基于第二代小波的机械故障信号处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对安全生产和产品质量需求的不断提高,当机电设备偏离正常工作状态时,要求能够被及时发现并进行维修,因此设备的故障诊断技术成为当前国际国内研究的一大热点问题。第二代小波是近年来发展起来的一种新的小波构造理论,具有许多传统小波变换无法比拟的优点,在信号分析和处理领域得到了广泛应用。为此,本文以机械设备的故障监测和诊断为目的,系统地开展了第二代小波理论在信号压缩、信号消噪、故障检测以及故障模式分类方面的应用研究。
     首先,研究了第二代小波滤波器的时频特性,指出了采用第二代小波对机械故障信号分析时存在的问题。研究表明,第二代小波的尺度滤波器和小波滤波器在时域中是紧支撑的、对称的,并且具有冲击特征,可以用来提取故障信号中的瞬态冲击特征;第二代小波滤波器在频域中不具备理想的频率特性,频带之间存在交叠;第二代小波具备分析非平稳信号的能力,但是分析结果存在频率混叠问题,因此在故障诊断中的应用存在局限性。
     其次,研究了第二代小波变换的频率混叠问题,提出了抑制频率混叠的方法,为故障特征的有效提取提供了理论依据。分析了分裂操作、预测操作、更新操作以及合成操作的性质,指出了第二代小波产生频率混叠的原因和抑制频率混叠的方法;研究了冗余第二代小波的性质,结果表明,冗余第二代小波在变换过程中不进行分裂和合成操作,因此不仅可以抑制分析结果中的频率混叠成分,而且使变换具备了平移不变性。从滤波器频率响应的角度解释了冗余第二代小波包产生频带错位的原因,提出了消除冗余第二代小波包频带错位的修正方法。
     再次,提出了一种基于二维第二代小波变换的旋转机械振动信号压缩方法。在第二代小波变换和混合熵编码的信号压缩框架下,分析了旋转机械振动信号的准周期特性及其二维描述方法,提出了首先按照回转周期将振动信号从一维信号转换为二维矩阵,然后再采用二维小波变换对其进行压缩和重构的方法。试验结果表明,有损压缩与无损压缩技术相结合可以在保证信号重构精度的同时,进一步提高信号的压缩比;对于旋转机械振动信号,采用二维小波变换进行压缩具有更好的压缩性能。
     然后,提出了一种基于空间自适应冗余第二代小波变换的信号消噪方法。空间自适应第二代小波可以针对每一尺度上的每个样本选择最佳的预测器,从而能够更好地锁定信号的局部特征。冗余小波变换具有抑制混叠特性和平移不变特性,在信号消噪时能够更加准确地估计噪声强度,并且可以缓解消噪后信号在奇异点处的吉布斯振荡现象。因此,空间自适应冗余第二代小波可以更好地应用于信号消噪。试验结果表明,基于空间自适应冗余第二代小波的信号消噪方法不仅可以提高信噪比、降低均方误差,而且能够保留更多的瞬态故障特征。
     最后,对冗余第二代小波包变换在机械故障检测和故障模式分类中的应用进行了研究。针对机械故障模式分类问题,提出了一种基于冗余第二代小波包的故障模式分类方法,该方法利用冗余第二代小波包提取故障特征参数,利用邻域粗糙集对特征参数进行属性选择。通过对滚动轴承微弱故障进行检测以及对齿轮箱和汽车发动机气门机构多种故障工况模式进行分类,试验结果表明,基于冗余第二代小波包可以有效地检测出机械振动信号中的微弱故障特征,并且可以提取出分类能力更强的故障特征参数进行模式分类,进而得到更高的故障分类精度。
Growing demand for operation safety and high quality production requires thatdeviation of machine conditions from its normal setting should be identified andfixed promptly to reduce costly machine downtime and maintain high productivity.Therefore, research on effective mechanical equipments health monitoring anddiagnosis has been enhanced in recently years. The second generation wavelettransform (SGWT) is new wavelet theory and possesses many distinct properties. Forthe purpose of condition monitoring and fault diagnosis for mechanical equipment,fault feature extraction, signal compression, signal denoising and faulty conditionidentification techniques based on SGWT were studied in this dissertation.
     Firstly, the nonstationary properties of mechanical faulty signals were discussed,and the necessity and effectiveness of using SGWT for nonstationary signalsprocessing were demonstrated. Studies show that the wavelet function and scalingfunction of SGWT in time domain are compactly supported and symmetrical, at thesame time they have the signature of impact. But in frequency domain, they do notpossess the ideal cut-off property. The SGWT has the ability to process nonstationarysignal, but the frequency aliasing is inhering in its analysis results. Therefore, theapplication of SGWT has some limitations in the field of fault diagnosis.
     Secondly, the viewpoint of constructing redundant SGWT (RSGWT) to suppressfrequency aliasing was proposed, which provided the basis of effective fault featureextraction. Based on the analysis of split operation, prediction operation, updateoperation and merging operation of SGWT, the reasons and the suppressingapproach for frequency aliasing were pointed out. The anti-aliasing property,translation invariability property and the computational complexity of RSGWT wereanalyzed in detail. The frequency band derangement of redundant second generationwavelet packet transform (RSGWPT) was presented and also a modified version wasproposed.
     Thirdly, a real-time signal compression method based on SGWT and hybridentropy coding was proposed. Within the framework of the proposed method, thequasi-periodic characteristic of rotating machinery vibration signal and the twodimension description for such data were analyzed. Based on this investigation, atwo dimension wavelet compression algorithm for such vibration data was proposed.Testing results show that combining both lossy and lossless compression techniquescan achieve higher compression ratio while maintaining the same reconstructionaccuracy. Also, as to rotating machinery vibration signal, employing two dimension wavelet transform can simultaneously eliminate the redundancy in both intra-cycleand inter-cycle effectively.
     Fourthly, a signal denoising method based on the space-adaptive RSGWT wasproposed. The space-adaptive construction approach for SGWT is able to designwavelet function for each sample point in the signal. The redundant transform is ableto obtain a more accuracy noise intensity estimation and to suppress pseudo-Gibbsphenomena on the singularity points of the denoised signal. So using the space-adaptive RSGWT to signal denoising can get a better result than those obtained byusing other wavelet-based methods. The proposed denoising method wasinvestigated by applying to denoise both simulated signals and practical signals.Testing results show that the proposed method can not only improve the ratio ofsignal to noise and decrease the mean square error, but also reserve more faultyfeatures of the raw signal.
     Finally, the application of RSGWPT in fault detection and fault conditionidentification was studied. As to mechanical fault condition identification, aRSGWPT based method was proposed. The RSGWPT was employed to extract faultfeature and the neighborhood rough set theory was used to select fault features forreducing the decision table and improving the learning efficiency of the classifier.The RSGWPT were applied to detect incipient fault feature of a faulty ball bearingand the testing results showed that it could detect the weak faulty feature from thevibration signal effectively. The proposed fault condition identification method wasverified by applying to classify different working conditions of gearbox and valvetrains on a car engine. Testing results show that using the proposed method canextract more effective and distinguished statistical features for classification, andtherefore higher classification accuracy can be obtained.
引文
1史铁林,陈勇辉,李巍华,等.提高大型复杂机电系统故障诊断质量的几种新方法.机械工程学报. 2003, 39(9): 1~10
    2 A.K.S. Jardine, D. Lin, D. Banjevic. A review on machinery diagnostics andprognostics implementing condition-based maintenance. Mechanical Systemsand Signal Processing. 2006, 20(7): 1483~1510
    3赵林度.大型机电系统故障诊断技术.中国石化出版社. 2001: 1~10
    4于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法.科学出版社. 2006: 4~20
    5何正嘉,訾艳阳,孟庆丰,等.机械设备非平稳信号的故障诊断原理及应用.高等教育出版社. 2001: 1~26
    6何正嘉,訾艳阳,张西宁.现代信号处理及工程应用.西安交通大学出版社.2007: 178~195
    7杨建国.小波变换及其在涡喷发动机故障诊断中应用的研究.哈尔滨工业大学博士学位论文. 1999: 1~6
    8温熙森.模式识别与状态监控.科学出版社. 2007: 6~16
    9 A. Grossmann, J. Molert. Decomposition of hardy functions into squareintegrable wavelets of constant shape. SIAM Journal on Mathematical Analysis.1984, 15(4): 723~736
    10 P.G. Lemarie. Ondelettes a localization exponentiells. International Journal ofPure and Applied Mathematics. 1988, 67(9): 227~236
    11 S.G. Mallat. A theory for multiresolution signal decomposition: The waveletrepresentation. IEEE Transactions on Pattern Analysis and Machine Intelligence.1989, 11(7): 674~693
    12 I. Daubechies. The wavelet transform, time-frequency localization and signalanalysis. IEEE Transactions on Information Theory. 1990, 36(5): 961~1006
    13 C.K. Chui. Wavelets: A Tutorial in Theory and Applications. Academic Press.1992: 24~32
    14 R.R. Coifman, M.V. Wickerhauser. Entropy-based algorithm for best basisselection. IEEE Transactions on Information Theory. 1992, 38(2): 313~318
    15 A. Cohen, I. Daubechies, J. Feauveau. Bi-Orthogonal bases of compactlysupported wavelets. Communications on Pure and Applied Mathematics. 1992,45(5): 485~560
    16 M. Vetterli, C. Herley. Wavelets and filters banks: Theory and design. IEEETransactions on Signal Processing. 1992, 40(9): 2207~2232
    17 O. Rioul. A Discrete-Time Multi-resolution Theory. IEEE Transactions onSignal Processing. 1993, 41(8): 2591~2606
    18 S.G. Mallat. Matching pursuit with time-frequency dictionaries. IEEETransactions on Signal Processing. 1994, 41(2): 3397~3415
    19 T.N.T. Goodman, S.L. Lee. Wavelet of multiplicity r. Transactions on AmericanMathematics Society. 1994, 342(1): 307~332
    20 Z. Xiong, K. Ramchandran, C. Herley, et al. Flexible tree-structured signalexpansions using time-varying wavelet packets. IEEE Transactions on SignalProcessing. 1997, 45(2): 333~345
    21 S. Harold, H. Charles, S. Leonardodeane, et al. Hermitian hat wavelet designfor singularity detection in the Paraguay river level data analyses. Proceedingsof SPIE-The International Society for Optical Engineering, Orlando, FL, 1997,3078: 96~115
    22 W. Sweldens. The lifting scheme: A custom-design construction of biorthogonalwavelets. Applied and Computational Harmonic Analysis. 1996, 3(2):186~200
    23 W. Sweldens. The Lifting Scheme: A Construction of Second GenerationWavelets. SIAM Journal of Mathematical Analysis. 1998, 29(2):511~546
    24 I. Daubechies, W. Swelens. Factoring wavelet transform into lifting steps.Journal of Fourier Analysis and Application. 1998, 4(3): 245~267
    25 Z.K. Peng, F.L. Chu. Application of the wavelet transform in machine conditionmonitoring and fault diagnostics: a review with bibliography. MechanicalSystems and Signal processing. 2004, 18(2):199~221
    26 Z. Peng, F. Chu, Y. He. Vibration signal analysis and feature extraction based onreassigned wavelet scalogram. Journal of Sound and Vibration. 2002, 253(5):1087~1100
    27 Z. Peng, Y. He, Q. Lu, et al. Feature extraction of the rub-impact rotor systemby means of wavelet. Journal of Sound and Vibration. 2003, 259(4): 1000~1010
    28 X. Li, L. Qu, G. Wen, et al. Application of wavelet packet analysis for faultdetection in electro-mechanical systems based on torsional vibrationmeasurement. Mechanical Systems and Signal Processing. 2003, 17(6):1219~1235
    29 G.Y. Gary, C.L. Kuo. Wavelet packet feature extraction for vibration monitoring.IEEE Transaction on Industrial Electronics. 2000, 47(3): 650~667
    30 Q. Sun, Y. Tang. Singularity analysis using continuous wavelet transform forbearing fault diagnosis. Mechanical Systems and Signal Processing. 2002, 16(6):1025~1041
    31 D. Ruiz, J.M. Nougues, Z. Calderon, et al. Neural network based framework forfault diagnostics in batch chemical plants. Computers and ChemicalEngineering. 2000, 24(2): 777~784
    32 J. Altmann, J. Mathew. Multiple band-pass autoregressive demodulation forrolling-element bearing fault diagnostics. Mechanical Systems and SignalProcessing. 2001, 15(5): 963~977
    33 H.-T. Yang, C.-C. Liao. A de-noising scheme for enhancing wavelet-basedpower quality monitoring system. IEEE Transactions on Power Delivery. 2000,16(3): 353~360
    34 W.J. Staszewski. Wavelet based compression and feature selection for vibrationanalysis. Journal of Sound and Vibration. 1998, 211(5): 735~760
    35 F. Chu, W. Lu. Determination of the rubbing location in a multi-disk rotorsystem by means of dynamic stiffness identification. Journal of Sound andVibration. 2001, 248(2): 235~246
    36 W.J. Staszewski. Identification of non-linear systems using multi-scale ridgesand skeletons of the wavelet transform. Journal of Sound and Vibration. 1998,214(4): 639~658
    37段晨东.基于第二代小波变换的故障诊断技术研究.西安交通大学博士学位论文. 2005: 40~60
    38李成.基于提升小波的数据处理及过程监测研究.浙江大学博士学位论文.2005: 33~45
    39黄人戍,汪阳,吴迪,等.基于第二代小波变换的电力系统故障录波数据压缩方法.电力自动化设备. 2004, 24(3): 59~62
    40 H. Wang, L. Zheng. A study on wavelet data compression of a real-timemonitoring system for large hydraulic machines. Journal of Computer Scienceand Technology. 2001, 16(3): 293~296
    41任明明,张彦斌,贾立新.一种基于提升小波和零树编码的录波数据压缩算法.西安交通大学学报. 2006, 40(4): 494~496
    42闫常友,杨奇逊,刘万顺.基于提升格式的实时数据压缩和重构算法.中国电机工程学报. 2005, 25(9): 6~10
    43费铭薇,乐全明,张沛超,等.电力系统故障录波数据压缩与重构小波基选择.电力系统自动化. 2005, 29(17): 64~67
    44乐全明,郁惟镛,柏传军,等.基于提升算法的电力系统故障录波数据压缩新方案.电力系统自动化. 2005, 29(5): 74~78
    45 Y.F. Zhang, J. Li. Wavelet-based vibration sensor data compression techniquefor civil infrastructure condition monitoring. Journal of Computing in CivilEngineering. 2006, 20(4): 390~399
    46 X.D. Song, C.K. Zhou, D.M. Hepburn, G.B. Zhang. Second generation wavelettransform for data denoising in PD Measurement. IEEE Transaction onDielectrics Electrical Insulation. 2007, 14(6): 1531~1537
    47段晨东,何正嘉.第二代小波降噪及其在故障诊断系统中的应用.小型微型计算机系统. 2004, 25(7): 1341~1343
    48 H.X. Chen, Patrick S.K. Chua, G.H. Lim. Vibration analysis with lifting schemeand generalized cross validation in fault diagnosis of water hydraulic system.Journal of Sound and Vibration. 2007, 301(3-5): 458~480
    49段晨东.基于第二代小波变换的混合小波降噪方法.中国机械工程. 2007,18(14): 1700~1702, 1713
    50张志斌,郑海起,唐力伟.自适应二代小波变换在振动信号降噪中的应用.机械强度. 2006, 28(S): 48~51
    51 Z. Li, Z.J. He, Y.Y. Zi, Y.X. Wang. Customized wavelet denoising using intraandinter-scale dependency for bearing fault detection. Journal of Sound andVibration. 2008, 313(1-2): 342~359
    52 A. Gouze, M. Antonini, M. Barlaud, B. Macq. Design of signal-adaptedmultidimensional lifting scheme for lossy coding. IEEE Transactions on ImageProcessing. 2004, 13(12): 1589~1603
    53曹建军,张培林,任国全,等.提升小波包最优基分解算法及在振动信号降噪中的应用.振动与冲击. 2008, 27(8): 114~116, 182
    54 P.D. Samuel, D.J. Pines. Helicopter transmission diagnostics using constrainedadaptive lifting. American Helicopter Society 59th Annual Forum. AmericanHelicopter Society International, Phoenix, AZ, 2003: 351~361
    55 P.D. Samuel, D.J. Pines. Constrained adaptive lifting and the CAL4 metric forhelicopter transmission diagnostics. Journal of Sound and Vibration. 2009,319(1-2): 698~718
    56 C.D. Duan, Z.J. He, H K. Jiang. A sliding window feature extraction method forrotating machinery based on the lifting scheme. Journal of Sound and Vibration.2007, 299(4-5): 774~785
    57段晨东,何正嘉.一种基于提升小波变换的故障特征提取方法及其应用.振动与冲击. 2007, 26(2): 10~13, 32
    58段晨东,姜洪开,何正嘉.基于监测数据的特征小波构造及应用.长安大学学报(自然科学版). 2006, 26(2): 106~110
    59 H.K. Jiang, Z.J. He, C.D. Duan. Gearbox fault diagnosis using adaptiveredundant lifting scheme. Mechanical Systems and Signal Processing. 2006,20(8): 1992~2006
    60 H.X. Chen, X.F. Chen, Y.Y. Zi, et al. An effective approach to rolling bearingdiagnosis based on adaptive redundant second-generation wavelet. InternationalJournal of Materials and Product Technology. 2008, 33(1-2): 65~78
    61 R.L. Claypoole, R.G. Baraniuk, R.D. Nowak. Adaptive wavelet transforms vialifting. IEEE International Conference on Acoustics, Speech and SignalProcessing, Seattle, WA, 1998, 3: 1513~1516
    62 J. Stepien, T. Zielinski, R. Rumian. Image denoising using scale-adaptive liftingschemes. International Conference on Image Processing, Vancouver, BC, 2000,3: 288~290
    63 C.D. Duan, Q. Gao. A lifting undecimated wavelet transform and itsapplications. Journal of Intelligent Manufacturing. 2008, 19(4): 433~441
    64 H.K. Jiang, Z.S. Wang. Fault feature extraction using redundant lifting schemeand independent component Analysis. IEEE International Conference onMechatronics and Automation. Harbin, China, 2007: 2435~2439
    65 Z. Li, Z.J. He, Y.Y. Zi, X.F. Chen. Bearing condition monitoring based on shockpulse method and improved redundant lifting scheme. Mathematics andComputers in Simulation. 2008, 7(3): 318~338
    66 Z. Li, Z.J. He, Y.Y. Zi, H.K. Jiang. Rotating machinery fault diagnosis usingsignal-adapted lifting scheme. Mechanical Systems and Signal Processing. 2008,22(3): 542~556
    67姜洪开,王仲生.第二代小波包构造及发动机微弱损伤识别.北京航空航天大学学报. 2007, 33(7): 777~780
    68段晨东,何正嘉,姜洪开.非线性小波变换在故障特征提取中的应用.振动工程学报. 2005, 18(1): 129~132
    69姜洪开,王仲生,何正嘉.基于自适应提升小波包的故障微弱信号特征早期识别.西北工业大学学报. 2008, 26(1): 99~103
    70 G. Piella, H. Heijmans, B. Pesquet-Popescu. Adaptive update lifting with adecision rule based on derivative filters. IEEE Transactions on SignalProcessing Letters. 2002, 9(10): 329~332
    71 R.L. Claypoole, G.M. Davis, W. Sweldens, R.G. Baraniuk. Nonlinear wavelettransforms for image coding via lifting. IEEE Transactions on Image Process.2003, 12(12): 1449~1459
    72 G. Piella, H. Heijmans. Adaptive lifting schemes with perfect reconstruction.IEEE Transactions on Signal Processing. 2002, 50(7): 1620~1630
    73 H. Heijmans, B. Pesquet-Popescu, G. Piella. Building nonredundant adaptivewavelets by update lifting. Applied Computational and Harmonic Analysis.2005, 18(3): 252~281
    74曹建军,张培林,张英党,等.基于提升小波包变换的发动机缸盖振动信号特征提取.振动与冲击. 2008, 27(2): 34~37, 174
    75 Y.N. Pan, J. Chen, L. Guo. Robust bearing performance degradation assessmentmethod based on improved wavelet packet-support vector data description.Mechanical Systems and Signal Processing. 2009, 23(3): 669~681
    76杨光亮,乐全明,郁惟镛等.基于小波神经网络和故障录波数据的电网故障类型识别.中国电机工程学报. 2006, 26(10): 99~103
    77 H.R. Cao, X.F. Chen, Y.Y. Zi, et al. End milling tool breakage detection usinglifting scheme and Mahalanobis distance. International Journal of MachineTools and Manufacture. 2008, 48(2): 141~151
    78 J.F. Leng, D.H. Chen, S.X. Jing. Mine Fan Intelligent Faults Diagnosis Basedon the Lifting Wavelet Packet and RBF Neural Network. Proceedings of theFourth International Conference on Fuzzy Systems and Knowledge Discovery,Haikou, China, 2007, 4: 716~720
    79胡桥,何正嘉,张周锁,等.基于提升小波包变换和集成支持矢量机的早期故障智能诊断.机械工程学报. 2006, 42(8): 16~22
    80 Q. Hu, Z.J. He, Z.S. Zhang. Fault diagnosis of rotating machinery based onimproved wavelet package transform and SVMs ensemble. Mechanical Systemsand Signal Processing. 2007, 21(2): 688~705
    81 J.G. Yang, S.T. Park. An anti-aliasing algorithm for discrete wavelet transform.Mechanical Systems and Signal Processing. 2003, 17(5): 945~954
    82 S.G. Mallat.信号处理的小波引导.机械工业出版社. 2002: 57~66
    83 B. Jawerth, W. Sweldens. An overview of wavelet based multiresolutionanalyses. SIAM Review. 1994, 36(3): 377~412
    84 Y. Meyer.Wavelets: Algorithms and Applications. SIAM. 1993: 24~368
    85 P.W. Tse, Y.H. Peng, R. Yam. Wavelet analysis and envelope detection forrolling element bearing fault diagnosis-their effectiveness and flexibilities.Journal of Vibration and Acoustics. 2001, 123(3): 303~310
    86 X. Li, L. Qu, G. Wen, et al. Application of wavelet packet analysis for faultdetection in electro-mechanical systems based on torsional vibrationmeasurement. Mechanical Systems and Signal Processing. 2003, 17(6):1219~1235
    87 X.F. Fan, M.J. Zuo. Gearbox fault detection using Hilbert and wavelet packettransform. Mechanical Systems and Signal Processing. 2006, 20(4): 966~982
    88 J. Rafiee, F. Arvani, A. Harifi, M.H. Sadeghi. Intelligent condition monitoringof a gearbox using artificial neural network. Mechanical Systems and SignalProcessing. 2007, 21(4): 1746~1754
    89 Q.S. Xu, Z.G. Lia. Recognition of wear mode using multi-variable synthesisapproach based on wavelet packet and improved three-line method. MechanicalSystems and Signal Processing. 2007, 21(8): 3146~3166
    90傅勤毅,傅俭毅,王峰林.一种无频带错位的小波包算法.振动工程学报.1999, 12(3): 423~428
    91刘世元,杜润生,杨叔子.小波包改进算法及其在柴油机振动诊断中的应用.内燃机学报. 2000, 18(1): 11~16
    92张登荣,张霄宇,俞乐,等.基于小波包移频算法的遥感图像融合技术.浙江大学学报(工学版). 2007, 41(7): 1097~1110
    93杨福生.小波变换的工程分析与应用.科学出版社. 1999: 55~98
    94杨建国.小波分析及其工程应用.机械工业出版社. 2005: 88~100
    95门爱东,杨波,全子一.数字信号处理.人民邮电出版社. 2004: 45~57
    96 A. Stoffel. Remarks on the unsubsampled wavelet transform and lifting scheme.Signal Processing. 1998, 69(2): 177~182
    97 C.S. Lee, C.K. Lee, K.Y. Yoo. New lifting based structure for undecimatedwavelet transform. Electronics Letters. 2000, 36(22): 1894~1895
    98杨静,王岩飞,刘波.一种新的非抽取提升结构小波变换图象融合算法.光子学报. 2004, 33(6): 728~731
    99 D.L. Donoho. De-noising by soft-thresholding. IEEE Transactions onInformation Theory. 1995, 41(3): 613~627
    100 R.R. Coifman, D.L. Donoho. Translation-invariant denoising. Lecture Notes inStatistics. 1995, 103: 125~150
    101 D.B. Percival, A.T. Walden. Wavelet methods for time series analysis.Cambridge University Press. 2000: 124~166
    102 David Salomon. Data Compression: The Complete Reference, Second Edition.Springer-Verlarge. 2000: 77~89
    103黄文君,徐慧.数据压缩技术在实时数据库中的应用研究.仪器仪表学报.2006, 27(6): 911~913, 959
    104 A. Bilgin, M.W. Marcellin, M.I. Altbach. Compression of electrocardiogramsignals using JPEG2000. IEEE Transactions on Consumer Electronics. 2003,49(4): 833~840
    105 O.N. Gerek, D.G. Ece. 2-D analysis and compression of power-quality eventdata. IEEE Transactions on Power Delivery. 2004, 19(2): 791~98
    106 S.C. Tai, C.C. Sun, W.C. Yan. A 2-D ECG compression method based onwavelet transform and modified SPIHT. IEEE Transactions on BiomedicalEngineering. 2005, 52(6): 999~1008
    107任震,张征平,黄雯莹,等.基于最优小波包基的电动机故障信号的消噪与检测.中国电机工程学报. 2002, 22(8): 53~57
    108张吉先,钟秋海,戴亚平,等.小波门限消噪法应用中分解层数及阈值的确定.中国电机工程学报. 2004, 24(2): 118~122
    109潘泉,张磊,孟晋丽,张洪才.小波滤波方法及应用.清华大学出版社.2005: 63~92
    110 S.G. Mallat, W.L. Hwang. Singularity detection and processing with wavelet.IEEE Transactions on Information Theory. 1992, 38(2): 617~643
    111 Y. Xu, J.B. Weaver, D.M. Healy, J. Lu. Wavelet transform domain filters: aspatially selective noise filtration technique. IEEE Transactions on ImageProcessing. 1994, 3(6): 747~758
    112 Q. Pan, L. Zhang, G. Dai, et al. Two denoising methods by wavelet transform.IEEE Transactions on Image Processing. 1999, 47(12): 3401~3406
    113 G.E.P. Box, G.M. Jenkins, G.C. Reinsel. Time series analysis, forecasting andcontrol. Prentice Hall. 1994: 55~87
    114 B. Samanta. Gear fault detection using artificial neural networks and supportvector machines with genetic algorithms. Mechanical Systems and SignalProcessing. 2004, 18(3): 625~644
    115 B.S. Yanga, W.W. Hwang, D.J. Kim, A.C. Tan. Condition classification of smallreciprocating compressor for refrigerators using artificial neural networks andsupport vector machines. Mechanical Systems and Signal Processing. 2005,19(2): 371~390
    116 V. Sugumaran, V. Muralidharan, K.I. Ramachandran. Feature selection usingdecision tree and classification through proximal support vector machine forfault diagnostics of roller bearing. Mechanical Systems and Signal Processing.2007, 21(2): 930~942
    117 S.F. Yuan, F.L. Chu. Fault diagnosis based on support vector machines withparameter optimisation by artificial immunisation algorithm. MechanicalSystems and Signal Processing. 2007, 21(3): 1318~1330
    118 X.Q. Xiang, J.Z. Zhou, C.S. Li, et al. Fault diagnosis based on Walsh transformand rough sets. Mechanical Systems and Signal Processing. 2009, 23(4):1313~1326
    119 P. Sawicki, J. Zak. Technical diagnostic of a fleet of vehicles using rough settheory. European Journal of Operational Research. 2009, 193(3): 891~903
    120 Y.M. Kim, C.K. Kim, J.C. Lee. Rough set algorithm for crack categorydetermination of reinforced concrete structures. Advances in EngineeringSoftware. 2009, 40(3): 202~211
    121胡清华,于达仁,谢宗霞.基于邻域粒化和粗糙逼近的数值属性约简.软件学报. 2008, 19(3): 640~649
    122 Q.H. Hu, D.R. Yu, J.F. Liu, et al. Neighborhood rough set based heterogeneousfeature subset selection. Information Sciences. 2008, 178(18): 3577~3594
    123 Q.H. Hu, D.R. Yu, Z.X. Xie. Neighborhood classifiers. Expert systems withapplications. 2008, 34(2): 866~876
    124 T.M. Mitchell. Machine Learning. McGraw Hill. 1997: 123~168
    125 M. Balasubramanian, S. Palanivel, V. Ramalingam. Real time face and mouthrecognition using radial basis function neural networks. Expert Systems withApplications. 2009, 36(3): 6879~6888
    126 B.S. Yang, W.W. Hwang, D.J. Kim, et al. Condition classification of smallreciprocating compressor for refrigerators using artificial neural networks andsupport vector machines. Mechanical Systems and Signal Processing. 2005,19(2): 371~390
    127 F.Q. Wu, G. Meng Compound rub malfunctions feature extraction based on fullspectrumcascade analysis and SVM. Mechanical Systems and SignalProcessing. 2006, 20(8): 2007~2021
    128 A. Widodo, B.-S. Yang. Support vector machine in machine conditionmonitoring and fault diagnosis. Mechanical Systems and Signal Processing.2007, 21(6): 2560~2574
    129 S. Abbasion, A. Rafsanjani, A. Farshidianfar, N. Irani. Rolling element bearingsmulti-fault classification based on the wavelet denoising and support vectormachine. Mechanical Systems and Signal Processing. 2007, 21(7): 2933~2945
    130 J.Y. Yang, Y.Y. Zhang, Y.S. Zhu. Intelligent fault diagnosis of rolling elementbearing based on SVMs and fractal dimension. Mechanical Systems and SignalProcessing. 2007, 21(5): 2012~2024

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700