extremely dilute solution[J]. Journal of the American Chemical Society,2001,123(7):1376-1380.
    [44]Wang J P, Gan D J, Lyon L A, El-Sayed M A. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions[J]. Journal of the American Chemical Society,2001,123(45):11284-11289.
    [45]Reese C E, Mikhonin A V, Kamenjicki M, Tikhonov A, Asher S A. Nanogel nanosecond photonic crystal optical switching[J]. Journal of the American Chemical Society,2004, 126(5):1493-1496.
    [46]LinaresSamaniego S, Tolbert L M. A proton-transfer probe of a polymer-water interface. 2-naphthol-labeled poly(isopropyl) acrylamide[J]. Journal of the American Chemical Society,
    1996,118(41):9974-9979.
    [47]Kim J, Nayak S, Lyon L A. Bioresponsive hydrogel microlenses[J]. Journal of the American Chemical Society,2005,127(26):9588-9592.
    [48]Hofkens J, Hotta J, Sasaki K, Masuhara H, Taniguchi T, Miyashita T. Molecular association by the radiation pressure of a focused laser beam:Fluorescence characterization of pyrene-labeled PNIPAM[J]. Journal of the American Chemical Society,1997, 119(11):2741-2742.
    [49]Bergbreiter D E, Osburn P L, Wilson A, Sink E M. Palladium-catalyzed C-C coupling under thermomorphic conditions [J]. Journal of the American Chemical Society,2000, 122(38):9058-9064.
    [50]Scarpa J S, Mueller D D, Klotz I M. Journal of the American Chemical Society,1967, 89(41):6024-6030.
    [51]Tanaka T. Phys. Rev. Lett.,1978,40:820.
    [52]Schild H G. Poly (N-Isopropylacrylamide)-Experiment, Theory and Application[J]. Progress in Polymer Science,1992,17(2):163-249.
    [53]Shibayama M, Tanaka T. Volume Phase-Transition and Related Phenomena of Polymer Gels[J]. Advances in Polymer Science,1993,109:1-62.
    [54]Martin T J, Prochazka K, Munk P, Webber S E. pH-dependent micellization of poly(2-vinylpyridine)-block-poly(ethylene oxide)[J]. Macromolecules,1996,29(18):6071-6073.
    [55]Colfen H. Double-hydrophilic block copolymers:Synthesis and application as novel surfactants and crystal growth modifiers[J]. Macromolecular Rapid Communications,2001, 22(4):219-252.
    [56]Alarcon C D H, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications[J]. Chemical Society Reviews,2005,34(3):276-285.
    [57]Gohy J F. Block copolymer micelles[J]. Advances in Polymer Science,2005,190:65-136.
    [58]Gil E S, Hudson S A. Stimuli-reponsive polymers and their bioconjugates[J]. Progress in Polymer Science,2004,29(12):1173-1222.
    [59]Bronstein L M, Sidorov S N, Gourkova A Y, Valetsky P M, Hartmann J, Breulmann M, Colfen H, Antonietti M. Interaction of metal compounds with'double-hydrophilic'block copolymers in aqueous medium and metal colloid formation[J]. Inorganica Chimica Acta, 1998,280(1-2):348-354.
    [60]Kabanov A V, Kabanov V A. Interpolyelectrolyte and block ionomer complexes for gene delivery:Physicochemical aspects[J]. Advanced Drug Delivery Reviews,1998,
    30(1-3):49-60.
    [61]Antonietti M, Breulmann M, Goltner C G, Colfen H, Wong K K W, Walsh D, Mann S. Inorganic/organic mesostructures with complex architectures:Precipitation of calcium phosphate in the presence of double-hydrophilic block copolymers[J]. Chemistry-a European Journal,1998,4(12):2493-2500.
    [62]Colfen H, Antonietti M. Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers[J]. Langmuir,1998,14(3):582-589.
    [63]Dimitrov I, Trzebicka B, Muller A H E, Dworak A, Tsvetanov C B. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities[J]. Progress in Polymer Science,2007,32(11):1275-1343.
    [64]Arotcarena M, Heise B, Ishaya S, Laschewsky A. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity[J]. Journal of the American Chemical Society,2002,124(14):3787-3793.
    [65]Weaver J V M, Armes S P, Butun V. Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer[J]. Chemical Communications,2002, (18):2122-2123.
    [66]Sugihara S, Kanaoka S, Aoshima S. Double thermosensitive diblock copolymers of vinyl ethers with pendant oxyethylene groups:Unique physical gelation[J]. Macromolecules,2005, 38(5):1919-1927.
    [67]Xu J, Luo S Z, Shi W F, Liu S Y. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas[J]. Langmuir,2006,22(3):989-997.
    [68]Scales C W, Convertine A J, McCormick C L. Fluorescent labeling of RAFT-generated poly(N-isopropylacrylamide) via a facile maleimide-thiol coupling reaction[J]. Biomacromolecules,2006,7(5):1389-1392.
    [69]Yusa S I, Fukuda K, Yamamoto T, Iwasaki Y, Watanabe A, Akiyoshi K, Morishima Y. Salt effect on the heat-induced association Behavior of gold nanoparticles coated with Poly(N-isopropylacrylamide) prepared via reversible addition-Fragmentation chain transfer (RAFT) radical polymerization[J]. Langmuir,2007,23(26):12842-12848.
    [70]Ray B, Isobe Y, Morioka K, Habaue S, Okamoto Y, Kamigaito M, Sawamoto M. Synthesis of isotactic poly(N-isopropylacrylamide) by RAFT polymerization in the presence of Lewis acid[J]. Macromolecules,2003,36(3):543-545.
    [71]Schilli C M, Zhang M F, Rizzardo E, Thang S H, Chong Y K, Edwards K, Karlsson G, Muller A H E. A new double-responsive block copolymer synthesized via RAFT polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid)[J]. Macromolecules,2004,37(21): 7861-7866.
    [72]You Y Z, Hong C Y, Pan C Y. Preparation of smart polymer/carbon nanotube conjugates via stimuli-responsive linkages[J]. Advanced Functional Materials,2007,17(14):2470-2477.
    [73]You Y Z, Hong C Y, Pan C Y, Wang P H. Synthesis of a dendritic core-shell nanostructure with a temperature-sensitive shell[J]. Advanced Materials,2004,16(21):1953-+.
    [74]Qin H N, Xiu Z L, Zhang D J, Bao Y M, Li X H, Han G Z. PEGylation of hirudin and analysis of its antithrombin activity in vitro[J]. Chinese Journal of Chemical Engineering, 2007,15(4):586-590.
    [75]Boyer C, Bulmus V, Liu J Q, Davis T P, Stenzel M H, Barner-Kowollik C. Well-defined protein-polymer conjugates via in situ RAFT polymerization[J]. Journal of the American Chemical Society,2007,129(22):7145-7154.
    [76]De P, Li M, Gondi S R, Sumerlin B S. Temperature-regulated activity of responsive polymer-protein conjugates prepared by grafting-from via RAFT polymerization[J]. Journal of the American Chemical Society,2008,130(34):11288-+.
    [77]周月明.多种拓扑结构聚合物的合成及性能研究[D].合肥:中国科学技术大学,2008.
    [78]Teodorescu M, Matyjaszewski K. Atom transfer radical polymerization of (meth)acrylamides[J]. Macromolecules,1999,32(15):4826-4831.
    [79]Rademacher J, Baum R, Pallack M, Brittain W, Simonsick W. Atom transfer radical polymerization of N,N-dimethylacrylamide[J]. Macromolecules,2000,33(2):284-288.
    [80]Xia Y, Yin X C, Burke N A D, Stover H D H. Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization[J]. Macromolecules,2005,38(14):5937-5943.
    [81]Xia Y, Burke N A D, Stover H D H. End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization[J]. Macromolecules,2006,39(6):2275-2283.
    [82]Ciampolini M, Nardi N. Five-Coordinated High-Spin Complexes of Bivalent Cobalt, Nickel, andCopper with Tris(2-dimethylaminoethyl)amine [J]. Inorganic Chemistry,1966, 5:41-44.
    [83]Matyjaszewski K, Xia J H. Atom transfer radical polymerization[J]. Chemical Reviews,2001, 101(9):2921-2990.
    [84]Alexandridis P, Holzwarth J F, Hatton T A. Micellization of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Triblock Copolymers in Aqueous-Solutions-Thermodynamics of Copolymer Association [J]. Macromolecules,1994, 27(9):2414-2425.
    [85]Brown W. Light Scattering, Principles and Development[M]. Oxford, England Clarendon Press,1996.
    [86]Evans D F, Wennerstrom H. The Colloidal Domain:Where Physics, Chemistry, Biology, and Technology Meet[M]. New York:VCH Publishers,1994.
    [87]Cao Y, Zhao N, Wu K, Zhu X X. Solution Properties of a Thermosensitive Triblock Copolymer of N-Alkyl Substituted Acrylamides[J]. Langmuir,2009,25(3):1699-1704.
    [88]Li C M, Buurma N J, Haq I, Turner C, Armes S P, Castelletto V, Hamley I W, Lewis A L. Synthesis and characterization of biocompatible, thermoresponsive ABC and ABA triblock copolymer gelators[J]. Langmuir,2005,21(24):11026-11033.
    [89]Chen X R, Ding X B, Zheng Z H, Peng Y X. Thermosensitive polymeric vesicles self-assembled by PNIPAAm-b-PPG-b-PNIPAAm triblock copolymers[J]. Colloid and Polymer Science,2005,283(4):452-455.
    [90]Dimitrov P, Rangelov S, Dworak A, Haraguchi N, Hirao A, Tsvetanov C B. Triblock and radial star-block copolymers comprised of poly(ethoxyethyl glycidyl ether), polyglycidol, poly(propylene oxide) and polystyrene obtained by anionic polymerization initiated by Cs initiators[J]. Macromolecular Symposia,2004,215:127-139.
    [91]Hua F J, Jiang X G, Zhao B. Temperature-induced self-association of doubly thermosensitive diblock copolymers with pendant methoxytris(oxyethyiene) groups in dilute aqueous solutions[J]. Macromolecules,2006,39(10):3476-3479.
    [92]Weaver J V M, Bannister I, Robinson K L, Bories-Azeau X, Armes S P, Smallridge M, McKenna P. Stimulus-responsive water-soluble polymers based on 2-hydroxyethyl methacrylate[J]. Macromolecules,2004,37(7):2395-2403.
    [1]Butun V, Billingham N C, Armes S P. Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer:Formation of micelles and reverse micelles in aqueous solution[J]. Journal of the American Chemical Society,1998,120(45):11818-11819.
    [2]Alarcon C D H, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications[J]. Chemical Society Reviews,2005,34(3):276-285.
    [3]Xu J, Liu S Y. Polymeric nanocarriers possessing thermoresponsive coronas[J]. Soft Matter, 2008,4(9):1745-1749.
    [4]Liu S Y, Billingham N C, Armes S P. A schizophrenic water-soluble diblock copolymer[J]. Angewandte Chemie-International Edition,2001,40(12):2328-+.
    [5]Liu S Y, Armes S P. Polymeric surfactants for the new millennium:A pH-responsive, zwitterionic, schizophrenic diblock copolymer[J]. Angewandte Chemie-International Edition, 2002,41(8):1413-1416.
    [6]Cai Y L, Armes S P. A Zwitterionic ABC triblock copolymer that forms a "Trinity" of micellar aggregates in aqueous solution[J]. Macromolecules,2004,37(19):7116-7122.
    [7]Bories-Azeau X, Armes S P, van den Haak H J W. Facile synthesis of zwitterionic diblock copolymers without protecting group chemistry [J]. Macromolecules,2004,37(7):2348-2352.
    [8]Rao J Y, Luo Z F, Ge Z S, Liu H, Liu S Y. "Schizophrenic" micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer[J]. Biomacromolecules,2007,8(12):3871-3878.
    [9]Ge Z S, Cai Y L, Yin J, Zhu Z Y, Rao J Y, Liu S Y. Synthesis and'Schizophrenic' micellization of double hydrophilic AB(4) miktoarm star and AB diblock copolymers: Structure and kinetics of micellization[J]. Langmuir,2007,23(3):1114-1122.
    [10]Liu S Y, Armes S P. Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer[J]. Langmuir,2003,19(10):4432-4438.
    [11]Butun V, Armes S P, Billingham N C, Tuzar Z, Rankin A, Eastoe J, Heenan R K. The remarkable "flip-flop" self-assembly of a diblock copolymer in aqueous solution[J]. Macromolecules,2001,34(5):1503-1511.
    [12]Weaver J V M, Armes S P, Butun V. Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer[J]. Chemical Communications,2002, (18):2122-2123.
    [13]Arotcarena M, Heise B, Ishaya S, Laschewsky A. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity[J]. Journal of the American Chemical Society,2002,124(14):3787-3793.
    [14]Schild H G. Poly (N-Isopropylacrylamide)-Experiment, Theory and Application[J]. Progress in Polymer Science,1992,17(2):163-249.
    [15]Butun V, Armes S P, Billingham N C. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers[J]. Polymer,2001,42(14):5993-6008.
    [16]Lee A S, Gast A P, Butun V, Armes S P. Characterizing the structure of pH dependent polyelectrolyte block copolymer micelles[J]. Macromolecules,1999,32(13):4302-4310.
    [17]Zhang Y F, Wu T, Liu S Y. Micellization kinetics of a novel multi-responsive double hydrophilic diblock copolymer studied by stopped-flow pH and temperature jump[J]. Macromolecular Chemistry and Physics,2007,208(23):2492-2501.
    [18]Higley M N, Pollino J M, Hollembeak E, Week M. A modular approach toward block copolymers[J]. Chemistry-A European Journal,2005, 11(10):2946-2953.
    [19]Karikari A S, Mather B D, Long T E. Association of star-shaped poly(D,L-lactide)s containing nucleobase multiple hydrogen bonding[J]. Biomacromolecules,2007, 8(1):302-308.
    [20]Scherman O A, Ligthart G B W L, Ohkawa H, Sijbesma R P, Meijer E W. Olefin metathesis and quadruple hydrogen bonding:A powerful combination in multistep supramolecular synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(32):11850-11855.
    [21]Yang X W, Hua F J, Yamato K, Ruckenstein E, Gong B, Kim W, Ryu C Y. Supramolecular AB diblock copolymers[J]. Angewandte Chemie-International Edition,2004, 43(47):6471-6474.
    [22]Binder W H, Bernstorff S, Kluger C, Petraru L, Kunz M J. Tunable materials from hydrogen-bonded pseudo block copolymers[J]. Advanced Materials,2005,17(23):2824-+.
    [23]Noro A, Nagata Y, Takano A, Matsushita Y. Diblock-type supramacromolecule via biocomplementary hydrogen bonding[J]. Biomacromolecules,2006,7(6):1696-1699.
    [24]Park T, Zimmerman S C. A supramolecular multi-block copolymer with a high propensity for alternation[J]. Journal of the American Chemical Society,2006,128(43):13986-13987.
    [25]Chiper M, Meier M A R, Wouters D, Hoeppener S, Fustin C A, Gohy J F, Schubert U S. Supramolecular self-assembled Ni(Ⅱ), Fe(Ⅱ), and Co(Ⅱ) ABA triblock copolymers[J]. Macromolecules,2008,41(8):2771-2777.
    [26]Gohy J F, Lohmeijer B G G, Schubert U S. From supramolecular block copolymers to advanced nano-objects[J]. Chemistry-A European Journal,2003,9(15):3472-3479.
    [27]Lohmeijer B G G, Wouters D, Yin Z H, Schubert U S. Block copolymer libraries:modular versatility of the macromolecular Lego (R) system[J]. Chemical Communications,2004, (24):2886-2887.
    [28]Pollino J M, Stubbs L P, Weck M. One-step multifunctionalization of random copolymers via self-assembly[J]. Journal of the American Chemical Society,2004,126(2):563-567.
    [29]Huang F, Nagvekar D S, Slebodnick C, Gibson H W. A supramolecular triarm star polymer from a homotritopic tris(crown ether) host and a complementary monotopic paraquat-terminated polystyrene guest by a supramolecular coupling method[J]. Journal of the American Chemical Society,2005,127(2):484-485.
    [30]Rauwald U, Scherman O A. Supramolecular block copolymers with cucurbit[8]uril in water[J]. Angewandte Chemie-International Edition,2008,47(21):3950-3953.
    [31]Wang J, Jiang M. Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation[J]. Journal of the American Chemical Society, 2006,128(11):3703-3708.
    [32]Harada A. Cyclodextrin-based molecular machines[J]. Accounts of Chemical Research,2001, 34(6):456-464.
    [33]Miyauchi M, Harada A. Construction of supramolecular polymers with alternating alpha-, beta-cyclodextrin units using conformational change induced by competitive guests[J]. Journal of the American Chemical Society,2004,126(37):11418-11419.
    [34]Harada A, Hashidzume A, Takashima Y. Cyclodextrin-based supramolecular polymers[J]. Advances in Polymer Science,2006,201:1-43.
    [35]Harada A. Design and construction of supramolecular architectures consisting of cyclodextrins and polymers[J]. Advances in Polymer Science,1997,133:141-191.
    [36]Harada A, Li J, Kamachi M. Double-Stranded Inclusion Complexes of Cyclodextrin
    Threaded on Poly(Ethylene Glycol)[J]. Nature,1994,370(6485):126-128.
    [37]Harada A, Li J, Kamachi M. Synthesis of a Tubular Polymer from Threaded Cyclodextrins[J]. Nature,1993,364(6437):516-518.
    [38]Harada A, Li J, Kamachi M. The Molecular Necklace-a Rotaxane Containing Many Threaded Alpha-Cyclodextrins[J]. Nature,1992,356(6367):325-327.
    [39]Ooya T, Yui N. Synthesis of theophylline-polyrotaxane conjugates and their drug release via supramolecular dissociation[J]. Journal of Controlled Release,1999,58(3):251-269.
    [40]Kamimura W, Ooya T, Yui N. Interaction of supramolecular assembly with hairless rat stratum corneum[J]. Journal of Controlled Release,1997,44(2-3):295-299.
    [41]Ooya T, Choi H S, Yamashita A, Yui N, Sugaya Y, Kano A, Maruyama A, Akita H, Ito R, Kogure K, Harashima H. Biocleavable polyrotaxane-Plasmid DNA polyplex for enhanced gene delivery[J]. Journal of the American Chemical Society,2006,128(12):3852-3853.
    [42]Choi H S, Huh K M, Ooya T, Yui N. pH-and thermosensitive supramolecular assembling system:Rapidly responsive properties of beta-cyclodextrin-conjugated poly(epsilon-lysine) [J]. Journal of the American Chemical Society,2003,125(21):6350-6351.
    [43]Nelson A, Belitsky J M, Vidal S, Joiner C S, Baum L G, Stoddart J F. A self-assembled multivalent pseudopolyrotaxane for binding galectin-1[J]. Journal of the American Chemical Society,2004,126(38):11914-11922.
    [44]Li J, Li X, Zhou Z H, Ni X P, Leong K W. Formation of supramolecular hydrogels induced by inclusion complexation between pluronics and alpha-cyclodextrin[J]. Macromolecules, 2001,34(21):7236-7237.
    [45]Ni X P, Cheng A, Li J. Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin[J]. Journal of Biomedical Materials Research Part A,2009,88A(4):1031-1036.
    [46]Guo M Y, Jiang M, Pispas S, Yu W, Zhou C X. Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG and alpha-Cyclodextrin and Their Hybridization with SiO2 Nanoparticles through Host-Guest Interaction[J]. Macromolecules, 2008,41(24):9744-9749.
    [47]Liu Y, Yang Y W, Chen Y, Zou H X. Polyrotaxane with cyclodextrins as stoppers and its assembly behavior[J]. Macromolecules,2005,38(13):5838-5840.
    [48]Zeng J G, Shi K Y, Zhang Y Y, Sun X H, Zhang B L. Construction and micellization of a noncovalent double hydrophilic block copolymer[J]. Chemical Communications,2008, (32):3753-3755.
    [49]Amajjahe S, Choi S, Munteanu M, Ritter H. Pseudopolyanions based on poly(NIPAAM-co- beta-cyclodextrin methacrylate) and ionic liquids[J]. Angewandte Chemie-International Edition,2008,47(18):3435-3437.
    [50]Liu Y Y, Fan X D, Zhao Y B. Synthesis and characterization of a poly(N-isopropylacrylamide) with beta-cyclodextrin as pendant groups[J]. Journal of Polymer Science Part A-Polymer Chemistry,2005,43(16):3516-3524.
    [51]Sandier A, Brown W, Mays H, Amiel C. Interaction between an adamantane end-capped poly(ethylene oxide) and a beta-cyclodextrin polymer[J]. Langmuir,2000,16(4):1634-1642.
    [52]Hasegawa Y, Miyauchi M, Takashima Y, Yamaguchi H, Harada A. Supramolecular polymers formed from beta-cyclodextrms dimer linked by poly(ethylene glycol) and guest dimers[J]. Macromolecules,2005,38(9):3724-3730.
    [53]Chen D Y, Jiang M. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions[J]. Accounts of Chemical Research,2005, 38(6):494-502.
    [54]Liu S Y, Jiang M. New approaches to polymer micellization and the structural evolution of the micelles[J]. Chemical Journal Of Chinese Universities-Chinese,2001,22(6):1066-1072.
    [55]Wang M, Jiang M, Ning F L, Chen D Y, Liu S Y, Duan H W. Block-copolymer-free strategy for preparing micelles and hollow spheres:Self-assembly of poly(4-vinylpyridine) and modified polystyrene[J]. Macromolecules,2002,35(15):5980-5989.
    [56]Hoogenboom R, Fournier D, Schubert U S. Asymmetrical supramolecular interactions as basis for complex responsive macromolecular architectures[J]. Chemical Communications, 2008, (2):155-162.
    [57]Nakade H, Ilker M F, Jordan B J, Uzun O, LaPointe N L, Coughlin E B, Rotello V M. Duplex strand formation using alternating copolymers[J]. Chemical Communications,2005, (26):3271-3273.
    [58]Jahnke E, Severin N, Kreutzkamp P, Rabe J P, Frauenrath H. Molecular level control over hierarchical structure formation and polymerization of oligopeptide-polymer conjugates[J]. Advanced Materials,2008,20(3):409-+.
    [59]Zhang Z X, Liu X, Xu F J, Loh X J, Kang E T, Neoh K G, Li J. Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a beta-cyclodextrin core and guest-bearing PEG:Controlling thermoresponsivity through supramolecular self-assembly [J]. Macromolecules,2008,41(16):5967-5970.
    [60]Smith A P, Fraser C L. Ruthenium-centered heteroarm stars by a modular coordination approach:Effect of polymer composition on rates of chelation[J]. Macromolecules,2003, 36(15):5520-5525.
    [61]Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature,2008,451(7181):977-980.
    [62]Lohmeijer B G G, Schubert U S. Supramolecular engineering with macromolecules:An alternative concept for block copolymers[J]. Angewandte Chemie-International Edition,2002, 41(20):3825-3829.
    [63]Zhou G C, Harruna I I. Synthesis and characterization of Bis(2,2':6',2"-terpyridine) ruthenium(Il)-connected diblock polymers via RAFT polymerization[J]. Macromolecules, 2005,38(10):4114-4123.
    [64]Yamauchi K, Lizotte J R, Long T E. Synthesis and characterization of novel complementary multiple-hydrogen bonded (CMHB) macromolecules via a Michael addition[J]. Macromolecules,2002,35(23):8745-8750.
    [65]Rekharsky M V, Inoue Y. Complexation thermodynamics of cyclodextrins[J]. Chemical Reviews,1998,98(5):1875-1917.
    [66]Miyauchi M, Kawaguchi Y, Harada A. Formation of supramolecular polymers constructed by cyclodextrins with cinnamamide[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2004,50(1):57-62.
    [67]Miyauchi M, Takashima Y, Yamaguchi H, Harada A. Chiral supramolecular polymers formed by host-guest interactions[J]. Journal of the American Chemical Society,2005, 127(9):2984-2989.
    [68]Liu Y, Xu J, Craig S L. Hierarchical self-assembly of noncovalent amphiphiles[J]. Chemical Communications,2004, (16):1864-1865.
    [69]Crespo-Biel O, Dordi B, Reinhoudt D N, Huskens J. Supramolecular layer-by-layer assembly: Alternating adsorptions of guest-and host-functionalized molecules and particles using multivalent supramolecular interactions[J]. Journal of the American Chemical Society,2005, 127(20):7594-7600.
    [70]Liu Y, Yu Z L, Zhang Y M, Guo D S, Liu Y P. Supramolecular architectures of beta-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation[J]. Journal of the American Chemical Society,2008, 130(31):10431-10439.
    [71]Zhang W, Shiotsuki M, Masuda T. Synthesis of substituted polyacetylenes grafted with polystyrene chains by the macromonomer method and their characterization[J]. Macromolecular Chemistry and Physics,2006,207(11):933-940.
    [72]Petter R C, Salek J S, Sikorski C T, Kumaravel G, Lin F T. Cooperative Binding by Aggregated Mono-6-(Alkylamino)-Beta-Cyclodextrins[J]. Journal of the American Chemical Society,1990,112(10):3860-3868.
    [73]Yasugi K, Nakamura T, Nagasaki Y, Kato M, Kataoka K. Sugar-installed polymer micelles: Synthesis and micellization of poly(ethylene glycol)-poly(D,L-lactide) block copolymers having sugar groups at the PEG chain end[J]. Macromolecules,1999,32(24):8024-8032.
    [74]Narain R, Armes S P. Direct synthesis and aqueous solution properties of well-defined cyclic sugar methacrylate polymers[J]. Macromolecules,2003,36(13):4675-4678.
    [75]Liu H, Jiang X Z, Fan J, Wang G H, Liu S Y. Aldehyde surface-functionalized shell cross-linked micelles with pH-tunable core swellability and their bioconjugation with lysozyme[J]. Macromolecules,2007,40(25):9074-9083.
    [76]Zhang J Y, Li Y T, Armes S P, Liu S Y. Probing the micellization kinetics of pyrene end-labeled diblock copolymer via a combination of stopped-flow light-scattering and fluorescence techniques [J]. Journal of Physical Chemistry B,2007,111(42):12111-12118.
    [77]Gao H F, Siegwart D J, Jahed N, Sarbu T, Matyjaszewski K. Characterization of alpha, omega-dihydroxypolystyrene by gradient polymer elution chromatography and two-dimensional liquid chromatography [J]. Designed Monomers and Polymers,2005, 8(6):533-546.
    [78]Mantovani G, Lecolley F, Tao L, Haddleton D M, Clerx J, Cornelissen J J L M, Velonia K. Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization:A suitable alternative to PEGylation chemistry[J]. Journal of the American Chemical Society,2005,127(9):2966-2973.
    [79]Licciardi M, Tang Y, Billingham N C, Armes S P. Synthesis of novel folic acid-functionalized biocompatible block copolymers by atom transfer radical polymerization for gene delivery and encapsulation of hydrophobic drugs[J]. Biomacromolecules,2005,6(2):1085-1096.
    [80]Mantovani G, Ladmiral V, Tao L, Haddleton D M. One-pot tandem living radical polymerisation-Huisgens cycloaddition process ("click") catalysed by N-alkyl-2-pyridylmethanimine/Cu(I)Br complexes[J]. Chemical Communications,2005, (16):2089-2091.
    [81]Oishi M, Nagasaki Y, Itaka K, Nishiyama N, Kataoka K. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile ss-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells[J]. Journal of the American Chemical Society,2005,127(6):1624-1625.
    [82]Vogt A P, Sumerlin B S. An efficient route to macromonomers via ATRP and click chemistry[J]. Macromolecules,2006,39(16):5286-5292.
    [83]Bencini M, Ranucci E, Ferruti P, Manfredi A, Trotta F, Cavalli R. Poly(4-acryloylmorpholine) oligomers carrying a beta-cyclodextrin residue at one terminus[J]. Journal of Polymer Science Part A-Polymer Chemistry,2008,46(5):1607-1617.
    [84]Bednarek M, Biedron T, Kubisa P. Studies of atom transfer radical polymerization (ATRP) of acrylates by MALDI TOF mass spectrometry[J]. Macromolecular Chemistry and Physics, 2000,201(1):58-66.
    [85]Schon F, Hartenstein M, Muller A H E. New strategy for the synthesis of halogen-free acrylate macromonomers by atom transfer radical polymerization[J]. Macromolecules,2001, 34(16):5394-5397.
    [86]Cai Y L, Armes S P. Synthesis of well-defined Y-shaped zwitterionic block copolymers via atom-transfer radical polymerization[J]. Macromolecules,2005,38(2):271-279.
    [87]Xia Y, Yin X C, Burke N A D, Stover H D H. Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization[J]. Macromolecules, 2005,38(14):5937-5943.
    [88]Xia Y, Burke N A D, Stover H D H. End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization[J]. Macromolecules,2006,39(6):2275-2283.
    [89]Masci G, Giacomelli L, Crescenzi V. Atom transfer radical polymerization of N-isopropylacrylamide[J]. Macromolecular Rapid Communications,2004,25(4):559-564.
    [90]Finn M G, Kolb H C, Fokin V V, Sharpless K B. Click chemistry-Definition and aims[J]. Progress in Chemistry,2008,20(1):1-4.
    [91]Xu J, Ye J, Liu S Y. Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior[J]. Macromolecules,2007, 40(25):9103-9110.
    [92]Connors K A. The stability of cyclodextrin complexes in solution[J]. Chemical Reviews, 1997,97(5):1325-1357.
    [93]Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems[J]. Chemical Reviews, 1998,98(5):2045-2076.
    [94]Choi H S, Yui N. Design of rapidly assembling supramolecular systems responsive to synchronized stimuli[J]. Progress in Polymer Science,2006,31(2):121-144.
    [95]Hapiot F, Tilloy S, Monflier E. Cyclodextrins as supramolecular hosts for organometallic complexes[J]. Chemical Reviews,2006,106(3):767-781.
    [96]Guo M Y, Jiang M, Zhang G Z. Surface modification of polymeric vesicles via host-guest inclusion complexation[J]. Langmuir,2008,24(19):10583-10586.
    [97]Ohashi H, Hiraoka Y, Yamaguchi T. An autonomous phase transition-complexation /decomplexation polymer system with a molecular recognition property[J]. Macromolecules, 2006,39(7):2614-2620.
    [98]Brown W. Light Scattering, Principles and Development[M]. Oxford, England Clarendon Press,1996.
    [99]Evans D F, Wennerstrom H. The Colloidal Domain:Where Physics, Chemistry, Biology, and Technology Meet[M]. New York:VCH Publishers,1994.
    [1]Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery[J]. Colloids and Surfaces B-Biointerfaces,1999,16(1-4):3-27.
    [2]Gaucher G, Dufresne M H, Sant V P, Kang N, Maysinger D, Leroux J C. Block copolymer micelles:preparation, characterization and application in drug delivery[J]. Journal of
    Controlled Release,2005,109(1-3):169-188.
    [3]Kabanov A V, Alakhov V Y. Pluronic (R) block copolymers in drug delivery:From micellar nanocontainers to biological response modifiers[J]. Critical Reviews in Therapeutic Drug Carrier Systems,2002,19(1):1-72.
    [4]Kabanov A V, Batrakova E V, Alakhov V Y. Pluronic (R) block copolymers as novel polymer therapeutics for drug and gene delivery[J]. Journal of Controlled Release,2002, 82(2-3):189-212.
    [5]Kabanov A V, Batrakova E V, Meliknubarov N S, Fedoseev N A, Dorodnich T Y, Alakhov V Y, Chekhonin V P, Nazarova I R, Kabanov V A. A New Class of Drug Carriers-Micelles of Poly(Oxyethylene)-Poly(Oxypropylene) Block Copolymers as Microcontainers for Drug Targeting from Blood in Brain[J]. Journal of Controlled Release,1992,22(2):141-157.
    [6]Kabanov A V, Lemieux P, Vinogradov S, Alakhov V. Pluronic((R)) block copolymers:novel functional molecules for gene therapy[J]. Advanced Drug Delivery Reviews,2002, 54(2):223-233.
    [7]Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery:design, characterization and biological significance[J]. Advanced Drug Delivery Reviews,2001, 47(1):113-131.
    [8]Kwon G S, Kataoka K. Block-Copolymer Micelles as Long-Circulating Drug Vehicles[J]. Advanced Drug Delivery Reviews,1995,16(2-3):295-309.
    [9]Zhang L F, Eisenberg A. Multiple Morphologies of Crew-Cut Aggregates of Polystyrene-B-Poly(Acrylic Acid) Block-Copolymers[J]. Science,1995,268(5218): 1728-1731.
    [10]Zhang L F, Eisenberg A. Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions[J]. Journal of the American Chemical Society,1996,118(13):3168-3181.
    [11]Discher D E, Eisenberg A. Polymer vesicles[J]. Science,2002,297(5583):967-973.
    [12]Licciardi M, Giammona G, Du J Z, Armes S P, Tang Y Q, Lewis A L. New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery systems[J]. Polymer,2006,47(9):2946-2955.
    [13]Licciardi M, Tang Y, Billingham N C, Armes S P. Synthesis of novel folic acid-functionalized biocompatible block copolymers by atom transfer radical polymerization for gene delivery and encapsulation of hydrophobic drugs[J]. Biomacromolecules,2005, 6(2):1085-1096.
    [14]Pan D, Turner J L, Wooley K L. Folic acid-conjugated nanostructured materials designed for cancer cell targeting[J]. Chemical Communications,2003, (19):2400-2401.
    [15]Bae Y, Jang W D, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery[J]. Molecular Biosystems,2005,1(3):242-250.
    [16]Qi K, Ma Q G, Remsen E E, Clark C G, Wooley K L. Determination of the bioavailability of biotin conjugated onto shell cross-linked (SCK) nanoparticles[J]. Journal of the American Chemical Society,2004,126(21):6599-6607.
    [17]Liu J Q, Zhang Q, Remsen E E, Wooley K L. Nanostructured materials designed for cell binding and transduction[J]. Biomacromolecules,2001,2(2):362-368.
    [18]Becker M L, Remsen E E, Pan D, Wooley K L. Peptide-derivatized shell-cross-linked nanoparticles.1. Synthesis and characterization[J]. Bioconjugate Chemistry,2004, 15(4):699-709.
    [19]Becker M L, Liu J Q, Wooley K L. Functionalized micellar assemblies prepared via block copolymers synthesized by living free radical polymerization upon peptide-loaded resins[J]. Biomacromolecules,2005,6(1):220-228.
    [20]Yamamoto Y, Nagasaki Y, Kato M, Kataoka K. Surface charge modulation of poly(ethylene glycol)-poly(D, L-lactide) block copolymer micelles:conjugation of charged peptides[J]. Colloids And Surfaces B-Biointerfaces,1999,16(1-4):135-146.
    [21]Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K. Long-circulating poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles with modulated surface charge[J]. Journal of Controlled Release,2001,77(1-2):27-38.
    [22]Joralemon M J, Murthy K S, Remsen E E, Becker M L, Wooley K L. Synthesis, characterization, and bioavailability of mannosylated shell cross-linked nanoparticles[J]. Biomacromolecules,2004,5(3):903-913.
    [23]Wakebayashi D, Nishiyama N, Yamasaki Y, Itaka K, Kanayama N, Harada A, Nagasaki Y, Kataoka K. Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system:their preparation and gene transfecting efficiency against cultured HepG2 cells[J]. Journal of Controlled Release,2004,95(3):653-664.
    [24]Yasugi K, Nakamura T, Nagasaki Y, Kato M, Kataoka K. Sugar-installed polymer micelles: Synthesis and micellization of poly(ethylene glycol)-poly(D,L-lactide) block copolymers having sugar groups at the PEG chain end[J]. Macromolecules,1999,32(24):8024-8032.
    [25]Oishi M, Nagasaki Y, Itaka K, Nishiyama N, Kataoka K. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile ss-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma
    cells[J]. Journal of the American Chemical Society,2005,127(6):1624-1625.
    [26]Joralemon M J, Smith N L, Holowka D, Baird B, Wooley K L. Antigen-decorated shell cross-linked nanoparticles:Synthesis, characterization, and antibody interactions [J]. Bioconjugate Chemistry,2005,16(5):1246-1256.
    [27]Turner J L, Becker M L, Li X X, Taylor J S A, Wooley K L. PNA-directed solution-and surface-assembly of shell crosslinked (SCK) nanoparticle conjugates [J]. Soft Matter,2005, 1(1):69-78.
    [28]Pan D J, Turner J L, Wooley K L. Shell cross-linked nanoparticles designed to target angiogenic blood vessels via alpha(v)beta(3) receptor-ligand interactions[J]. Macromolecules, 2004,37(19):7109-7115.
    [29]Sun X K, Rossin R, Turner J L, Becker M L, Joralemon M J, Welch M J, Wooley K L. An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution[J]. Biomacromolecules,2005,6(5):2541-2554.
    [30]Thurmond K B, Remsen E E, Kowalewski T, Wooley K L. Packaging of DNA by shell crosslinked nanoparticles [J]. Nucleic Acids Research,1999,27(14):2966-2971.
    [31]Ishii T, Otsuka H, Kataoka K, Nagasaki Y. Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation by alpha-biotinyl-PEG-block-[poly(2-(N,N-dimethylamino)ethyl methacrylate)][J]. Langmuir, 2004,20(3):561-564.
    [32]Iijima M, Nagasaki Y, Okada T, Kato M, Kataoka K. Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers[J]. Macromolecules,1999, 32(4):1140-1146.
    [33]Narain R, Armes S P. Direct synthesis and aqueous solution properties of well-defined cyclic sugar methacrylate polymers[J]. Macromolecules,2003,36(13):4675-4678.
    [34]Narain R, Armes S P. Synthesis and aqueous solution properties of novel sugar methacrylate-based homopolymers and block copolymers[J]. Biomacromolecules,2003, 4(6):1746-1758.
    [35]Kataoka K, Harada A, Wakebayashi D, Nagasaki Y. Polyion complex micelles with reactive aldehyde groups on their surface from plasmid DNA and end-functionalized charged blocks copolymers[J]. Macromolecules,1999,32(20):6892-6894.
    [36]Nagasaki Y, Okada T, Scholz C, Iijima M, Kato M, Kataoka K. The reactive polymeric micelle based on an aldehyde-ended poly(ethylene glycol)/poly(lactide) block copolymer[J]. Macromolecules,1998,31(5):1473-1479.
    [37]Akiyama Y, Harada A, Nagasaki Y, Kataoka K. Synthesis of poly(ethylene glycol)-block- poly(ethylenimine) possessing an acetal group at the PEG end[J]. Macromolecules,2000, 33(16):5841-5845.
    [38]Rheingans 0, Hugenberg N, Harris J R, Fischer K, Maskos M. Nanoparticles built of cross-linked heterotelechelic, amphiphilic poly(dimethylsiloxane)-b-poly(ethylene oxide) diblock copolymers[J]. Macromolecules,2000,33(13):4780-4790.
    [39]Huang H Y, Kowalewski T, Remsen E E, Gertzmann R, Wooley K L. Hydrogel-coated glassy nanospheres:A novel method for the synthesis of shell cross-linked knedels[J]. Journal of the American Chemical Society,1997,119(48):11653-11659.
    [40]Huang H Y, Remsen E E, Kowalewski T, Wooley K L. Nanocages derived from shell cross-linked micelle templates[J]. Journal of the American Chemical Society,1999, 121(15):3805-3806.
    [41]Zhang Q, Remsen E E, Wooley K L. Shell cross-linked nanoparticles containing hydrolytically degradable, crystalline core domains[J]. Journal of the American Chemical Society,2000,122(15):3642-3651.
    [42]Joralemon M J, O'Reilly R K, Hawker C J, Wooley K L. Shell Click-crosslinked (SCC) nanoparticles:A new methodology for synthesis and orthogonal functionalization[J]. Journal of the American Chemical Society,2005,127(48):16892-16899.
    [43]Tao J, Liu G J, Ding J F, Yang M L. Cross-linked nanospheres of poly(2-cinnamoylethyl methacrylate) with immediately attached surface functional groups[J]. Macromolecules,1997, 30(14):4084-4089.
    [44]Becker M L, Liu J Q, Wooley K L. Peptide-polymer bioconjugates:hybrid block copolymers generated via living radical polymerizations from resin-supported peptides[J]. Chemical Communications,2003, (2):180-181.
    [45]Guo A, Liu G J, Tao J. Star polymers and nanospheres from cross-linkable diblock copolymers[J]. Macromolecules,1996,29(7):2487-2493.
    [46]Henselwood F, Liu G J. Water-soluble nanospheres of poly(2-cinnamoylethyl methacrylate)-block-poly(acrylic acid)[J]. Macromolecules,1997,30(3):488-493.
    [47]Kakizawa Y, Harada A, Kataoka K. Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond[J]. Journal of the American Chemical Society,1999,121(48):11247-11248.
    [48]Bronich T K, Keifer P A, Shlyakhtenko L S, Kabanov A V. Polymer micelle with cross-linked ionic core[J]. Journal of the American Chemical Society,2005,127(23):8236-8237.
    [49]Zeng Y, Pitt W G. Poly(ethylene oxide)-b-poly(N-isopropylacrylamide) nanoparticles with cross-linked cores as drug carriers[J]. J. Biomater. Sci. Polymer Edn.,2005,16(3):371-380.
    [50]Huang H Y, Hoogenboom R, Leenen M A M, Guillet P, Jonas A M, Schubert U S, Gohy J F. Solvent-induced morphological transition in core-cross-linked block copolymer micelles[J]. Journal of the American Chemical Society,2006,128(11):3784-3788.
    [51]O'Reilly R K, Joralemon M J, Hawker C J, Wooley K L. Preparation of orthogonally-functionalized core Click cross-linked nanoparticles[J]. New Journal of Chemistry,2007,31(5):718-724.
    [52]Thurmond K B, Kowalewski T, Wooley K L. Water-soluble knedel-like structures:The preparation of shell-cross-linked small particles[J]. Journal of the American Chemical Society, 1996,118(30):7239-7240.
    [53]Thurmond K B, Kowalewski T, Wooley K L. Shell cross-linked knedels:A synthetic study of the factors affecting the dimensions and properties of amphiphilic core-shell nanospheres[J]. Journal of the American Chemical Society,1997,119(28):6656-6665.
    [54]Butun V, Billingham N C, Armes S P. Synthesis of shell cross-linked micelles with tunable hydrophilic/hydrophobic cores[J]. Journal of the American Chemical Society,1998, 120(46):12135-12136.
    [55]Butun V, Wang X S, Banez M V D, Robinson K L, Billingham N C, Armes S P, Tuzar Z. Synthesis of shell cross-linked micelles at high solids in aqueous media[J]. Macromolecules, 2000,33(1):1-3.
    [56]Liu S Y, Armes S P. The facile one-pot synthesis of shell cross-linked micelles in aqueous solution at high solids[J]. Journal of the American Chemical Society,2001, 123(40):9910-9911.
    [57]Liu S Y, Weaver J V M, Tang Y Q, Billingham N C, Armes S P, Tribe K. Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers[J]. Macromolecules,2002,35(16):6121-6131.
    [58]Fujii S, Cai Y L, Weaver J V M, Armes S P. Syntheses of shell cross-linked micelles using acidic ABC triblock copolymers and their application as pH-responsive particulate emulsifiers[J]. Journal of the American Chemical Society,2005,127(20):7304-7305.
    [59]Pilon L N, Armes S P, Findlay P, Rannard S P. Synthesis and characterization of shell cross-linked micelles with hydroxy-functional coronas:A pragmatic alternative to dendrimers?[J]. Langmuir,2005,21(9):3808-3813.
    [60]Jiang X Z, Luo S Z, Armes S P, Shi W F, Liu S Y. UV irradiation-induced shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers[J]. Macromolecules,2006, 39(18):5987-5994.
    [61]Li Y T, Lokitz B S, Armes S P, McCormick C L. Synthesis of reversible shell cross-linked micelles for controlled release of bioactive agents[J]. Macromolecules,2006, 39(8):2726-2728.
    [62]Engin K, Leeper D B, Cater J R, Thistlethwaite A J, Tupchong L, McFarlane J D. Extracellular Ph Distribution in Human Tumors[J]. International Journal of Hyperthermia, 1995,11(2):211-216.
    [63]Chen G P, Ito Y, Imanishi Y. Micropattern immobilization of a pH-sensitive polymer[J]. Macromolecules,1997,30(22):7001-7003.
    [64]Tao L, Mantovani G, Lecolley F, Haddleton D M. alpha-aldehyde terminally functional methacrylic polymers from living radical polymerization:Application in protein conjugation "pegylation"[J]. Journal of the American Chemical Society,2004,126(41):13220-13221.
    [65]Haddleton D M, Waterson C. Phenolic ester-based initiators for transition metal mediated living polymerization[J]. Macromolecules,1999,32(26):8732-8739.
    [66]Tang Y Q, Liu S Y, Armes S P, Billingham N C. Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers[J]. Biomacromolecules,2003,4(6):1636-1645.
    [67]Bories-Azeau X, Armes S P. Unexpected transesterification of tertiary amine methacrylates during methanolic ATRP at ambient temperature:A cautionary tale[J]. Macromolecules,2002, 35(27):10241-10243.
    [68]Smith M B. Organic Synthesis[M].2nd. New York:McGraw-Hill,2002.
    [69]Butun V, Billingham N C, Armes S P. Synthesis and aqueous solution properties of novel hydrophilic-hydrophilic block copolymers based on tertiary amine methacrylates[J]. Chemical Communications,1997, (7):671-672.
    [70]Lee A S, Gast A P, Butun V, Armes S P. Characterizing the structure of pH dependent polyelectrolyte block copolymer micelles[J]. Macromolecules,1999,32(13):4302-4310.
    [71]Butun V, Armes S P, Billingham N C. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers[J]. Polymer,2001,42(14):5993-6008.
    [72]Butun V, Armes S P, Billingham N C. Selective quaternization of 2-(dimethylamino)ethyl methacrylate residues in tertiary amine methacrylate diblock copolymers[J]. Macromolecules, 2001,34(5):1148-1159.
    [73]Layer R W. The Chemistry of Imines[J]. Chemical Reviews,1963,63(5):489-510.
    [74]Sprung M A. A Summary of the Reactions of Aldehydes with Amines[J]. Chemical Reviews, 1940,26(3):297-338.
    [1]deSilva A P, Gunaratne H Q N, Gunnlaugsson T, Huxley A J M, McCoy C P, Rademacher J T, Rice T E. Signaling recognition events with fluorescent sensors and switches[J]. Chemical Reviews,1997,97(5):1515-1566.
    [2]Basabe-Desmonts L, Reinhoudt D N, Crego-Calama M. Design of fluorescent materials for chemical sensing[J]. Chemical Society Reviews,2007,36(6):993-1017.
    [3]Yildiz I, Deniz E, Raymo F M. Fluorescence modulation with photochromic switches in nanostructured constructs[J]. Chemical Society Reviews,2009,38(7):1859-1867.
    [4]Germain M E, Knapp M J. Optical explosives detection:from color changes to fluorescence turn-on[J]. Chemical Society Reviews,2009,38(9):2543-2555.
    [5]McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors[J]. Chemical Reviews,2000,100(7):2537-2574.
    [6]Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ion[J]. Chemical Reviews,2008,108(9):3443-3480.
    [7]Guo X F, Zhang D Q, Zhu D B. Logic control of the fluorescence of a new dyad, spiropyran-perylene diimide-spiropyran, with light, ferric ion, and proton:Construction of a new three-input "AND" logic gate[J]. Advanced Materials,2004,16(2):125-130.
    [8]Lin W Y, Long L L, Chen B B, Tan W. A Ratiometric Fluorescent Probe for Hypochlorite Based on a Deoximation Reaction[J]. Chemistry-A European Journal,2009, 15(10):2305-2309.
    [9]Mancin F, Rampazzo E, Tecilla P, Tonellato U. Self-assembled fluorescent chemosensors[J]. Chemistry-A European Journal,2006,12(7):1844-1854.
    [10]Nolan E M, Lippard S J. Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry[J]. Accounts of Chemical Research,2009,42(1):193-203.
    [11]Qian F, Zhang C L, Zhang Y M, He W J, Gao X, Hu P, Guo Z J. Visible Light Excitable Zn2+
    Fluorescent Sensor Derived from an Intramolecular Charge Transfer Fluorophore and Its in Vitro and in Vivo Application[J]. Journal of the American Chemical Society,2009, 131(4):1460-1468.
    [12]Shao N, Jin J Y, Wang G L, Zhang Y, Yang R H, Yuan J L. Europium(III) complex-based luminescent sensing probes for multi-phosphate anions:Modulating selectivity by ligand choice[J]. Chemical Communications,2008, (9):1127-1129.
    [13]Tsien R Y. New Calcium Indicators and Buffers with High Selectivity against Magnesium and Protons:Design, Synthesis, and Properties of Prototype Structures[J]. Biochemistry, 1980,19:2396-2404.
    [14]Xue L, Liu C, Jiang H. A ratiometric fluorescent sensor with a large Stokes shift for imaging zinc ions in living cells[J]. Chemical Communications,2009, (9):1061-1063.
    [15]Yang Y K, Yook K J, Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media[J]. Journal of the American Chemical Society,2005,127(48):16760-16761.
    [16]Yi L, Li H Y, Sun L, Liu L L, Zhang C H, Xi Z. A Highly Sensitive Fluorescence Probe for Fast Thiol-Quantification Assay of Glutathione Reductase[J]. Angewandte Chemie-International Edition,2009; 48(22):4034-4037.
    [17]Zhang X L, Xiao Y, Qian X H. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells[J]. Angewandte Chemie-International Edition,2008, 47(42):8025-8029.
    [18]Boisselier E, Astruc D. Gold nanoparticles in nanomedicine:preparations, imaging, diagnostics,therapies and toxicity[J]. Chem. Soc. Rev,2009,38:1759-1782.
    [19]Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science,1997,277(5329):1078-1081.
    [20]Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials,2005,4(6):435-446.
    [21]Han W S, Lee H Y, Jung S H, Lee S J, Jung J H. Silica-based chromogenic and fluorogenic hybrid chemosensor materials[J]. Chemical Society Reviews,2009,38(7):1904-1915.
    [22]Kim H J, Lee S J, Park S Y, Jung J H, Kim J S. Detection of Cu-II by a chemodosimeter-functionalized monolayer on mesoporous silica[J]. Advanced Materials, 2008,20(17):3229-3234.
    [23]Tao S Y, Li G T, Zhu H S. Metalloporphyrins as sensing elements for the rapid detection of trace TNT vapor[J]. Journal of Materials Chemistry,2006,16(46):4521-4528.
    [24]李慧慧,吕凤婷,张淑娟,何刚,房喻.硝基芳烃类隐藏炸药检测用荧光薄膜的制备及性能[J].科学通报,2008,53(4):394-399
    [25]Adhikari B, Majumdar S. Polymers in sensor applications[J]. Progress in Polymer Science, 2004,29(7):699-766.
    [26]Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors[J]. Chemical Reviews,2000,100(7):2495-2504.
    [27]Gao D M, Zhang Z P, Wu M H, Xie C G, Guan G J, Wang D P. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles[J]. Journal of the American Chemical Society,2007,129(25):7859-7866.
    [28]He F, Feng F, Wang S, Li Y L, Zhu D B. Fluorescence ratiometric assays of hydrogen peroxide and glucose in serum using conjugated polyelectrolytes[J]. Journal of Materials Chemistry,2007,17(35):3702-3707.
    [29]Zeng Q, Cai P, Li Z, Qin J G, Tang B Z. An imidazole-functionalized polyacetylene: convenient synthesis and selective chemosensor for metal ions and cyanide[J]. Chemical Communications,2008, (9):1094-1096.
    [30]Allard E, Larpent C. Core-shell type dually fluorescent polymer nanoparticles for ratiometric pH-sensing[J]. Journal of Polymer Science Part A-Polymer Chemistry,2008,46(18): 6206-6213.
    [31]Hornig S, Biskup C, Grafe A, Wotschadlo J, Liebert T, Mohr G J, Heinze T. Biocompatible fluorescent nanoparticles for pH-sensoring[J]. Soft Matter,2008,4(6):1169-1172.
    [32]He H R, Mortellaro M A, Leiner M J P, Fraatz R J, Tusa J K. A fluorescent sensor with high selectivity and sensitivity for potassium in water[J]. Journal of the American Chemical Society,2003,125(6):1468-1469.
    [33]Guo Z Q, Zhu W H, Tian H. Hydrophilic Copolymer Bearing Dicyanomethylene-4H-pyran Moiety As Fluorescent Film Sensor for Cu2+ and Pyrophosphate Anion[J]. Macromolecules, 2010,43(2):739-744.
    [34]Zhang G Q, Palmer G M, Dewhirst M, Fraser C L. A dual-emissive-materials design concept enables tumour hypoxia imaging[J]. Nature Materials,2009,8(9):747-751.
    [35]Uchiyama S, Kawai N, de Silva A P, Iwai K. Fluorescent polymeric AND logic gate with temperature and pH as inputs [J]. Journal of the American Chemical Society,2004, 126(10):3032-3033.
    [36]Uchiyama S, Matsumura Y, de Silva A P, Iwai K. Modulation of the sensitive temperature range of fluorescent molecular thermometers based on thermoresponsive polymers[J]. Analytical Chemistry,2004,76(6):1793-1798.
    [37]Hong S W, Kim K H, Huh J, Ahn C H, Jo W H. Design and synthesis of a new pH sensitive polymeric sensor using fluorescence resonance energy transfer[J]. Chemistry of Materials, 2005,17(25):6213-6215.
    [38]Hong S W, Kim D Y, Lee J U, Jo W H. Synthesis of Polymeric Temperature Sensor Based on Photophysical Property of Fullerene and Thermal Sensitivity of Poly(N-isopropylacrylamide)[J]. Macromolecules,2009,42(7):2756-2761.
    [39]Guo Z Q, Zhu W H, Xiong Y Y, Tian H. Multiple Logic Fluorescent Thermometer System Based on N-Isopropylmethacrylamide Copolymer Bearing Dicyanomethylene-4H-pyran Moiety[J]. Macromolecules,2009,42(5):1448-1453.
    [40]Pietsch C, Hoogenboom R, Schubert U S. Soluble Polymeric Dual Sensor for Temperature and pH Value[J]. Angewandte Chemie-International Edition,2009,48(31):5653-5656.
    [41]Tang L, Jin J K, Qin A J, Yuan W Z, Mao Y, Mei J, Sun J Z, Tang B Z. A fluorescent thermometer operating in aggregation-induced emission mechanism:probing thermal transitions of PNIPAM in water[J]. Chemical Communications,2009, (33):4974-4976.
    [42]Alarcon C D H, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications[J]. Chemical Society Reviews,2005,34(3):276-285.
    [43]Yin J, Guan X F, Wang D, Liu S Y. Metal-Chelating and Dansyl-Labeled Poly(N-isopropylacrylamide) Microgels as Fluorescent Cu2+ Sensors with Thermo-Enhanced Detection Sensitivity[J]. Langmuir,2009,25(19):11367-11374.
    [44]Liu T, Hu J M, Yin J, Zhang Y F, Li C H, Liu S Y. Enhancing Detection Sensitivity of Responsive Microgel-Based Cu(II) Chemosensors via Thermo-Induced Volume Phase Transitions[J]. Chemistry of Materials,2009,21(14):3439-3446.
    [45]Wu T, Zou G, Hu J M, Liu S Y. Fabrication of Photoswitchable and Thermotunable Multicolor Fluorescent Hybrid Silica Nanoparticles Coated with Dye-Labeled Poly(N-isopropylacrylamide) Brushes[J]. Chemistry of Materials,2009,21(16):3788-3798.
    [46]Hu J M, Li C H, Liu S Y. Hg2+-Reactive Double Hydrophilic Block Copolymer Assemblies as Novel Multifunctional Fluorescent Probes with Improved Performance[J]. Langmuir,2010, 26(2):724-729.
    [47]Finkel T. Oxidant signals and oxidative stress[J]. Current Opinion in Cell Biology,2003, 15(2):247-254.
    [48]Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis[J]. Archives of Biochemistry and Biophysics,2003,417(1):3-11.
    [49]Finkel T, Holbrook N J. Oxidants, oxidative stress and the biology of ageing[J]. Nature,2000, 408(6809):239-247.
    [50]Shahrokhian S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode[J]. Analytical Chemistry,2001,73(24):5972-5978.
    [51]Nekrassova 0, Lawrence N S, Compton R G. Analytical determination of homocysteine:a review[J]. Talanta,2003,60(6):1085-1095.
    [52]Wang W H, Rusin O, Xu X Y, Kim K K, Escobedo J O, Fakayode S O, Fletcher K A, Lowry M, Schowalter C M, Lawrence C M, Fronczek F R, Warner I M, Strongin R M. Detection of homocysteine and cysteine[J]. Journal of the American Chemical Society,2005, 127(45):15949-15958.
    [53]Matsumoto T, Urano Y, Shoda T, Kojima H, Nagano T. A thiol-reactive fluorescence probe based on donor-excited photoinduced electron transfer:Key role of ortho substitution[J]. Organic Letters,2007,9(17):3375-3377.
    [54]Chen X, Zhou Y, Peng X, Yoon J. Fluorescent and colorimetric probes for detection of thiols[J]. Chemical Society Reviews, DOI:10.1039/b925092a.
    [55]Zhang M, Yu M X, Li F Y, Zhu M W, Li M Y, Gao Y H, Li L, Liu Z Q, Zhang J P, Zhang D Q, Yi T, Huang C H. A highly selective fluorescence turn-on sensor for Cysteine/Homocysteine and its application in bioimaging[J]. Journal of the American Chemical Society,2007, 129(34):10322-+.
    [56]Lin W Y, Yuan L, Cao Z M, Feng Y M, Long L L. A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to alpha,beta-Unsaturated Ketones[J]. Chemistry-A European Journal,2009,15(20):5096-5103.
    [57]Kovacs J, Mokhir A. Catalytic hydrolysis of esters of 2-hydroxypyridine derivatives for Cu2+ detection[J]. Inorganic Chemistry,2008,47(6):1880-1882.
    [58]Bouffard J, Kim Y, Swager T M, Weissleder R, Hilderbrand S A. A highly selective fluorescent probe for thiol bioimaging[J]. Organic Letters,2008,10(1):37-40.
    [59]Langmuir M E, Yang J R, Moussa A M, Laura R, Lecompte K A. New Naphthopyranone Based Fluorescent Thiol Probes[J]. Tetrahedron Letters,1995,36(23):3989-3992.
    [60]de Silva A P, Gunaratne H Q N, Gunnlaugsson T. Fluorescent PET (photoinduced electron transfer) reagents for thiols[J]. Tetrahedron Letters,1998,39(28):5077-5080.
    [61]Corrie J E T. Thiol-Reactive Fluorescent-Probes for Protein Labeling[J]. Journal of the Chemical Society-Perkin Transactions 1,1994, (20):2975-2982.
    [62]Girouard S, Houle M H, Grandbois A, Keillor J W, Michnick S W. Synthesis and characterization of dimaleimide fluorogens designed for specific labeling of proteins[J]. Journal of the American Chemical Society,2005,127(2):559-566.
    [63]Guy J, Caron K, Dufresne S, Michnick S W, Skene W G, Keillor J W. Convergent preparation and photophysical characterization of dimaleimide dansyl fluorogens:Elucidation of the maleimide fluorescence quenching mechanism[J]. Journal of the American Chemical Society, 2007,129(39):11969-11977.
    [64]Mare S, Penugonda S, Ercal N. High performance liquid chromatography analysis of MESNA (2-mercaptoethane sulfonate) in biological samples using fluorescence detection[J]. Biomedical Chromatography,2005,19(1):80-86.
    [65]Huang S T, Ting K N, Wang K L. Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols[J]. Analytica Chimica Acta,2008,620(1-2):120-126.
    [66]Hong V, Kislukhin A A, Finn M G. Thiol-Selective Fluorogenic Probes for Labeling and Release[J]. Journal of the American Chemical Society,2009,131(29):9986-9994.
    [67]Rusin O, St Luce N N, Agbaria R A, Escobedo J O, Jiang S, Warner I M, Dawan F B, Lian K, Strongin R M. Visual detection of cysteine and homocysteine[J]. Journal of the American Chemical Society,2004,126(2):438-439.
    [68]Tanaka F, Mase N, Barbas C F. Determination of cysteine concentration by fluorescence increase:reaction of cysteine with a fluorogenic aldehyde[J]. Chemical Communications, 2004, (15):1762-1763.
    [69]Zhang M.Li M Y, Zhao Q, Li F Y, Zhang D Q, Zhang J P, Yi T, Huang C H. Novel Y-type two-photon active fluorophore:synthesis and application in fluorescent sensor for cysteine and homocysteine[J]. Tetrahedron Letters,2007,48(13):2329-2333.
    [70]Lin W Y, Long L L, Yuan L, Cao Z M, Chen B B, Tan W. A Ratiometric Fluorescent Probe for Cysteine and Homocysteine Displaying a Large Emission Shift[J]. Organic Letters,2008, 10(24):5577-5580.
    [71]Kim T K, Lee D N, Kim H J. Highly selective fluorescent sensor for homocysteine and cysteine[J]. Tetrahedron Letters,2008,49(33):4879-4881.
    [72]Lee K S, Kim T K, Lee J H, Kim H J, Hong J I. Fluorescence turn-on probe for homocysteine and cysteine in water[J]. Chemical Communications,2008, (46):6173-6175.
    [73]Li H L, Fan J L, Wang J Y, Tian M Z, Du J J, Sun S G, Sun P P, Peng X J. A fluorescent chemodosimeter specific for cysteine:effective discrimination of cysteine from homocysteine[J]. Chemical Communications,2009, (39):5904-5906.
    [74]Zhang X J, Ren X S, Xu Q H, Loh K P, Chen Z K. One-and Two-Photon Turn-on Fluorescent Probe for Cysteine and Homocysteine with Large Emission Shift[J]. Organic Letters,2009, 11(6):1257-1260.
    [75]Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N.2,4-dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to Ellman's reagent in thiol-quantification enzyme assays[J]. Angewandte Chemie-International Edition,2005,44(19):2922-2925.
    [76]Maeda H, Katayama K, Matsuno H, Uno T.3'-(2,4-Dinitirobenzenesulfonyl)-2',7 '-dimethyl-fluorescein as a fluorescent probe for selenols[J]. Angewandte Chemie-International Edition,2006,45(11):1810-1813.
    [77]Jiang W, Fu Q Q, Fan H Y, Ho J, Wang W. A highly selective fluorescent probe for thiophenols[J]. Angewandte Chemie-International Edition,2007,46(44):8445-8448.
    [78]Tang B, Yin L L, Wang X, Chen Z Z, Tong L L, Xu K H. A fast-response, highly sensitive and specific organoselenium fluorescent probe for thiols and its application in bioimaging[J]. Chemical Communications,2009, (35):5293-5295.
    [79]Tang B, Xing Y L, Li P, Zhang N, Yu F B, Yang G W. A rhodamine-based fluorescent probe containing a Se-N bond for detecting thiols and its application in living cells[J]. Journal of the American Chemical Society,2007,129(38):11666-+.
    [80]Pullela P K, Chiku T, Carvan M J, Sem D S. Fluorescence-based detection of thiols in vitro and in vivo using dithiol probes[J]. Analytical Biochemistry,2006,352(2):265-273.
    [81]Piggott A M, Karuso P. Fluorometric assay for the determination of glutathione reductase activity[J]. Analytical Chemistry,2007,79(22):8769-8773.
    [82]Pires M M, Chmielewski J. Fluorescence imaging of cellular glutathione using a latent rhodamine[J]. Organic Letters,2008,10(5):837-840.
    [83]Takadate A, Masuda T, Murata C, Isobe A, Shinohara T, Irikura M, Goya S. A derivatizing reagent-kit using a single coumarin fluorophore[J]. Analytical Sciences,1997,13(5): 753-756.
    [84]Sherman W R, Robins E. Fluorescence of substituted 7-hydroxycoumarins[J]. Analytical Chemistry,1968,40:803-805.
    [85]Wheelock C E. The fuorescence of some coumarins[J]. Journal of the American Chemical Society,1959,81(6):1348-1352.
    [86]Setsukinai K, Urano Y, Kikuchi K, Higuchi T, Nagano T. Fluorescence switching by O-dearylation of 7-aryloxycoumarins. Development of novel fluorescence probes to detect reactive oxygen species with high selectivity [J]. Journal of the Chemical Society-Perkin Transactions 2,2000, (12):2453-2457.
    [87]Hong S W, Jo W H. A fluorescence resonance energy transfer probe for sensing pH in aqueous solution[J]. Polymer,2008,49(19):4180-4187.
    [88]Kim T H, Swager T M. A fluorescent self-amplifying wavelength-responsive sensory polymer for fluoride ions[J]. Angewandte Chemie-International Edition,2003,
    42(39):4803-4806.
    [89]Cai Y L, Armes S P. Synthesis of well-defined Y-shaped zwitterionic block copolymers via atom-transfer radical polymerization[J]. Macromolecules,2005,38(2):271-279.
    [90]Lai J T, Filla D, Shea R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents[J]. Macromolecules,2002,35(18): 6754-6756.
    [91]You Y Z, Oupicky D. Synthesis of temperature-responsive heterobifunctional block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide)[J]. Biomacromolecules,2007,8(1):98-105.
    [92]Bernard A M, Ghiani M R, Piras P P, Rivoldini A. Dealkylation of activated alkyl aryl ethers using lithium-chloride in dimethylformamide[J]. Synthesis-Stuttgart,1989, (4):287-289.
    [93]孔令义.香豆素化学[M].北京:化学工业出版社2008.
    [94]Lutz J F, Hoth A. Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate [J]. Macromolecules,2006,39(2):893-896.
    [95]Perrier S, Takolpuckdee P, Mars C A. Reversible addition-fragmentation chain transfer polymerization:End group modification for functionalized polymers and chain transfer agent recovery[J]. Macromolecules,2005,38(6):2033-2036.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700