矿物质缓释尿素对反刍家畜瘤胃发酵及生产性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验研究共分为三个试验:
     试验一,分别以豆粕、磷酸脲和矿物质缓释尿素为氮源,配置了三种等能等氮日粮,分别为豆粕组(SBM组)、磷酸脲组(UP组)和矿物质缓释尿素组(SRU组),采用注射器式体外模拟发酵装置,分别在0、1、2、4、6、8、10、14、18和24h后终止发酵,测定瘤胃培养液中pH、氨氮浓度(NH3-N)和微生物蛋白(MCP)浓度。结果表明:UP组的pH值出现峰值较早,在第4h出现最大值(6.79);而SBM组和SRU组分别在第10h和第6h达到最大值,pH值分别为6.82和6.76。UP组其氨氮浓度在第2h便达到最大值(59.01 mg/100ml);而SRU组在第8h才达到最大值(52.37mg/100ml)。试验各组微生物蛋白浓度变化规律相近,在24小时内缓慢上升,都在第24h达到最大值。但可以看出UP组在第24h时的微生物蛋白浓度显著低于(P<0.05)SBM组和SRU组。体外发酵试验表明,在等能等氮的条件下,矿物质缓释尿素组氨的释放速度较为平缓,矿物质缓释尿素组与豆粕组所产生的微生物蛋白无显著差异。
     试验二,分别以豆粕、磷酸脲和矿物质缓释尿素为氮源,配制了三种等能等氮饲料,按氮来源不同分别命名为豆粕组(SBM组)、磷酸脲组(UP组)和矿物质缓释尿素组(SRU组)。选3头体重相近的2岁瘘管牦牛,采用3×3拉丁方设计,每期12天,在试验期的第11天选取10个时间点,连续24h测定瘤胃液的pH值、NH3-N和MCP浓度;在试验的第12天食前1h采集血清,并测定动物血清尿素氮、总蛋白、血清磷和血清钙浓度。结果显示:在24小时内,试验各组pH值和氨氮浓度变化规律相近,都呈先升高,后降低,又升高的趋势。试验各组pH值和氨氮浓度都在食后第2h小时达到最大值;但在第2h,UP组的pH值和氨氮浓度极显著高于SBM组和SRU组(P<0.01),而SBM组和SRU组差异不显著(P>0.05)。试验各组MCP浓度变化规律相近,都呈先升高,后降低的趋势,并且都在第10h时达到最大值。在第10h时,UP组的微生物蛋白浓度显著低于(P<0.05)SBM组和SRU组,而SBM组和SRU组差异不显著(P>0.05)。试验各组血清Ca和血清P浓度差异不显著(p>0.05);SRU组的血清总蛋白浓度为87.23g/L,显著高于(P<0.05)SBM组(84.27 g/L)和UP组(84.54g/L)。试验表明,在等能等氮的条件下,矿物质缓释尿素组所合成的微生物蛋白与豆粕组无显著差异,能够代替饲料中的部分蛋白源。
     试验三,试验选体重350kg左右西门塔尔杂交牛20头,按年龄、体重均等的原则,随机分为四组,每组5头,分别接受四种日粮处理,四种日粮按不同氮源命名,分别为:大豆粕组(SBM)、磷酸脲组(UP)、矿物质缓释尿素组Ⅰ(SRUⅠ,0.35%)和矿物质缓释尿素组Ⅱ(SRUⅡ,0.75%)试验牛在试验期第1天和最后一天早上空腹称重,称重后采集血液样品用于测定血清钙、血清磷、血清尿素氮和血清总蛋白浓度。结果表明,SRUⅠ组日增重为974.29g,比对照组、SBM组、UP组和SRUⅡ组分别高出6.81%、4.28%和0.96%,与SBM组差异极显著(P<0.01)。而SRUⅡ组日增重为965.00g,比对照组SBM组合UP组高出5.80%和3.29%,与SBM组差异极显著(P<0.01)。试验各组血氨浓度均处于正常水平。试验各组血清Ca和血清P浓度差异不显著(P>0.05); SURⅠ和SRUⅡ组的血清尿素氮与SBM组差异不显著(P>0.05),显著低于(P<0.05)UP组;尽管试验各组血清总蛋白浓度差异不显著(P>0.05),但除UP组外,其余试验组在试验期后均有所增加,其中SRUⅠ组最高,分别高于SBM组3.82%,高于UP组3.17%。试验表明,矿物质缓释尿素较豆粕组和磷酸脲组生产性能更高。矿物质缓释尿素添加量为0.35%时的生产性能较添加量为0.75%时高,其经济效益也最高。
This study contained three trials:
     Trial 1:Three diets containing different N source were used to determine the effect of N source on in vitro fermentation characteristics. The diets were formulated to be iso-energy and iso-nitrogen, with slow-release urea (SRU), urea phosphate (UP) and soybean meal (SBM) as N source. Samples were taken at 0,1,2,4,6,8,10,14,18 and 24hr incubation, for the determination of gas production, NH3 and MCP concentration. Results were:The pH peak of UP (6.79) appeared at 4h incubation; while that of SBM (6.82) and SRU (6.76) appeared at 10h and 6h incubation, respectively. The maximum ammonia-N concentration of UP (59.01 mg/100ml) and SRU (52.37 mg/100ml) were at 2h and 8h incubation, respectively. Microbial protein concentrations in all groups, increased slowly within 24 h incubation. However, the microbial protein concentration of UP was significantly lower than that of SRU and SBM at 24h (P<0.05). The trial in vitro fermentation under iso-energy and iso-nitrogen conditions indicated that the ammonia release speeds in SRU were more gentle and there was a similar productivity in microbial protein between SRU and SBM.
     Trial 2:Three rumen-fistulated yak were used in a 3 x 3 Latin square experiment with three periods, each of 12 days, consisting a 11-day adaptation period, and 1 day for rumen fluid collection. Three iso-nitrogen and iso-energy diets were formulated, using slow-release urea (SRU), urea phosphate (UP) and soybean meal (SBM) as N source. Rumen fluid samples began collected at the beginning of the 12th day in each period, Ten samples were collected in consecutive 24 h for the determinination of the effect of N sources on rumen pH, NH3-N and microbial protein concentration. Blood samples were collected on the 12th day in each period to measure the serous urea nitrogen, total protein, serous phosphorus and serous calcium concentration. Rumen pH and NH3-N in all the groups increased first, then decreased, and increased again in 24h and reached the maximum value which attained at 2h after feeding. Rumen pH and ammonia-nitrogen of UP group were significantly greater (P<0.01) than that of SBM and SRU at 2h after feeding. There was no difference (P>0.05) on rumen pH and ammonia-nitrogen between SBM and SRU group. Rumen microbial protein concentration in all groups increased first, then decreased, and increased again till the maximum value which attained at 10 h after feeding. Microbial protein concentration in UP group was significantly greater (P<0.01) than that in the other two groups, while that in SBM group kept similar (P>0.05) to that in SRU group. There was no difference (P>0.05) in serous Ca and serous P among the three groups. Serous total protein in SRU group (87.23g/L) was greater (P<0.05) than that in SBM (84.27 g/L) and UP group (84.54 g/L). The trial under iso-energy and iso-nitrogen conditions indicated that there was a similar productivity in microbial protein between SRU and SBM and the minerals slow-release urea can replace a part of protein source in feed.
     Trial 3:20 Simmental crossbred beef cattle with similar age and weight were randomly divided into four groups which were also randomly assigned to four dietary treatments. The 4 groups were therefore named, according to N source, as soybean meal group (SBM), urea phosphate group (UP), mineral slow-release urea groupⅠ(SRUⅠ,0.35%) and mineral slow-release urea groupⅡ(SRUⅡ,0.75%), respectively, with the fist 2 groups served as control group. Diets in all groups were iso-nitrogen and iso-energy, except for that in SRUⅡgroup, which was greater in N content because of the greater value of SRU addition. All the cattle were weighed at the beginning and the end of the 28-day feeding trial. Blood samples were collected at the last day before feeding for the measurement of serous calcium, serous phosphorus, serous urea and total serous protein. The average daily gain of cattle in SRUⅠgroup was 974.29 g, which was 6.81%,4.28% and 0.96% higher than, that in SBM (P<0.01), UP (p> 0.05) and,SRUⅡ(P>0.05) group, respectively. The average daily gain of cattle in SRUⅡgroup was 965.00g, which was 5.80% and 3.29% higher than that in SBM (P<0.01) and UP (P>0.05). The blood ammonia concentration in all groups kept at normal level. There were no difference (P>0.05) on serous Ca and serous P concentrations among the four groups. The serous urea in SRUⅠwas similar (P> 0.05) to that in SURⅡand SBM, and significantly lower (P<0.05) than that in UP group. Even though there was no significant difference (P>0.05) in serous total protein among four groups in the beginning and end of trail, serous total protein concentrations in SBM, SRUⅠand SRUⅡgroup were higher (p<0.05) in the end of the trial than that in the beginning of the trial, and in the end of trail the serous total protein concentration in SRUⅠgroup was the highest, which was 3.82% and 3.17% higher than that in SBM and UP group, respectively. The trial showed that the performance in SRU was greater than that in SBM and UP groups. The performance and benfits in 0.35% minerals slow-release urea was better than that of 0.75% minerals slow-release urea.
引文
[1]郝泽英.近30年我国粮食产量增减变化及主要影响因素[J].山东农业科学,2009,37(5):3-6.
    [2]钱勇.转型中的中国饲料业:现状与趋势分析[J].中国禽业导刊,2008,(25)5:13-19.
    [3]黄金芝.可开发利用的粗饲料[J].吉林农业,2008,5:34-35.
    [4]付广建.防治固原地区肉牛主要营养代谢病舔砖的研制.[硕士学位论文].西安,西北农林科技大学,2007.
    [5]侯广田,方光新,马生刚等.新疆矿物元素与反刍家畜营养[J].草食家畜,2003,2:27-30.
    [6]席冬梅,邓卫东,毛华明.云南省主要反刍家畜饲养基地土壤硒含量、分布及其影响因素研究[J].云南农业大学学报,2007,24(4):35-38.
    [7]郭杨,苗树君,李洪宇.微量元素对反刍动物瘤胃发酵机能的影响[J].中国牛业科学,2007,33(4):36-39.
    [8]赵芸君,孟庆翔.B族维生素在瘤胃中的合成及影响因素[J].动物营养学报.2007,19(1):12-16.
    [9]张倩,王加启,傅庆民等.不同浓度脲酶抑制剂提高奶牛产量效果的研究[J].中国奶牛,1997,3:15-16.
    [10]黄梓平.新型的反刍动物营养型饲料添加剂—磷酸脲[J].奶牛杂志,2006,28(4):28-29.
    [11]李长海,张龙,侯盛新.饲料级缩二脲合成技术进展[J].吉林工学院学报(自然科学版),1999,20(2):24-26.
    [12]陈伟华,余品良,韩正康.羟甲基尿素对反刍家畜消化代谢作用的研究[J].南京农业大学学报,1990,2:23-26.
    [13]王敏.糊化淀粉尿素—膨化加工技术的研究与实践[J].饲料与畜牧,2005,3:9-10.
    [14]Emery R.S., C.R. Staples, and C.J. Wilcox. Utilization of inorganic sulfate by rumen microorganisms[J]. Application of Microbiology,1957,5:363-367.
    [15]Elliott, R. and D.G. Armstrong. The effect of molybdenum on the conversion of sulpate to sulphide and microbial-protein-sulfur in the rumen of sheep[J]. British Journal of Nutrition, 1982,35:11-13.
    [16]Kandylis. K. The role of sulfur in ruminant nutrition[J]. Livestock Production Science,1984,11: 611-612.
    [17]Milton J. T. Phosphorus metabolism in ruminants Ⅱ:Effect of in organic phosphorus centration upon food intake and digestion [J]. Journal of Agricultural Research,1985,36:647-650.
    [18]卢忠民.日粮添加硫磷提高水牛瘤胃纤维素消化率的研究[J].动物营养学报,1998,10(3):10-12.
    [19]Chase C. R., Beede D. K., HH van Horn, et al. Responses of lactating dairy cows to copper source, supplementation rate, and dietary antagonist[J]. Journal of Dairy Science,2000,83: 1845-1852.
    [20]Fonnesbeck P. V., Kearl L. C. and Harris L. E.. Feed grade biuret as a protein replacement for ruminants:A Review[J]. Animal Science,1975,40:1150-1184.
    [21]Johnson R. R., Clemens E. T. Adaptation of rumen microorganisms to biuret as a an NPN supplement to low quality roughage rations for cattle and sheep [J]. Nutrition.1973,103: 494-502
    [22]张永根.瘤胃脲酶抑制剂氢醌对反刍动物作用的研究.[博士学位论文].哈尔滨,东北农业大学,2001.
    [23]段玉,张拴林.尿素缓释技术的研究进展[J].饲料工业,2006,27(21):51-53.
    [24]林绍青.反刍动物对非蛋白氮的利用能力[J].中国奶牛,2004,5:25-27.
    [25]陈喜斌.不同氮源日粮在瘤胃发酵和消化规律的研究.[博士学位论文].北京,中国农业大学,1994.
    [26]谢宝柱,王岩蕾.提高尿素在奶牛生产中利用率的有效途径[J].兽药与饲料添加剂.2005,10(1):31-32.
    [27]陈德明,王亭杰,雨山江等.缓释和控释尿素的研究与开发综述[J].化工进展,2002,7:455-461.
    [28]罗继学,俞联平,杨虎等.包衣尿素生产工艺及在反刍动物中的应用效果[J].中国饲料,2002,9:13-15.
    [29]王永军,鞠贵春,王岩等.非蛋白氮在反刍动物饲料中的应用和复方瘤胃缓释尿素的制备[J].饲料工业,1996,10:40-41.
    [30]崔立,韩友文.应用体外法检测缓释尿素蛋白精料的缓释效果[J].中国饲料,1997,16:24-26.
    [31]张乃锋,刁其玉.反刍动物饲料添加剂磷酸脲应用研究[J].饲料博览,2003,5:32-33.
    [32]T. A. Currier, D. W. Bohnert, S. J. Falck, et al. Daily and alternate day supplementation of urea or biuret to ruminants consuming low-quality forage:I. Effects on cow performance and the eficiency of nitrogen use in wethersl,2 [J]. Animal Science,2004,82:1508-1517.
    [33]于炎湖,詹志春,胡昌彬等.脲酶抑制剂在反刍动物饲养中的应用[J].饲料工业,2003,7:4-5.
    [34]左福元,苏宁,曾子建等.氢醌在奶牛饲养中的应用研究[J].西南农业大学学报.2002,24(4):368-371.
    [35卜李杰,葛蔚.反刍动物脲酶抑制剂的研究进展[J].东北农业大学学报,2004,35(1):119-122.
    [36]石传林,罗中爱.脲酶抑制剂饲喂肉牛的试验效果[J].兽药与饲料添加剂,1999,4(3):12-13.
    [37]Vincent H. Varel., John A. Nienaber, Harvey C. Freetly. Conservation of Nitrogen in Cattle Feedlot Waste with Urease Inhibitors[J]. Animal Science,1999,77:1162-1168.
    [38]奥德,高民,杜敏等.应用糊化玉米缓释尿素产品饲养试验[J].内蒙古畜牧科学,1996,1:10-12.
    [39]郜玉钢,高秀华,李光玉等.糊化淀粉尿素缓释料在梅花鹿瘤胃内的降解[J].特产研究,1999,4:35-37.
    [40]李宝林,莫放,冯仰廉等.不同糊化度的糊化淀粉尿素在瘤胃中氨的释放规律的研究[J].中国畜牧杂志,1996,32(3):9-11.
    [41]李铁坚.发糊化淀粉尿素前景广阔[J].饲料广角,2000,8:26-27.
    [42]王敏.糊化淀粉尿素—膨化加工技术的研究与实践[J].饲料与畜牧,2005,3:9-10.
    [43]余忠祥.含尿素颗粒饲料、舔砖和添加剂对绵羊短期育肥效果的评述[J].青海畜牧兽医杂志,2003,33(3):22-23.
    [44]R. M. Waruiru. The Influence of Supplementation with Urea-Molasses Blocks on Weight Gain and Nematode Parasitism of DairyCalves in Central Kenya[J]. Veterinary Research Communications,2004,28(4):307-315.
    [45]C.T. Mihon, T. Brandt, C. Titgemeyer. Urea in Dry-Rolled Corn Diets:inishing Steer Performance, utrient Digestion and microbial protein production [J]. Journal of Animal Science, 1997,75:1415-1424.
    [46]NRC.奶牛营养需要[M].北京:中国农业大学出版社,2001:48-29.
    [47]杨凤.动物营养学[M].北京:中国农业出版社,1993:89-90.
    [48]杨文正.动物矿物质营养[M].北京:中国农业出版社,1996:145-146.
    [49]韩正康,陈杰著.反刍动物瘤胃的消化与代谢[M].北京:科学出版社,1998:112-113.
    [50]周建民等译.反刍动物营养学[M].北京:中国农业科技出版社,1992:167.
    [51]Esser N. M., P. C. Hoffman,W. K. Coblentz, et al. Bone development in dairy heifers fed diet s with and without supplemental phosphorus [J]. Journal of Animal Science,2008,86:481-483.
    [52]Montanez-Valdez D., J. M. Pinos-Rodriguez, J. H. Avellaneda-Cevallos, et al. Effect of a rumen buffer derived f rom calcified seaweed on ruminal dissapearance and fermentation in steers [J]. Journal of Animal Science,2008,86:481-483.
    [53]Call, J.W., J. E. Buthcher, J. T. Blake, R. A. Smart, et al. Phosphorus influence on growth and reproduction of beef cattle [J]. Journal of Animal Science,1978,47:216-225.
    [54]Clark W. D. Jr., J. E.Wohlt, R.L. Gilbreath, et al. Zajac.Phytate Phosphorus intake and disappearance in the gas trointestinal tract of high producing dairy cows[J]. Journal of Dairy Science,1986,69:3151-3155.
    [55]Whanger P. D. Sulphur in ruminant nutrition[J]. World Review of Nutrition,1972,15:225-237.
    [56]李振等.硫酸钠在畜禽生产中的应用[J].中国饲料,1999,7:8-10.
    [57]Bray A.C., Till A. R. Digestion and Metabolism in the Ruminant [M]. University of New England Publishing Unit, Armidale, New South Wales,1975:243-260.
    [58]王娜,贾志海.反刍动物硫营养研究进展[J].中国饲料,1999,6:14-17.
    [59]Qi K., Lu C. D., Owens F. N., et al. Sulphate supplementation of Angora goats metabolic and mohair responses[J]. Journal of Animal Science,1992,70:2828-2837.
    [60]Qi K., Owens F. N., Lu C. D. Effert of sulphur deficiency on performance of fiber--producing sheep and goat:a review[J]. Small Ruminant Research,1994,14:115-126.
    [61]Williams A. J., Robards G. E., Saville D. G.. Metabolism Of cystine by Merino sheep genetically different in wool production. Ⅱ. The responses in wool growth to abomasal infusion of L-cystine and DL-methionine [J]. Australian Journal of Biological Science,1972,25: 1269-1276.
    [62]Eillot D. G., McAllan A. B. Digestive Physiology and Metabolism in Ruminants[M]. MTP Press, Lancaster,1980:205-226.
    [63]Kandylis K. The role of sulphur in ruminants nutrition[J]. Liveststock Production Science,1984, 11:611-624.
    [64]Hegarty R. S., Nolan J. V.. The effects os protozoa and of supplementation with nitrogen and sulphur on digestion and microbial metabolism in the rumen of sheep[J]. Australian journal of Agricultural Research,1994,45:1215-1227.
    [65]Weston R. H., Lindsay J. R., Purser D. B., et al. Feed intake and digestion responses in sheep to the addition of inorganic sulfur to a herbage diet of low sulphur content[J]. Australian journal of Agricultural Research,1988,39:1107-1119.
    [66]Suttle N.F., Abrahams P., Thornton. The role of a soil dietary sulphur Interaction in the impairment of copper absorption by ingested soil in Sheep [J]. Journal of Agricultural Science, 1984,104:81-86.
    [67]Ward J.D., J.W. Spear, E.B. Kegley. Bioavailability of copper proteinate and copper carbonate relative to copper sulfate in cattle[J]. Journal of Dairy Science,1996,79(1):127-132.
    [68]Ward J.D., J.W. Spear, E.B. Kegley,.Effect of copper level and source on copper status, performance, and immune response in grow steers diets with of without supplemental molybdenum and sulfur[J]. Journal of Animal Science,1993,71(10):2748-2755.
    [69]Arthington J.D., L.R Corah, F. Blecha. The effect of molybdenum-induce copper deficiency on acute-pHase protein concentration, superoxide dismutase activity, leukocyte numbers, and lymphocyte proliferation in beef heifers inoculated with bovine herpesvirus[J]. Journal of Animal Science,1996,74(1):211-217.
    [70]张瑞莉.铜与反刍动物疾病[J].饲料博览,1999,2:9-21.
    [71]周桂莲,杜忠亮.影响动物体铜吸收利用的因素及评价动物体铜营养的标识[J].饲料博览,1994,(3):11-13.
    [72]韩正康,陈杰.反刍动物瘤胃的消化和代谢[M].北京:科学出版社,1988:219-221.
    [73]Mills.C.F. Biochemical and physiological in dicators of mineral status in animals:copper, cobalte and zinc [J]. Journal of Animal Science,1987,65:1702-1711.
    [74]卢德勋.反刍动物营养调控理论及其应用[J].内蒙古畜牧科技特刊,1993,3:34-39.
    [75]冯宗慈,高民.通过比色测定瘤胃液氨氮含量方法的改进[J].内蒙古畜牧科学,1993,4:40-42.
    [76]Mould F.L.,φrskov E.R., Manipulation of rumen fluid PH and its influence on cellulolysis in sacco, dry matter degradation and the rumen microflora in sheep offered either hay or concerttrate [J]. Journal of Animal Science,1983,10:12-15.
    [77]Henning X., Susenbeth,A., Stidekum, K.H.Invitro gas production measurements to evaluate interactions between untreated and chemically treated rices traws, grass hay, and mulberry leaves [J]. Journal of Animal Science,2002,91:517-524.
    [78]王宁娟.人工瘤胃法研究矿物质元素及非蛋白氮对瘤胃发酵的影响.[硕士学位论文].西安,西北农林科技大学,2003.
    [79]卢忠民,陈杰.日粮添加硫、磷提高水牛瘤胃纤维素消化率的研究[J].动物营养学报,19983:10-13.
    [80]Huhtanen, Pekka. Associative effects of feeds in ruminants[J]. Journal of Animal Science,1991, 3:37-57.
    [81]φrskov E.R., Hovel F.D. Rumen digestion of hay measured with Dacron bags)by cattle given sugar cane or pangda bayk [J]. Tropical Animal Production,1978,3:9-11.
    [82]Hart S.P. Associative effects of sorghum silage and sorghum gram diets [J]. Journal of Animal Science,1987,64:1779-1789.
    [83]王春梅,孙龙生等.日粮蛋白水平对湖羊肠道内pH值、氨氮和菌体蛋白的影响[J].饲料工业,2009,13:27-29.
    [84]闫韩韩,王红.不同日粮对羊瘤胃微生物数量的影响[J].饲料工业,2009,(30)13:34-38.
    [85]方希修,岳常彦.不同尿素水平对青山羊血清尿素氮的影响[J].中国草食动物,2001,3(2):10-12.
    [86]张宏福,秦加华等.仔猪营养生理与饲料配制技术研究[M].北京:中国农业科技出版社,2001:234-239.
    [87]Parker D S, Lomax M A, Seal C J, et al. Metabolic implications of ammonia production in the ruminant[J]. Proceedings of the Nutrition Society,1995,54:549-563.
    [88]Kennedy P.M. The degradation and utilization of endogenous urea in the gastrointestinal tract of genuine soybeans soyaoaponins[J]. ACS Symposium Series,1994,451:341-349.
    [89]关荣发.纳米三价铬对生长肥育猪胴体组成和免疫机能的影响及其作用机理探讨.[硕士学位论文].浙江,浙江大学,2003. 兽医学报,2009,40(1):59-65.
    [91]方希修,王冬梅,刘雪兰.硫在反刍动物营养中的功能及其在生产上的应用[J].中国畜牧杂志,2001,37(1):46-47
    [92]冯仰廉,王加启等.ICS 65.020.30. NY/T 815-2004.肉牛饲养标准.北京,中华人名共和国农业部,2004年8月25日发布,12-17.
    [93]J. L. Peyraud, L. Astigarraga. Review of the effect of nitrogen fertilization on the chemical composition, intake, digestion and nutritive value of fresh herbage:consequences on animal nutrition and N balance [J]. Animal Feed Science and Technology,1998,72 (3):235-259
    [94]Sean M. Miller, Gordon Lennie, Derek Clelland.Fortifying native pasture hay with molasses-urea mixtures improves its digestibility and nutrient intake by weaner sheep [J]. Animal Feed Science and Technology,2005,119:259-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700