基于α-环糊精包合作用的聚合物网络结构的构筑及其光敏性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环糊精具有独特的外亲水内疏水结构,其疏水性空腔使它能够与某些尺寸大小匹配的疏水性客体分子形成主客体包合结构。基于环糊精和偶氮苯包合作用的光敏性网络体系因为在光控药物释放、光控开关、显示装置等方面具有广阔的应用前景而备受科学工作者青睐。
     本文分别合成了α-环糊精(α-CD)修饰的聚丙烯酸(α-CD-PAA)和偶氮苯(azo)修饰的聚丙烯酸(azo-PAA),然后将α-CD-PAA和azo-PAA进行复配,成功制备了具有紫外光响应性的聚合物网络结构,并采用流变学手段研究了聚合物网络的光敏性以及影响网络结构的因素,采用核磁共振谱图和紫外-可见分光光度计研究了聚合物网络的光敏机理。
     具体研究工作分述如下:
     首先对a-CD进行改性,合成六位单磺酰化α-CD (α-CD-6-OTs),然后与乙二胺反应合成六位单氨化α-CD (α-CD-6-EDA),最后通过酰胺化反应接枝到聚丙烯酸主链上,得到具有一定接枝度的α-CD改性聚丙烯酸(α-CD-PAA);将对氨基偶氮苯通过酰胺化反应同样接枝到具有相同分子量的聚丙烯酸主链上,得到具有一定接枝度的偶氮苯修饰的聚丙烯酸(azo-PAA),中间产品及最终产品均用核磁共振和傅里叶红外进行了表征。
     其次,将a-CD-PAA和azo-PAA的水溶液按照一定的摩尔配比进行复配,制备得到聚合物网络,用高级旋转流变仪测试了其粘度随紫外光照和避光处理的变化,发现其可随外界光照条件的变化而反复可逆的变化,表现出明显的光敏特性。研究复配体系光照前后粘度变化的影响因素发现,当聚合物浓度为6wt%时,紫外光照射后粘度下降最大,达到96%。另外,α-CD单体加入复配体系后可优先与偶氮苯包合,从而破坏了网络结构,明显降低体系的粘度。
     最后,本文用紫外可见吸收光谱研究了环糊精和偶氮苯的包合作用机理,比较了α、β、γ-CD与单体azo的包合能力,发现α-CD>β-CD>γ-CD,因此选择α-CD作为主体构筑光敏性网络;研究了α-CD与azo-PAA的包合行为,发现a-CD与azo基团的包合摩尔比为1:1,结合常数为4.7×103M-1;研究了azo-PAA的光响应性,发现azo-PAA且有良好的光响应特性,顺式构型在紫外光照射前后分别占10%和78%;单体α-CD的加入加速了azo-PAA的光异构速率,异构速率常数在加入α-CD前后分别为0.084和0.14s-1。
Self-assembly polymer networks based on a-CD have attracted much attention. In this paper, a kind of photoresponsive polymer network based on the photo-regulated interaction of azobenzene and a-CD was prepared, which has potential application in photonic, photo storage, photo switch and so on.
     Two kinds of polymers,α-CD modified poly(acrylic acid)s (α-CD-PAA) and azobenzene modified poly(acrylic acid)s (azo-PAA) were synthesized first. The photoresponsive polymer network was prepared by mixingα-CD-PAA and azo-PAA in water and then studied by rheology. Viscosity of the system changed repetitively and reversibly under UV irradiation and in dark, indicating the successful preparation of photoresponsive polymer network. Photoresponse mechanism was studied by UV-Vis absorption spectra and 1H NMR.
     For synthesis ofα-CD-PAA, mono-sulfonatedα-CD(a-CD-6-OTs) was synthesized first. Then mono-aminatedα-CD (α-CD-6-EDA) was obtained withα-CD-6-OTs and ethylenediamine. At lastα-CD-PAA was prepared by graftingα-CD-6-EDA onto PAA chain. Azo-PAA was prepared by reaction of p-amino-azobenzene with PAA.
     Photoresponsive polymer network was prepared with a-CD-PAA and azo-PAA. Rheological studies show that viscosity ofα-CD-PAA/azo-PAA aqueous solution could respond to UV light and darkness repetitively and reversibly. It decreased under UV irradiation and went back in dark. Effects of polymer concentration and mono-α-CD on viscosity ofα-CD-PAA/azo-PAA system were studied. The results are that the viscosity increased with polymer concentration and decreased with amount of mono-α-CD.
     Interaction ofα-CD and azo was studied by UV-Vis absorption spectra, which show the photoresponsive mechanism of polymer network. Binding ofα-CD with azo is much stronger thanβ-CD andγ-CD.α-CD and azo-PAA forms 1 to 1 complex and the binding constant was calculated to be 4.7X10 M-1. Azo-PAA can isomerize from trans to cis and cis to trans successfully.10% azo moeties on azo-PAA are in cis form before UV irradiation and 78% after UV irradiation. The trans-cis isomerization was accelerated by addingα-CD and the rate constants in the presence and absence of a-CD were calculated to be 0.084 and 0.14s-1.
引文
[1]Szejtli J. Intruduction and general overview of cyclodextrin chemistry. Chemical Review. 1998,98(5):1743-1753.
    [2]刘育,尤长城,张衡益.超分子化学.天津:南开大学出版社.2001.193.
    [3]童林荟.环糊精化学基础与应用.北京:科学出版社.2001.10-11.
    [4]郭明雨,江明.基于环糊精包结络合作用的大分子自组装.化学进展.2007,19(4):557-564.
    [5]E. M Martin Del Valle. Cyclodextrins and their uses:a review. Process Biochemistry. 2004,39(9):1033-1046.
    [6]Miyauchi M, Harada. Construction of supramolecular polymers with alternating a-, β-cyclodextrin units using conformational change induced by competitive guests. A. J. Am. Chem. Soc..2004,126(37):11418-11419
    [7]Miyauchi M, Takashima Y, Harada A, et al. Chiral Supramolecular Polymers Formed by Host-Guest Interactions. J. Am. Chem. Soc.,2005,127(9):294-2989
    [8]Hasegawa R, Miyauchi M, Harada A, et al. Supramolecular Polymers Formed from β-Cyclodextrins Dimer Linked by Poly(ethylene glycol) and Guest Dimers. Macromolecules.2005,38(9):3724-3730
    [9]Harada A, Kamachi M. Complex formation between poly (ethylene glycol) and-cyclodextrin. Macromolecules.1990,23(10):2823-2824
    [10]Harada A, LI J, Kamachi M. The molecular necklace:a rotaxane containing many threaded a-cyclodextrins. Nature.1992,356(6367):325-327
    [11]Okada M, Harada. Preparation of β-Cyclodextrin Polyrotaxane:□ Photodimerization of pseudo-Polyrotaxane with 2-Anthryl and Triphenylmethyl Groups at the Ends of Polypropylene glycol). Org. Lett..2004,6(3):361-364
    [12]Okada M, Harada A. Poly (polyrotaxane):photoreactions of 9-anthracene-capped polyrotaxane. Macromolecules.2003,36(26):9701-9703
    [13]Okada M, Takashima Y, Harada A. One-Pot Synthesis of y-Cyclodextrin Polyrotaxane: Trap of y-Cyclodextrin by Photodimerization of Anthracene-Capped p seudo-Polyrotaxane. Macromolecules.2004,37(19):7075-7077
    [14]Moffitt M, Khougaz K, Eisenberg A. Micellization of ionic block copolymers. Acc. Chem. Res..1996,29(2):95-102
    [15]Jiang M, Li M, Xiang M, et al. Interpolymer complexation and miscibility enhancement by hydrogen bonding. Adv. Polym.Sci.,1999,146:121-196
    [16]Wang J, Jiang M. Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation. J. Am.Chem. Soc.,2006,128(11): 3703-3708
    [17]Guo X H, Abdala A A, May B L, et al. Rheology control by modulating hydrophobic and inclusion associations in modified poly(acrylic acid) solutions[J]. Polymer,2006,47(9): 2976-2983.
    [18]Guo X H, Abdala A A, May B L, et al. Novel associative polymer networks based on cyclodextrin inclusion compounds[J]. Macromolecules,2005,38(7):3037-3040.
    [19]Kevin G. Yager, Christopher J. Barrett. Novel photo-switching using azobenzene functional materials. Journal of Photochemistry and Photobiology A:Chemistry 182 (2006)250-261
    [20]王罗新,王晓工.偶氮苯顺反异构化机理研究进展.化学通报.2008,4,243
    [21]Florian Hamon, Florence Djedaini-Pilard, Francis Barbo, Christophe Len. Azobenzenesdsynthesis and carbohydrate applications. Tetrahedron 65 (2009) 10105-10123
    [22]H Rau, E Luddeeke. J.Am.Chem.Soe..1982,104:1616-1620
    [23]陈清元.沈家瑞.陈建海.功能高分子学报,2001(2)
    [24]E. Huang, L. Rockford,C. J. Hawker, et al. Nanodomain control in copolymer thin films Nature.1998,395,757-758.
    [25]F. S. Bates, G. H. Fredrickson. Phys.Today,1999,52,32-38.
    [26]C. Park, J. Yoon, E. L.Thomas. Enabling nanotechnology with self assembled block copolymer patterns. Polymer.2003,44,6725-6760.
    [27]T. P. Lodge. Block copolymers:past successes and future challenges. Macromol. Chem. Phys..2003,204,265-273.
    [28]S. Kadota, K. Aoki, T. Seki, et al. Photocontrolled microphase separation of block copolymers in two dimensions. J. Am. Chem. Soc..2005,127,8266-8267.
    [29]H. Yu, T. Iyoda, T. Ikeda. Photoinduced alignment of nanocylinders by supramolecular cooperative motions. J. Am. Chem.Soc..2006,128,11010-11011.
    [30]Y. Morikawa, S. Nagano, T. Seki, et al. Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film. Adv.Mater.,2006,18,883-886.
    [31]T. Pakula, K. Saijo, H. Kawai and T. Hashimoto. Deformation behavior of styrene-butadiene-styrene triblock copolymer with cylindrical morphology. Macromolecules.1985,18,1294-1302.
    [32]S. Bai, Y. Zhao. Azobenzene-containing thermoplastic elastomers:coupling mechanical and optical effects. Macromolecules.2001,34,9032-9038.
    [33]K. Ichimura. Photoalignment of liquid-crystal systems. Chem. Rev..2000,100, 1847-1874.
    [34]A. Natansohn, P. Rochon. Chem. Rev..2002,102,4139-4175.
    [35]T. Ikeda. Photomodulation of liquid crystal orientations for photonic applications. J. Mater. Chem..2003,13,2037-2057.
    [36]N. Viswanathan, D. Y. Kim, S. K. Tripathy, et al. Surface relief structures on azo polymer films. J. Mater. Chem..1999,9,1941-1955.
    [37]Y. Zhao, T. Ikeda, New Jersey, et al. Smart Light-Responsive Materials: Azobenzene-Containing. Polymers and Liquid Crystals, ed.2009.
    [38]M. Hackel, L. Kador, H. W. Schmidt, et al. Holographic gratings in diblock copolymers with azobenzene and mesogenic side groups in the photoaddressable dispersed phase. Adv. Funct. Mater..2005,15,1722-1727.
    [39]M. Hackel, L. Kador, H. W. Schmidt, et al. Polymer Blends with Azobenzene-Containing Block Copolymers as Stable Rewritable Volume Holographic Media. Adv. Mater..2007,19,227-231.
    [40]E. J. Kramer, H. W. Schmidt. Blends of poly (methacrylate) block copolymers with photoaddressable segments. Macromolecules.2007,40,2100-2108.
    [41]D. E. Discher, A. Eisenberg. Polymer vesicles. Science.2002,297,967-973.
    [42]J. Rodriguez-Hernandez, F. Checot, S. Lecommandoux, et al. Toward'smart' nano-objects by self-assembly of block copolymers in solution. Prog. Polym. Sci.,2005, 30,691-724
    [43]C. J. F. Rijchen, O. Soga, C. F. van-Nostrum, et al. J. Controlled Release,2007,120, 131-148.
    [44]G. Wang, X. Tong, Y. Zhao. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules,2004,37,8911.
    [45]X. Tong, G. Wang, Y. Zhao, et al. How can azobenzene block copolymer vesicles be dissociated and reformed by light? J. Phys. Chem. B,2005,109,20281-20287.
    [46]Kazuo Sugiyama, Kazuro Sono. Characterization of Photo- and Thermoresponsible Amphiphilic Copolymers Having Azobenzene Moietie as Side Groups. Journal of Applied Polymer Science,2001,81,3056-3063
    [47]Wei Su, Kuo Han, Qijin Zhang et al. Formation and Photoresponsive Properties of Giant Microvesicles Assembled from Azobenzene-Containing Amphiphilic Diblock Copolymers. Macromol. Chem. Phys.2007,208,955-963
    [48]Nagatoshi Koumura, Masabumi Kudo, Nobuyuki Tamaoki. Photocontrolled Gel-to-Sol-to-Gel Phase Transitioning of meta-Substituted Azobenzene Bisurethanes through the Breaking and Reforming of Hydrogen Bonds. Langmuir 2004,20, 9897-9900
    [49]Jianwei Liu, Jun Nie, Yufei Zhao, Yong He. Preparation and properties of different photoresponsive hydrogels modulated with UV and visible light irradiation. Journal of Photochemistry and Photobiology A:Chemistry,2010,211,20-25
    [50]anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Tomiki Ikeda, Makoto Nakano, Yanlei Yu, Osamu Tsutsumi, Akihiko Kanazawa. Adv. Mater,2003,15,201-205
    [51]Tsuyoshi Shimoboji, Edmund Larenas, Samarth Kulkarni, et al. Photoresponsive polymer-enzyme switches. PNAS,2002,99,16592-16596
    [52]G. Pouliquen and C. Tribet. Light-Triggered Association of Bovine Serum Albumin and Azobenzene-Modified Poly(acrylic acid) in Dilute and Semidilute Solutions. Macromolecules 2006,39,373-383
    [53]Masako Takei, Hiroharu Yui,et al. Femtosecond Time-Resolved Spectroscopy of Photoisomerization of Methyl Orange in Cyclodextrins. J. Phys. Chem. A,2001,. 105,11395-11399
    [54]D.J. Barbirica, E.A. Castrob, et al. A molecular mechanics study of 1:1 complexes betweenazobenzene derivatives and b-cyclodextrin. Journal of Molecular Structure (Theochem),2000,532,171-181
    [55]Pei Jie Zheng, Xiao Hu, Kam Chiu Tam et al,. Supramolecular Complexes of Azocellulose and -Cyclodextrin:Isothermal Titration Calorimetric and Spectroscopic Studies. Macromolecules 2005,38,2859-2864
    [56]Weiyan Wang, Ming-Zhu Wang. Effect of a-Cyclodextrin on the Photoisomerization of Azobenzene Functionalized Hydroxypropyl Methylcellulose in Aqueous Solution. Polymer Bulletin,200759,537-544
    [57]Inoue, Y., P. Kuad, et al. Journal of the American Chemical Society,2007,129(20),6396
    [58]Zhao, Y. L. and J. F. Stoddart. Azobenzene-Based Light-Responsive Hydrogel System. Langmuir,2009,25(15),8442-8446.
    [59]Tatsuhiko Fujimoto, Asao Nakamura, et al. Photoswitching of the association of a permethylated -cyclodextrin-azobenzene dyad forming a Janus[2]pseudorotaxane. Tetrahedron Letters.2001,42,7987-7989
    [60]Yu Liu, Yan-Li Zhao,et al. Spectrophotometric Study of Inclusion Complexation of Aliphatic Alcohols byα-Cyclodextrins with Azobenzene Tether. J. Phys. Chem. B 2004, 108,8836-8843
    [61]Liu, Y., Y. L. Zhao, et al. Assembly behavior of inclusion complexes of beta-cyclodextrin with 4-hydroxyazobenzene and 4-aminoazobenzene. Organic & Biomolecular Chemistry,2005,3(4),584-591
    [62]Yu Liu, Zi-Xin Yang, and Yong Chen. Syntheses and Self-Assembly Behaviors of the Azobenzenyl Modified-Cyclodextrins Isomers. J. Org. Chem.2008,73,5298-5304
    [63]Tomatsu, I., A. Hashidzume, et al. Photoresponsive hydrogel system using molecular recognition of a-cyclodextrin. Macromolecules.2005,38(12),5223-5227.
    [64]Hashidzume, A., I. Tomatsu, et al. Interaction of cyclodextrins with side chains of water soluble polymers:A simple model for biological molecular recognition and its utilization for stimuli-responsive systems. Polymer.2006,47(17),6011-6027.
    [65]Zhao, Y. L., J. F. Stoddart. Azobenzene-Based Light-Responsive Hydrogel System. Langmuir.2009,25(15),8442-8446.
    [66]Tomatsu, I., A. Hashidzume, et al. Contrast viscosity changes upon photoirradiation for mixtures of poly (acrylic acid)-based a-cyclodextrin and azobenzene polymers. Journal of the American Chemical Society,2006,128(7),2226-2227.
    [67]Pouliquen, G., C. Amiel, et al. Photoresponsive viscosity and host-guest association in aqueous mixtures of poly-cyclodextrin with azobenzene-modified poly(acrylic)acid. Journal of Physical Chemistry B,2007,111(20):5587-5595.
    [68]Zheng, P. J., X. Hu, et al. Photoregulated sol-gel transition of novel azobenzene-functionalized hydroxypropyl methylcellulose and its alpha-cyclodextrin complexes. Macromolecular Rapid Communications,2004,25(5),678-682
    [69]Luo, C. H., F. Zuo, et al. Journal of Applied Polymer Science,2008,107(4):2118-2125.
    [70]Chunhua Luo, Fang Zuo, Zhaohui Zheng. Temperature/Light Dual-Responsive Inclusion Complexes of a-Cyclodextrins and Azobenzene-Containing Polymers. Journal of Macromolecular Science, Part A:Pure and Applied Chemistry,2008,45,364-371
    [71]J.C.Rodriguez-Cabello, Matilde ALonso, Alessandra Girotti et al. amplified photoresponse of a p-phenylazobenzene derivative of an elastin-like polymer by a-cyclodextrin:the amplified △Tt mechanism. Adv. Mater.2002,14,1151-1154
    [72]Hiroto Murakami, Atsushi Kawabuchi, Naotoshi Nakashima et al. A Light-Driven Molecular Shuttle Based on a Rotaxane. J. Am. Chem. Soc.1997,119,7605-7606
    [73]Hiroto Murakami, Atsushi Kawabuchi, Naotoshi Nakashima et al. A Multi-Mode-Driven Molecular Shuttle:Photochemically and Thermally Reactive Azobenzene Rotaxanes. J. Am. Chem. Soc.2005,127,15891-15899
    [74]Liangliang Zhu, Xiang Ma, He Tian et al. Effective Enhancement of Fluorescence Signals in Rotaxane-Doped Reversible Hydrosol-Gel Systems.Chem. Eur. J.2007,13, 9216-9222
    [75]Itsuro Tomatsu, Akihito Hashidzume, Akira Harada. Angew. Chem. Int. Ed.2006,45, 4605-4608
    [76]Yapei Wang, Meng Zhang, Xi Zhang et al. Block copolymer aggregates with photo-responsive switches:Towards a controllable supramolecular container. Polymer, 2009,50,4821-4828
    [77]Jiong Zou,Bing Guan, Ming Jiang, et al. Dual Reversible Self-Assembly of PNIPAM-Based Amphiphiles Formed by Inclusion Complexation. Macromolecules 2009, 42,7465-7473 7465
    [78]Yapei Wang, Ning Ma, Xi Zhang et al. Photocontrolled Reversible Supramolecular Assemblies of an Azobenzene-Containing Surfactant with a-Cyclodextrin. Angew. Chem. 2007,119,2881-2884
    [79]Xin Chen, Lei Hong, Qijin Zhanga et al. Photo-controlled molecular recognition of a-cyclodextrin with azobenzene containing polydiacetylene vesicles. Chem. Commun., 2009,1356-1358
    [80]Akihiko Ueno, Tomoko Shimizu, K. Pitchumani et al. Supramolecular Chemistry of Cyclodextrin-Peptide Hybrids:Azobenzene-Tagged Peptides. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2002,44,49-52.
    [81]Liu Y Y, Fan X D. Synthesis and characterization of pH- and temperature-sensitive hydrogel of N-isopropylacrylamide/cyclodextrin based copolymer[J]. Polymer,2002, 43(18):4997-5003.
    [82]Liu Y Y, Fan X D, Gao L. Synthesis and characterization of β-cyclodextrin based functional monomers and its copolymers with N-isopropylacrylamide[J]. Macromol. Biosci.,2003,3(12):715-719.
    [83]Zhong N, Byun H S, Bittman R. Hydrophilic cholesterol-binding molecular imprinted polymers[J]. Tetrahedron Letters,2001,42(10):1839-1841.
    [84]Wang J, Jiang M. Polymeric self-assembly intomicelles and hollow spheres with multiscale cavities driven by inclusion complexation[J]. J. Am. Chem. Soc.,2006, 128(11):3703-3708.
    [85]GuoXH, Abdala A A, May B L, et al. Rheology control by modulating hydrophobic and inclusion associations in modified poly(acrylic acid) solutions [J]. Polymer,2006, 47(9):2976-2983.
    [86]Guo X H, Abdala A A, May B L, et al. Novel associative polymer networks based on cyclodextrin inclusion compounds[J]. Macromolecules,2005,38(7):3037-3040.
    [87]Sandier A, Brown W, Mays H. Interaction between an adamantine end-capped poly(ethylene oxide) and a β-cyclodextrin polymer[J]. Langmuir,2000,16(4): 1634-1642.
    [88]Ikeda Y, Kimura K, Hirayama F, et al. Controlled release of a water-soluble drug, captopril,by a combination of hydrophilic and hydrophobic cyclodextrin derivatives[J]. J. Controlled Release.2000,66(2-3):271-280.
    [89]Rubinstein M, Semenov A N. Dynamics of Entangled Solutions of Associating Polymers[J]. Macromolecules.2001,34(4):1058-1068.
    [90]Li L, Guo X H, Fu L, et al. Macromolecular networks based on inclusion associations between β-cyclodextrin and adamantly groups grafted to poly(acrylic acid) [J]. Polymer preprints.2006,47(2):547-548.
    [91]Wintgens V, Charles M, Allouache F. Triggering the Thermosensitive Properties of Hydrophobically Modified Poly (N-isopropylacrylamide) by Complexation with Cyclodextrin Polymers. Macromol. Chem. Phys..2005,206(18):1853-1861
    [92]Ritter H, Sadowski O, Tepper E. Angew. Chem. Int. Ed..2003,42(27):3171-3173
    [93]Schmitz S, Ritter H. Unusual solubility properties of polymethacrylamides as a result of supramolecular interactions with cyclodextrin. Angew. Chem. Int. Ed..2005,44(35): 5658-5661
    [94]Tomatsu I, Hashidzume A, Harada A. Redox-Responsive Hydrogel System Using the Molecular Recognition of (β-Cyclodextrin. Macromol. Rapid. Commun., 2006,27(4):238-241
    [95]Saenger W. Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed..1980,19(5):344-362
    [96]Wang rui, Yu zhiwu. Validity and reliability of benesi-hildebrand method. Acta Phys.-Chim. Sin..2007,23(9):1353-1359.
    [97]Daisuke Taura, Shujing Li, Akihito Hashidzume, Akira Harada. Formation of Side-Chain Hetero-Polypseudorotaxane Composed of α-and β-Cyclodextrins with a Water-Soluble Polymer Bearing Two Recognition Sites. Macromolecules.2010,43,1706-1713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700