全光纤口腔OCT方法研究与系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于光学相干层析(OCT)技术,研制了口腔龋齿检测系统。主要研究了利用OCT方法检测由于牙齿内部脱矿导致的牙齿光学特性参数的变化规律,并以此来对龋齿、特别是早期龋齿进行诊断和控制。此方法对于龋齿的早期诊断、治疗和预防具有重要的作用。
     本论文主要从理论研究、仪器化设计、系统实验和应用研究等几个方面对口腔OCT检测系统进行了深入的研究:分析了全光纤OCT系统的基本原理;对牙齿组织的光学传输特性进行了模拟;设计并研制了全光纤偏振不敏感OCT系统,获得了人离体牙齿的一维、二维、三维OCT图像。设计并建立了全光纤偏振OCT实验系统,初步获得了人离体牙齿的偏振OCT图像;基于OCT系统平台,开展了龋齿早期诊断方法的研究,并进行了应用性实验研究,开展了人离体牙齿折射率测量、人工龋体外建模、龋齿及牙齿修复体OCT成像等实验。
     工作中的主要创新点:
     1.研制了全光纤偏振不敏感OCT系统。获得了人的正常离体牙齿、龋损离体牙齿以及常用口腔修复体的一维、二维OCT图像。利用基于规则体数据的三维表面模型构建算法进行了三维建模,并且获得了人离体牙齿的表面三维OCT图像。
     2.将OCT技术应用于早期龋齿检测,初步探究了利用OCT方法检测龋齿及早期龋齿的方法,采用OCT对人离体牙齿开展了人工龋体外建模的实验性研究。结合OCT的方法测量了人离体牙釉质、牙本质和牙骨质的折射率,并且得到了离体牙齿沿扫描方向的折射率分布。
     3.对牙齿的双折射特性进行了分析和建模,分析了全光纤系统中光纤的影响,设计并建立了全光纤偏振OCT系统,初步获得了人离体牙齿的偏振OCT图像。
     4.以层状组织模型对生物组织的光学传输特性进行了建模,分析了牙釉质和牙本质的结构特征,并根据它们的光学参数对牙釉质和牙本质表面及内部光分布进行了模拟计算。
Based on Optical Coherence Tomography (OCT), this dissertation has developed the oral caries OCT detection system. The major study of this dissertation is using the OCT method to detect the caries by detecting the changes of the optical parameters caused by early demineralization. This method plays an important role for diagnosis the dental caries, particularly for the early diagnosis, control, treatment and preventiaon.
     This dissertation focuses on the basic theory of OCT, the system design, system experiments and application experiments, the major studies of the dissertation are: the analysis of the all-fiber OCT system’s basic principle; the simulation of optical transmission characteristics of the teeth; design and development of all-fiber polarization insensitive OCT system; access to the one-dimensional, 2D and 3D OCT images of human teeth in vitro; design and development of the all-fiber polarization sensitive OCT system, polarization OCT images of the human teeth in vitro are initially obtained; the use of the OCT system for application experiments inclued of the measurement of the refractive index of human teeth in vitro and modeling of external experiments, in addition, the experiments obtaining the OCT images of dental caries and the restoration of teeth.
     The major innovation in the work:
     1. Design and development of the all-fiber polarization insensitive OCT system have been developed. The one-dimensional and two-dimensional OCT images of the normal and caries teeth are obtained. The one-dimensional and two-dimensional OCT images of the common oral restoration are also obtained. The rule shape data-based three-dimensional surface model algorithm has been developed and models for the teeth. The three-dimensional reconstructions of OCT images of the human teeth in vitro are obtained.
     2. This dissertation applies the OCT technology to detect early dental caries and studies the method of detecting the early dental caries using OCT. The experimenal research of the external model that simulates the caries articially for the human teeth in vitro is illustrated. Based on OCT method, the refractive indexes of the human enamel, dentin and cementum are measured. In addition, the refractive index distribution along the scan direction of the human teeth in vitro is obtained.
     3. Birefringence of the teeth and fiber are analysed and modeled. The all-fiber polarization sensitive OCT system has been developed; the polarization OCT images of the human teeth in vitro are initially obtained.
     4. The layered model to character the optical transmission portery of the organization is illustrated. The structural characteristics of enamel and dentin are described and in accordance with their optical parameters, the distribution of light on and below the enamel and dentin surface are simulated.
引文
[1]王嘉德主编,口腔医学,北京:北京大学医学出版社, 2007
    [2] JJ ENRIGHT, HE FRIESELL, M TRESCHER, STUDIES OF THE CAUSE AND NATURE OF DENTAL CARIES, Journal of Dental Research, 1932, 12(5): 759-851
    [3] Lussi A, Validity of diagnostic and treatment decisions of fissure caries, Caries Res, 1991, 25(4): 296-303
    [4] Shi XQ, Welander U, Anqmar Mansson B, Occlusal caries detection with KaVo DIAGNOdent and radiography: An in vitro comparison, Caries Res, 2000, 34(2): 151-158
    [5] Lussi A, Francescut P, Performance of conventional and new methods for the detection of occlusal caries in deciduous teeth, Caries Res, 2003, 37(1): 2-7
    [6] Tran?us. Sofia, Al-Khateeb. Susan, Bj?rkman. Stein, et.al, Application of quantitative light-induced fluorescence to monitor incipient lesions in caries-active children. A comparative study of remineralisation by fluoride varnish and professional cleaning, Eur J Oral Sci, 2001, 109(2): 71-75
    [7] Gonzalez-Cabezas C, Fontana M, Gomes-Moosbauer D, et.al, Early detection of secondary caries using quantitative light-induced fluorescence, OperDent, 2003, 28(4): 415-422
    [8] D.Huang, E.A.Sawanson, C.P.Lin, et.al, Optical Coherence Tomography, Science, 1991, 254(5035): 1178-1181
    [9] R.C.Youngquist, S.Carr, D.E.N.Davies, et.al, Optical coherence-domain reflectometry: a new optical evaluation technique, Opt. Lett., 1987, 12(3): 158-160
    [10] K. Takada, I. Yokohama, K. Chida, et.al, New measurement system for fault location in optical waveguide devices based on an interferometric technique Appl. Opt., 1987, 26(9): 1603-1606
    [11] C.K.Hitzenberger, W.Drexler, A.F.Fercher, Measurement of corneal thickness by laser doppler interferometry, Invest.Ophthalmol, Vis. Sci., 1992, 33(1): 98-103
    [12] A.F. Fercher, K. Mengedoht, W. Werner, Eye-length measurement by interferometry with partially coherent light, Opt. Lett., 1988, 13(3): 186-188
    [13] W. Clivaz, F. Marquis-Weible, R. P. Salathe, et.al, High-resolution reflectometry in biological tissue, Opt. Lett., 1992, 17(1): 4-6
    [14] J. M. Schmitt, A. Knüttel, R. F. Bonner, Measurement of optical properties of biological tissues by low-coherence reflectometry, Appl.Opt., 1993, 32(30): 6032-6042
    [15] M. R. Hee, J. A. Izatt, E. A. Swanson, et.al, Optical coherence tomography of the human retina. Arch. Ophthalmol, 1995, 113(3): 326-332
    [16] S. A. Boppart, M. E. Brezinsk, B. E. Boump, et.al, Investigation of developing embryonic morphology using optical coherence tomography, Dev. Biol., 1996, 177(1): 54-64
    [17] J. A. Izatt, M.D. Kulkami, H.W. Wang, et.al, Optical Coherence Tomography and Microscopy in Gastrointestinal Tissues, IEEE J. Sel. Top. Quant. Electron., 1996, 2(4): 1017-1028
    [18] Y. Pan, E. Lankenau, J. Welzel, et.al, Optical coherence-gated imaging of biological tissues, IEEE J. Sel. Top. Quant. Electron., 1996, 2(4): 1029-1034
    [19] Chen Z P, Milner T E, Shinivas Shyam, et al, Noninvasivo imaging of in vivo blood flow velocity using optical Doppler Tomography, Opt. Lett., 1997, 22(14): 1119-1121
    [20] M.R.Hee, D.Huang, J.G..Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging, J. Opt. Soc. Am, B., 1992, 9(6): 903-908
    [21] J. F. de Boer, T. E. Milner, M. J. C. van Gemert, et.al, Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography, Opt. Lett., 1997, 22(12): 934-936
    [22] M. J. Everett, K. Schoenenberger, B. W. Colston, et.al. Birefringence characterization of biological tissue by use of optical coherence tomography, Opt. Lett., 1998, 23(3): 228-230
    [23] AF Fercher, CK Hitzenberger, G Kamp, et.a1, Measurement of intraocular distances by backscattering spectral interferometry, Opt Commun., 1995, 117(5): 43-48
    [24] S Yun, G Tearney, B Bouma, et.al, High-speed spectral-domain optical coherence tomography at 1.3μm wavelength, Opt. Express, 2003, 11(26): 3598-3604
    [25] N Nassif, B Cense, B Park,et.al, In vivo high resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve, Opt Express, 2004, 12(3): 367-376
    [26] S Yun, G Tearney, J de Boer, et.al, High-speed optical frequency-domain imaging, Opt Express, 2003, 11(22): 2953-2963
    [27] M Wojtkowski, V Srinivasan, T Ko, Ultrahigh-resolution high-speed Fourier domain optical coherence tomography and methods for dispersion compensation, Opt Express, 2004, 12(11): 2404-2422
    [28] E.A.Swanson, J.A.Lzatt, M.R.Hee, et.al, In vivo retinal imaging by optical coherence tomograhphy, Opt. Lett., 1993, 18(21): 1864-1869
    [29] C.A.Puliafito, M.R.Hee, C.P.Lin, et.al, Imaging of macular diseases with optical coherence tomography, Ophthalmology, 1995, 102(2): 217-229
    [30] Zhongping Chen, Yonghua Zhao, J.Stuart Nelson, et.al, Optical Doppler tomography. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 1134-1141
    [31] Z.P.Chen, J.S.Nelson, S. Srinivas, et.al, Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography, Opt. Lett, 1997, 22(14): 1119-1121
    [32] G..J.Tearney, B.E.Bourma, S.A.Boppart, et.al, In Vivo Endoscopic Optical Coherence Tomography. Science, 1997, 276(5321): 2037-2039
    [33] A.M.Sergeev, V.M.Gelikonov, G.V.Gelikonov, et al, In vivo optical coherence tomography of human skin microstructure, Proc.SPIE, 2328: 144-150
    [34] J.F.De Boer, S.M.Srinivas, A. Malekafzali, et.al, Imaging thermally damaged tissue by Polarization Sensitive Optical Coherence Tomography, Optics Express, 1998, 3(6): 212-218
    [35] M.Bashkansky,M.D.Duncan, J.Reintjes, Rapic, high-resolution optical coherence tomography(OCT) for defect detection in materials, Lasers and Electro-Optics, CLEO'97, 1997,11: 328-329
    [36] M.D.Duncan, M.Bashkansky, Subsurface defect detection in materials using optical coherence tomography, Optics Express, 1998, 2(13): 540-545
    [37] D. C. Adler, J. Stenger, I. Gorczynska, et.al, Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies, Opt. Express, 2007, 15(24): 15972-15986
    [38]童银洪,陈敬中,杜晓东, OCT在珍珠研究中的应用,矿物学报, 2007, 27(1): 69-72
    [39] Roger C.Lin, Mark A.Shure, Andrew M.Rollins, et.al, Group index of the human cornea at 1.3μm wavelength obtained in vitro by optical coherence domain reflectometry, Opt. Lett., 2004, 29(1): 83-85
    [40] Mariya Lazebnik, Daniel L. Marks, Kurt Potgieter, et al, Functional optical coherence tomography for detecting neural activity through scattering changes, Optics Lett., 2003, 28(14): 1218-1220
    [41] Chang Yang, Michael A. Choma, Laura E. Lamb, et.al, Protein-based molecular contrast optical coherence tomography with phytochrome as the contrast agent, Opt. Lett., 2004, 29(12): 1396-1398
    [42] A.M.Sergeev, V.M.Gelikonov, G.V.Gelikonov, et.al, In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa, Opt.Express, 1997, 1(13): 432-440
    [43]李刚,张泰石,郑羽,频域OCT的光学相移器的标定,光学精密工程, 2008, 16(1): 114-121
    [44]郑羽,李刚,吴开杰,复谱频域OCT系统高分辨率图像重建,光电工程, 2007, 34(10): 73-77
    [45]郑羽,李刚,张泰石,全范围测量复谱频域OCT系统,纳米技术与精密工程, 2007, 5(2): 148-152
    [46]李刚,任钊,林凌等,高速线扫描OCT的可行性与光学成像特性的研究,中国生物医学工程学报, 2007, 26(1): 89-93
    [47]刘铁根,李晋申,江俊峰等,线聚焦光学相干层析术的研究,光电工程, 2005, 32(11): 39-42
    [48]曾绍群,骆清铭,刘贤德等, OCT系统纵深剖析能了分析,量子电子学, 1995, 12(3): 283-286
    [49]曾绍群,骆清铭,刘贤德等, OCT纵向图像形成分析,电子学报, 1996, 24(10): 103-106
    [50]曾绍群,骆清铭,徐海峰等, OCT系统体系形成机理,华中理工大学学报, 1997, 25: 34-36
    [51]谌一,薛平,袁韬等,激光相干层析成像的光散射模拟计算,光学学报, 1999, 14(9): 486-490
    [52]袁韬,薛平,谌一等,光学相干层析成像系统的实验研究,光学学报, 1999, 19(10): 1386-1389
    [53]陈炜,薛平,陈瓞延,光学相干层析术中的图像处理研究,量子电子学报, 2001, 18(4): 306-308
    [54]杨莉松,王桂英,王建岗等,反射式光纤共焦扫描成像的研究, 1999, 19(7): 962-967
    [55]宋桂菊,任宏武,张莲英等,光学相干层析成像的实验研究,光学学报, 2000, 20(4): 509-513
    [56]沈彬,张春平,李加等,新的生物医学成像技术——光学相干显微及其应用,光电子·激光, 1998, 9(2): 166-169
    [57]王新宇,张春平,张连顺等, 1300nm光学层析成像,光电子·激光, 2001, 12(5): 500-502
    [58]王新宇,张春平,张连顺等,生物组织折射率测量的一种简便方法,光电子·激光, 2002, 13(9): 976-978
    [59]王新宇,张春平,张连顺等,用Monte Carlo方法重建OCT图像,红外与毫米波学报, 2003, 22(1): 69-70
    [60]朱晓农,毛幼馨,梁艳梅等,光学相干层析系统噪音分析(I)——理论与计算,光子学报, 2007, 36(3): 452-456
    [61]朱晓农,毛幼馨,梁艳梅等,光学相干层析系统噪音分析(Ⅱ)——时域OCT和频域OCT,光子学报, 2007, 36(3): 457-461
    [62]王玲,丁志华,史国华,基于快速扫描光学延迟线谐振扫描的相位调制方法,光子学报, 2008, 37(2): 351-355
    [63]杨亚良,丁志华,俞晓峰, OCT系统中基于快速扫描光学延迟线的色散补偿,光子学报, 2008, 37(1): 21~24
    [64]邵永红,何永红,马辉等,光学相干层析成像技术用于裸鼠皮肤霉菌感染研究,激光生物学报, 2006, 15(5): 536-539
    [65]邵永红,何永红,马辉等,鼠眼睛前段光学相干层析成像,激光与红外, 2006, 36(8): 694-695
    [66] Susan M R, An imaging modality for the new millennium, Biophotonics., 1999, 1: 36-45
    [67] A.F.Fercher, Optical coherence tomography, Journal of Biomedical Optics, 1996, 1(3): 157-173
    [68] B.W.Colston, L.B.DaSilva , M.J.Everett, Dental OCT, Optics Express, 1998, 3(6): 230-238
    [69] Bill W. Colston, Jr., Matthew J. Everett, Luiz B. Da Silva,et.al, Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography, Appl. Opt., 1998, 37(16): 3582-3585
    [70] J.A.Warren, J.N.Miller, G.V.Gelikonov, et al, Imaging and characterization of dental structure using optical coherence tomography, in Conference on Lasers and Electro-optics, OSA Technical digest series, 1998, 6:128
    [71] R.Brandenburg, B.Haller, C.Hauger, Real-time in vivo imaging of dental tissue by means of optical coherence tomography(OCT), Optics Communications, 2003, 227(4-6): 203-211
    [72] Baumgartner A, Dichtl S, Hitzenberger CK, et.al, Optical coherence tomography of dental structures, Proc. SPIE, 1998, 3248: 130-136
    [73] Amaechi BT, Higham SM, Podoleanu AG, et a1, Use of optical coherence tomography for assessment of dental caries: quantitative procedure, J Oral Rehabil, 2001, 28(12): 1092-1093
    [74] A. Baumgartner, S. Dichtl, C.K. Hitzenberger, et al, Polarization-Sensitive Optical Coherence Tomography of Dental Structures, Caries Res., 2000, 34(1): 59-69
    [75] D Fried, J Xie, S Shafi,et al, Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography, J. Biomed. Opt., 2002, 7(4): 618-627
    [76] Y. Chen, L. Otis, D. Piao, et.al, Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system, App. Opt., 2005, 44(11): 2041-2048
    [77] B. L. Danielson, C. D. Whittenberg, Guided-wave reflectometry with micrometer resolution, Appl. Opt., 1987, 26(14): 2836-2842
    [78] Max Born, Emil Wolf,光学原理(黄乐天等译),北京:科学出版社, 1981, 711-719
    [79] J W Goodman,统计光学(秦克诚等译),北京:科学出版社, 1992, 150-155
    [80] Kulkarni, M.D.Thomas, C.W. Izatt, J.A, Image enhancement in optical coherence tomography usingdeconvolution, Electronics Letters, 1997, 33(16): 1365-1367
    [81] Chinn, S.R. Swanson. E.A, Blindness limitations in optical coherence domain reflectometry, Electronics Letters, 1993, 29(23): 2025-2027
    [82] J.A. Izatt, M.R. Hee, G.A. Owen, et.al, Optical Coherence Microscopy in Scattering Media, Opt. Lett., 1994, 19(8): 590-592
    [83] A. Papoulis, Probability, Random Variables, and Stochastic Processed. Third ed, New York: McGraw-Hill, Inc, 1991
    [84] J.R. Barry, E.A. Lee, Performance of coherent optical receivers, Proc. IEEE, 1990, 78(8): 1369-1378
    [85] P.R. Morkel, R.I. Laming, D.N. Payne, Noise Characteristics of High Power Doped-Fiber Superluminescent Sources, Elect. Lett., 1990, 26(3): 96-97
    [86] Richard C. Haskell, David Liao, Adam E. et.al, Role of beat noise in limiting the sensitivity of optical coherence tomography, Opt. Soc. Am. A., 2006, 23(11): 2747-2755
    [87] A. Rollins and J. Izatt, Optimal interferometer designs for optical coherence tomography, Opt. Lett., 1999, 24(21): 1484-1486
    [88] K. Takada, Noise in optical low-coherence reflectometry, IEEE J. Quantum. Electron, 1998, 34(7): 1098-1108
    [89] Ishimaru A, Wave Propagation and scattering in random media, Newyork: Academic, 1978
    [90] R.C.Haskell, Boundary conditions for the diffusion equation in radiative transfer, J.Opt. Soc. Am. A., 1994, 11(10): 2727-2741
    [91] Ishlmaru.A, Diffsion of light in turbid material, Aplied Optics, 1989, 28(12): 2210-2215
    [92] R.F.Bonner, R.Nossal, S.Havlin, et.al, Model for Photon migration in turbid biological media, J.Opt.Soc.Am.A., 1987, 4(3): 423-432
    [93] R.Nossal, J.Kiefer, G.H.Weiss, et.al, Photon migration in layered media, Applied Optics, 1988, 27(16):3382-3390
    [94] V V Tuchin, Light scattering study of tissues, PHYS-USP., 1997, 40(5): 495-515
    [95] L.H. Wang, Monte Carlo modeling of light transport in multi-layerd tissues [Ph.D. Dissertation], University of Texas M.D. Anderson Cancer Center,1992
    [96] Star WM, Marijnissen JP, van Gemert MJ, Light dosimetry in optical phantoms and in tissues:I Multiple flux and transport theory, Phys Med. Biol., 1988, 33(4): 437-454
    [97] F.E.W. Schmidt, Development of a time-resolved optical tomography system for neonatal brain imaging,University College London, 1999
    [98] Cheong, W.F, Prahl, S.A, Welch, A.J, et.al, A review of the optical properties of biological tissues, IEEE Journal of Quantum Electronics, 1990, 26(12): 2166-2185
    [99] L.G.Henyey, J.L.Greenstein, Diffuse radiation in the galaxy, Astrophysics Journal, 1941, 93: 70-83
    [100] F.P.Bolin, L.E.Preuss, R.C.Talyor, et.al, Refractive index of some mammalian tissues using a fiber optic cladding method, Applied Optics, 1989, 28(12): 2297-2303
    [101] H.Li, S.Xie, Measurement method of the refractive index of biotissue by total internal reflection, Applied Optics, 1996, 35(10): 1793-1795
    [102] Masato Ohmi, et al, In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47(9): 1266-1270
    [103]周学东,岳松龄,口腔细菌致牙釉质龋的病理学研究,华西医科大学学报, 1994, 25(2): 145-148
    [104] T.J. Farrell, M.S. Patterson, B.C. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo, Medical Physics, 1992,19(4): 879-886
    [105] S.P. Lin, L.H. Wang, S.L. Jacques, et.al, Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry, Applied Optics, 1997, 36(1): 136-142
    [106] D. Contini, F. Martelli, G. Zaccanti. Photon migration through a turbid slab described by a model based on diffusion approximation I theory, Appl. Opt., 1997, 36(19): 4587-4599
    [107] A. Kienle, L. Lilge, M.S. Patterson, et.al, Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue, Appl. Opt., 1996, 35(13): 2304-2314
    [108] J. E. Eastoe, The amino acid composition of proteins from the oral tissues-II. The matrix proteins in dentine and enamel from developing human deciduous tooth. Arch, Oral Biol.,1963, 52: 633-652
    [109] H.C. van de Hulst, Light Scattering by Small Particles, New York: Dover, 1981, 297-306
    [110] Robert S. Jones, Gigi D. Huynh, Graham C. Jones, et.al, Near infrared transillumination at 1310 nm for the imaging of early dental decay, Optics express, 2003, 11(18): 2259-2265
    [111] Daniel Fried, Richard E. Glena, John D. B. Featherstone, et.al, Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths, Appl. Opt., 1995, 34(7): 1278-1285
    [112] V.Backman, Diagnosing cancers using spectroscopy, Nature, 2000, 406: 35-36
    [113] T. Yoshino, M. R. Ali, B. C. Sarker, Performance analysis of low-coherence interferometry, taking into consideration optical beat noise, J. Opt. Soc. Am. B., 2005, 22(2): 328-335
    [114] A. M. Rollins, R. Ung-arunyawee, A. Chak, et.al, Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design, Opt. Lett., 1999, 24(19): 1358-1360
    [115] Jun Zhang, Shuguang Guo, Woonggyu Jung, et.al, Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers, Optics Express, 2003, 11(24): 3262-3270
    [116] R.S. Jones C.L. Darling J.D.B. Featherstone et.al, Imaging Artificial Caries on the Occlusal Surfaces with Polarization-sensitive optical coherence tomography, Caries Research, 2006, 40(2): 81-89
    [117] Timothy R. Hillman, Steven G. Adie, Volker Seemann, et.al, Correlation of static speckle with sample properties in optical coherence tomography, Optics Letters, 2006, 31(2): 190-192
    [118] Masahiro Yamanari, Shuichi Makita, Violeta Dimitrova Madjarova, et.al, Fiber-based Polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. Optics Express, 2006, 14(14): 6502-6515
    [119] Robert J. Zawadzki, Stacey S. Choi, Steven M. Jones, et.al, Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions, J. Opt. Soc. Am. A., 2007, 24(5): 1373-1383
    [120]张红霞,张以谟,井文才等,偏振耦合测试仪中白光干涉包络的提取,光电子·激光, 2007, 18(4): 450-453
    [121]唐泽圣,三维数据场可视化,北京:清华大学出版社, 1999
    [122]秦绪佳,医学图像三维重建及可视化技术研究[博士学位论文],大连:大连理工大学, 2001
    [123]管伟光,体视化技术与应用,第一版,北京:电子工业出版社, 1988
    [124] FC Besic, MR Wiemann JR, Dispersion Staining, Dispersion, and Refractive Indices in Early Enamel Caries, J Dent Res, 1972, 51(4): 973-998
    [125] Masamitsu Haruna, M. Ohmi, T. Mitsuyama, et.al, Simultaneous measurement of the phase and group indices and the thickness of transparent plates by low coherence interferometry, Optics Letters, 1998, 23(12): 966-968
    [126] GUI Ji song, XIANG Zhao wang, HONG Wu ren, et.al, Simultaneous measurements of the thickness and refractive index of microstructures in obscure specimen by optical coherence tomography, Optik, 2000, 111(12): 541-543
    [127] G J Tearney, M. E. Brezinski, J. F. Southern, et.al, Determination of the refractive index of highly scattering human tissue by optical coherence tomography, Optics Letters, 1995, 120(21): 2258-2260
    [128] George M Hale, Marvin R Querry, Optical constants of water in the 200-nm to 200-um wavelength region, Appl. Opt., 1973, 12(3): 555-563
    [129] A. Kienle, R. Michels, R. Hibst, Magnification-a New Look at a Long known Optical Property of Dentin, J Dent Res, 2006, 85(10): 955-959
    [130] Arendo J, CariesRes, 1992, 26:18
    [131] J.F. de Boer, S.M. Srinivas, J.S. Nelson, et.al, Polarization-sensitive optical coherence tomography, Handbook of Optical Coherence Tomography, New York: Marcel Dekker, Inc, 2001
    [132] R.A. Chipman, Polarization analysis of optical systems, Opt. Eng, 1989, 28(2): 90-99
    [133] S.Y. Lu, R.A. Chipman, Interpretation of Mueller matrices based on polar decomposition, J.Opt.Soc.Am. A., 1996,13(5): 1106-1113
    [134] J.J. Gil, E. Bernabeu, Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix, Optik, 1987, 76(22): 67-71
    [135] X. S. Yao, L. Yan, Y. Shi, Highly repeatable all-solid-state polarization-state generator, Opt. Lett., 2005, 30(11): 1324-1326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700