温度敏感可再生型两水相体系的构建及固定化青霉素酰化酶催化合成头孢丙烯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物分离纯化是实现产品工业应用的关键环节,两水相体系因其含水量高、表面张力小、绿色环保、操作简单等因素而被广泛应用于蛋白、多糖、氨基酸、天然活性物质和抗生素等的分离提取,然而聚合物回收困难阻碍了两水相体系的大规模工业应用。头孢丙烯作为第二代头孢菌素因其较高的安全性而被广泛应用于儿童感染用药市场,但是化学合成步骤繁琐以及单水相中酶催化反应受限于产物的抑制作用限制了头孢丙烯的生产,寻求高效的酶催化反应成为一种趋势。
     本课题利用温敏单体、疏水性单体和亲水性单体为基础合成了四种具有很高回收率的聚合物即P_(VAm)、P_(NE)、 P_(NDB)和P_(NBAa°)其中,P_(NBAa)以N-异丙基丙烯酰胺、甲基丙烯酸丁酯和丙烯醇为单体无规自由聚合;P_(NDB)以N-异丙基丙烯酰胺、甲基丙烯酸二甲氨基乙酯和甲基丙烯酸丁酯为单体;PNE以N-异丙基丙烯酰胺和甲基丙烯酸乙酯为单体;P_(VAm)以N-乙烯基己内酰胺和丙烯酰胺为单体。通过IR和1HNMR确定了聚合物的结构;通过乌氏粘度计方法测定了聚合物在水溶液中的粘度,P_(NDB)和P_(NBAa)的特性粘度为45.1]mg/ml和33.5mg/ml, P_(VAm)和PNE的特性粘度为32.5ml/g和79.1ml/g;通过凝胶渗透色谱乌氏粘度计测得了聚合物的分子量,P_(NDB)和P_(NBAa)的分子量为5.63×104Da和9.72×104Da, P_(NF)和P_(VAm)的分子量为1.86×106Da和2.75×105Da;通过称重法定了聚合物的回收率,测得聚合物PNE的回收率为97.5%,PVAm的回收率为96.3%;通过测定不同浓度聚合物的浊点-浓度关系曲线确立了聚合物P_(NDB)和P_(NBAa)的最低临界点温度分别为25.5℃和31.3℃,聚合物PNE和P_(VAm)的最低临界点温度分别为28.7℃和35.6℃。
     研究了可再生型两水相体系不同条件下的相图,确立了适合P_(NE)-P_(VAm)两水相体系的理论模型。通过优化液相条件,确立了聚合物PNE和P_(VAm)的最佳液相条件为220nm、乙腈为有机相、磷酸钾缓冲液为水相、体积比为50:50,流速为0.7ml/min;通过添加无机盐和改变浓度,发现硫酸根对相图的影响较大;利用两种经验模型对取得的双节线数据进行拟合,比较拟合结果均方差根的大小发现经验模型w1=exp(a+bw20.5+Cw2+dw22)比较适合该两水相体系。
     研究了头孢丙烯以及其母核在P_(VAm)-P_(NE)可再生型两水相体系中的分配,确立了成相的聚合物的最佳浓度即5%P_(NE)-10%P_(VAm);通过相图数据和系线长度与两水相上下两相性质差异的关系,还有聚合物的粘度因素,选择10%PNE-10%P_(VAm)两水相进行物质的分配;通过HPLC确立了头孢丙烯以及底物的液相检测条件:乙腈作为有机相、硫酸铵缓冲液作为水相、流速为1ml/min、相体积比为10:90为最佳条件;通过添加不同种类的无机盐以及改变添加浓度,在pH为6,添加70mMLiCl时头孢丙烯和母核的分配系数达到6.51和0.086;通过改变温度和改变添加顺序,观察分配系数的变化,发现温度和改变添加顺序对头孢丙烯以及底物的分配系数影响不大。
     研究了单水相中头孢丙烯的酶催化合成,确立了在单水相中酶催化合成头孢丙烯的最佳条件为:pH6.6、温度20℃、7-APRA与D-HPGME-HCl摩尔比为1:3、酶量为6u/ml、转速为150r/min。因此,从实验结果来看,在最佳条件下得率达到75%,这表明该酶催化反应还不够彻底,还有很大提高空间,但是由于在单水相中存在产物对酶的抑制作用,底物利用率不高,还有副反应发生,所以使的最终得率不高。
     采用P_(vam)-P_(NE)可再生型两水相体系进行头孢丙烯的酶催化合成,确立了最佳酶催化合成条件:温度20℃、40mM7-APRA、104mM D-HPGME-HCl、 pH6.56、190r/min、酶量6u/ml、磷酸钾缓冲液。研究不同供体形式对酶催化合成的影响,结果表明溶解性能更好的D-HPGME相比于酯类酰基供体D-HPGME具有更好的酶催化效果;通过添加不同种类的无机盐和不同浓度的无机盐,考察了其对酶催化合成结果的影响,得到在70mM LiCl条件下头孢丙烯的酶催化合成得率最高达到95.7%,这也与在该条件下头孢丙烯的分配系数达到最大相吻合。
Separation and purification of biological products is a key step in the large-scale application of products. Aqueous two-phase systems are efficient purification methods for bioproducts like proteins, antibiotics, amino acids and organic acids due to low interfacial tension, fast mass transfer, high water content in two phases and mild aqueous environment. However, recovery difficulty of the copolymers forming aqueous two-phase systems becomes obstacle in scale-up application. Cefprozil with high safety is an important semi-synthetic β-lactam antibiotics traditionally manufactured using chemical synthetic routes and enzymatic synthesis in single aqueous solution. The chemical route has been criticized for using toxic and not easily biodegradable solvents, multiple steps of reactions and low temperatures. The enzymatic synthesis in single aqueous solution has low yield due to product inhibition. Therefore, searching for new ways of enzymatic synthesis is a trend.
     In this paper, four thermo-response polymers were synthesized and were used to construct thermo-response aqueous two-phase systems. Copolymer PNBAa was copolymerized by using N-isopropylacrylamide (NIPA), n-butyl methacrylate (BMA) and allyl alcohol (Aa) as monomers. Copolymer P_(NDB) was synthesized by using N-isopropylacrylamide (NIPA),2-(dimethylamino) ethyl methacrylate (DMAEMA) and n-butyl methacrylate (BMA) as monomers. The lower critical solution temperatures (LCST) of these two polymers are25.5°C and31.3°C, respectively. Copolymer PNE was copolymerized by using N-isopropylacrylamide and Ethyl methacrylate as monomers, and PvAm was synthesized by using N-Vinylcaprolactam and Acrylamide as monomers. The lower critical solution temperatures of P_(NE) and P_(VAm) are28.7°C and35.6°C, respectively. The structures of polymers were tested by IR and H NMR and were confirmed that the synthesized polymers were desired. The average molecular weights of two polymers were measured by ubbelohde viscometer and GPC. Molecular weights of P_(NE), P_(VAm), P_(NDB), P_(NBAa) are about1.89×106Da,2.75×105Da,5.63×104Da and9.72×104Da. The recoveries of polymers at different conditions were tested and the maximal recoveries of P_(VAm), P_(NE), P_(NDB) and P_(NBAa) are above95%.
     Phase diagram of P_(NE)-P_(VAm) with different conditions was investigated and suitable experimental equation was confirmed. The conditions of polymers tested by HPLC as follows: 220nm, acetonitrile, KPB,50:50(volume ratio) and0.7ml/min. Great effect of SO4~(-2)_4on phase diagram was found by adding different salts and different salt concentration. Two experimental equations were used to correlate with experimental data of biondal curve and the equation w_1=exp(a+bw~(0.5)_2+cw_2+dw~2_2) was more suitable to phase diagram of P_(NE)-P_(VAm) on the basis of RMSE.
     Partition coefficient of cefprozil and7-APRA in ATPS was studied and the optimal concentration of forming ATPS is5%P_(NE) and10%P_(VAm). Due to phase diagram data, tie-line length and viscosity of ATPS, aqueous two-phase system composed of10%P_(NE) and10%PvAm is chosen for partition of bioproduct. The best condition for cefprozil and7-APRA tested by HPLC as follows:280nm, acetonitrile, Ammonium sulfate buffer,10:90(volume ratio) and1ml/min. The optimal partition coefficient for cefprozil and7-APRA is6.51and0.086at pH6and70mM LiCl by adding different salts and changing salt concentration. Effect of temperature and sequence of adding material on partition coefficient is small by determining partition coefficient of cefprozil and7-APRA in the ATPS.
     Enzymatic synthesis of cefprozil in single aqueous phase was carried out. The optimal condition for enzymatic synthesis of cefprozil in single aqueous phase as follows:pH6.6,20°C,150r/min,40mM7-APRA,104mM D-HPGME-HCl and6μ/ml (enzyme load). From the result, we can see that the yield is75%under the optimal conditions. However, the reaction is inhibited by high concentration product, resulting that substrates cannot be utilized completely. At the same time, there is side reaction.
     Enzymatic synthesis of cefprozil in ATPS composed of P_(NE)-P_(VAm) was carried out. The optimal condition for enzymatic synthesis of cefprozil in single aqueous phase as follows:pH6.56,20°C,190r/min,40mM7-APRA,104mM D-HPGME-HC1and6u/ml (enzyme load). Yield with D-HPGME-HC1is higher than that with D-HPGME because solubility of D-HPGME-HC1is higher than that of D-HPGME.95.7%yield is obtained at70mM LiCl by adding different salts and changing salt concentration. The condition with95.7%yield is the same as the condition with optimal partition coefficient of cefprozil and7-APRA.
引文
[I]Rito-Palomares M. Practical application of aqueous two-phase partition to process development for the recovery of biological products. Journal of chromatography B, Analytical technologies in the biomedical and life sciences.2004,807(1):3-11
    [2]Shang Y, Liu H, Hu Y, Prausnitz JM. Aqueous Two-Phase System (ATPS) Containing Gemini and SDS I:Phase Diagram and Properties of ATPS. Journal of Dispersion Science and Technology.2006,27(3):335-339
    [3]Salabat A, Tiani Moghadam S, Rahmati Far M. Liquid-liquid equilibria of aqueous two-phase systems composed of TritonX-100 and sodium citrate or magnesium sulfate salts. Calphad.2010,34(1):81-83
    [4]Ashipala OK, He Q. Optimization of fibrinolytic enzyme production by Bacillus subtilis DC-2 in aqueous two-phase system (poly-ethylene glycol 4000 and sodium sulfate). Bioresource technology.2008,99(10):4112-4119
    [5]Zafarani-Moattar MT, Sadeghi R, Hamidi AA. Liquid-liquid equilibria of an aqueous two-phase system containing polyethylene glycol and sodium citrate:experiment and correlation. Fluid Phase Equilibria.2004,219(2):149-155
    [6]Sadeghi R. Extension of the Wilson model to multicomponent polymer solutions: applications to polymer-polymer aqueous two-phase systems. The Journal of Chemical Thermodynamics.2005,37(1):55-60
    [7]Madeira PP, Xu X, Teixeira JA, Macedo EA. Prediction of protein partition in polymer/salt aqueous two-phase systems using the modified Wilson model. Biochemical Engineering Journal.2005,24(2):147-155
    [8]Sadeghi R, Zafarani-Moattar MT. Extension of the NRTL and NRF models to multicomponent polymer solutions:Applications to polymer-polymer aqueous two-phase systems. Fluid Phase Equilibria.2005,231(1):77-83
    [9]Zafarani-Moattar MT, Seifi-Aghjekohal P. Liquid-liquid equilibria of aqueous two-phase systems containing polyvinylpyrrolidone and tripotassium phosphate or dipotassium hydrogen phosphate:Experiment and correlation. Calphad.2007,31(4):553-559
    [10]Yan B, Cao X. Preparation of aqueous two-phase systems composed of two pH-response polymers and liquid-liquid extraction of demeclocycline. Journal of chromatography A.2012, 1245:39-45
    [11]Haghtalab A., B. M. On extension of UNIQUAC-NRF model to study the phase behavior of aqueous two phase polymer-salt systems. Fluid Phase Equilibria.2001,180(1):139-149
    [12]Pazuki GR, Taghikhani V, Ghotbi C, Vossoughi M, Radfarnia HR. Study of phase behaviour for the aqueous two-phase polymer-polymer systems using the modified UNIQUAC-NRF model. Physics and Chemistry of Liquids.2009,47(2):148-159
    [13]C.H. Kang, Sandler SI. Phase behavior of aqueous two-polymer systems. Fluid Phase Equilibria.1987,38(3):245-272
    [14]Jose C. Merchuk, Barbara A. Andrews, Asenjo JA. Aqueous two-phase systems for protein separation Studies on phase inversion. Journal of Chromatography B.1998,711: 285-293
    [15]Mancheng Hu, Quanguo Zhai, Zhihong Liu, Xia S. Liquid-Liquid and Solid-Liquid Equilibrium of the Ternary System Ethanol+Cesium Sulfate+Water at (10,30, and 50) °C. J Chem Eng Data.2003,48:1561-1564
    [16]Pico G, Romanini D, Nerli B, Farruggia B. Polyethyleneglycol molecular mass and polydispersivity effect on protein partitioning in aqueous two-phase systems. Journal of chromatography B, Analytical technologies in the biomedical and life sciences.2006,830(2): 286-292
    [17]Shang Y, Liu H, Hu Y, Prausnitz JM. Effect of salts on the aqueous two-phase system in mixed solutions of Gemini (12-3-12,2Br-) and sodium dodecyl sulfate. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2007,302(1-3):58-66
    [18]Ferreira LA, Teixeira JA, Mikheeva LM, Chait A, Zaslavsky BY. Effect of salt additives on partition of nonionic solutes in aqueous PEG-sodium sulfate two-phase system. Journal of chromatography A.2011,1218(31):5031-5039
    [19]Jiang Y, Xia H, Yu J, Guo C, Liu H. Hydrophobic ionic liquids-assisted polymer recovery during penicillin extraction in aqueous two-phase system. Chemical Engineering Journal.2009,147(1):22-26
    [20]Chow YH, Yap YJ, Anuar MS, Tejo BA, Ariff A, Show PL, et al. Interfacial partitioning behaviour of bovine serum albumin in polymer-salt aqueous two-phase system. Journal of chromatography B, Analytical technologies in the biomedical and life sciences.2013,934: 71-78
    [21]Pimentel MCB, Araujo AI, Figueiredo ZMB, Silva RA, Cavalcanti MTH, Moreira KA, et al. Aqueous two-phase system for citrinin extraction from fermentation broth. Separation and Purification Technology.2013,110:158-163
    [22]Mokhtarani B, Karimzadeh R, Amini MH, Manesh SD. Partitioning of Ciprofloxacin in aqueous two-phase system of poly(ethylene glycol) and sodium sulphate. Biochemical Engineering Journal.2008,38(2):241-247
    [23]Da Silva CAS, Coimbra JSR, Rojas EEG, Teixeira JAC. Partitioning of glycomacropeptide in aqueous two-phase systems. Process Biochemistry.2009,44(11): 1213-1216
    [24]Madeira PP, Teixeira JA, Macedo EA, Mikheeva LM, Zaslavsky BY. Correlations between distribution coefficients of various biomolecules in different polymer/polymer aqueous two-phase systems. Fluid Phase Equilibria.2008,267(2):150-157
    [25]De Oliveira FC, dos Reis Coimbra JS, da Silva LHM, Rojas EEG, do Carmo Hespanhol da Silva M. Ovomucoid partitioning in aqueous two-phase systems. Biochemical Engineering Journal.2009,47(1-3):55-60
    [26]Silverio SC, Rodriguez O, Teixeira JA, Macedo EA. Solute partitioning in polymer—salt ATPS:The Collander equation. Fluid Phase Equilibria.2010,296(2):173-177
    [27]Bora MM, Borthakur S, Rao PC, Dutta NN. Aqueous two-phase partitioning of cephalosporin antibiotics:effect of solute chemical nature. Separation and Purification Technology.2005,45(2):153-156
    [28]Wang Y, Han J, Xu X, Hu S, Yan Y. Partition behavior and partition mechanism of antibiotics in ethanol/2-propanol-ammonium sulfate aqueous two-phase systems. Separation and Purification Technology.2010,75(3):352-357
    [29]Li S, He C, Gao F, Li D, Chen Z, Liu H, et al. Extraction and determination of morphine in compound liquorice using an aqueous two-phase system of poly(ethylene glycol)/K2HPO4 coupled with HPLC. Talanta.2007,71(2):784-789
    [30]Azevedo AM, Rosa PA, Ferreira IF, Aires-Barros MR. Integrated process for the purification of antibodies combining aqueous two-phase extraction, hydrophobic interaction chromatography and size-exclusion chromatography. Journal of chromatography A.2008, 1213(2):154-161
    [31]Omidinia E, Shahbaz Mohamadi H, Dinarvand R, Taherkhani HA. Investigation of chromatography and polymer/salt aqueous two-phase processes for downstream processing development of recombinant phenylalanine dehydrogenase. Bioprocess and biosystems engineering.2010,33(3):317-329
    [32]B. MATTIASSON, LING TGI. Efforts to integrate affinity interactions with conventional separation technologies Affinity partition using biospecific chromatographic particles in aqueous two-phase systems. Journal of Chromatography A.1986,376:235-243
    [33]Kepka C, Lemmens R, Vasi J, Nyhammar T, Gustavsson P-E. Integrated process for purification of plasmid DNA using aqueous two-phase systems combined with membrane filtration and lid bead chromatography. Journal of Chromatography A.2004,1057(1-2): 115-124
    [34]Naveen Nagaraj, A.V. Narayan, N.D. Srinivas, Raghavarao KSMS. Microwave-field-assisted enhanced demixing of aqueous two-phase systems. Analytical Biochemistry.2003,312:134-140
    [35]N.D. Srinivas, K.R. Rashmi, Raghavarao KSMS. Extraction and purification of a plant peroxidase by aqueous two-phase extraction coupled with gel filtratio. Process Biochemistry. 1999,35:43-48
    [36]N.D. Srinivas, R.S. Barhate, Raghavarao KSMS. Aqueous two-phase extraction in combination with ultrafiltration for downstream processing of Ipomoea peroxidase. Journal of Food Engineering.2002,54:1-6
    [37]Han J, Wang Y, Yu C, Li C, Yan Y, Liu Y, et al. Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography. Analytica chimicaacta.2011,685(2):138-145
    [38]Guo YX, Han J, Zhang DY, Wang LH, Zhou LL. Aqueous two-phase system coupled with ultrasound for the extraction of lignans from seeds of Schisandra chinensis (turcz.) Baill. Ultrasonics sonochemistry.2013,20(1):125-132
    [39]Wang H, Dong Y, Xiu ZL. Microwave-assisted aqueous two-phase extraction of piceid, resveratrol and emodin from Polygonum cuspidatum by ethanol/ammonium sulphate systems. Biotechnology letters.2008,30(12):2079-2084
    [40]Christoph GroBmann, Ralf Tintinger, Jiandung Zhu, Maurer G. Partitioning of some amino acids and low molecular peptides in aqueous two-phase systems of poly(ethylene glycol) and dipotassium hydrogen phosphate. Fluid Phase Equilibria.1997,137:209-228
    [41]Shang QK, Li W, Jia Q, Li DQ. Partitioning behavior of amino acids in aqueous two-phase systems containing polyethylene glycol and phosphate buffer. Fluid Phase Equilibria. 2004,219(2):195-203
    [42]Luiza H.M. da Silva, Meirelles AJA. Bovine serum albumin, a-lactoalbumin and (3-lactoglobulin partitioning in polyethlene glycol/maltodextrin aqueous-two-phase systems. Carbohydrate Polymers.2000,42:279-282
    [43]Song G, Du Q. Isolation of a polysaccharide with anticancer activity from Auricularia polytricha using high-speed countercurrent chromatography with an aqueous two-phase system. Journal of chromatography A.2010, 1217(38):5930-5934
    [44]L.A. Oliveira, L.A. Sarubbo, A.L.F. Porto, G.M. Campos-Takaki, Tambourgi EB. Partition of trypsin in aqueous two-phase systems of poly(ethylene glycol) and cashew-nut tree gum. Process Biochemistry. 2002,38:693-699
    [45]张敏娜,朱军,王光辉,王汀,丁瑞芳,张华丽.双水相体系与超声集成提取月季花总黄酮.药物研发.2012,33(3):29-30
    [46]范杰平,曹婧,孔涛,张璐[Bmim]Br-K2HPO4双水相萃取与超声耦合法提取葛根中的葛根素及其优化.高校化学工程学报.2011,25(6):955-960
    [47]Monica Andrea Bim, Franco TT. Extraction in aqueous two-phase systems of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching. Journal of Chromatography B.2000,743:349-356
    [48]Babu BR, Rastogi NK, Raghavarao KSMS. Liquid-liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system. Chemical Engineering and Processing: Process Intensification.2008,47(1):83-89
    [49]Claudio AFM, Freire MG, Freire CSR, Silvestre AJD, Coutinho JAP. Extraction of vanillin using ionic-liquid-based aqueous two-phase systems. Separation and Purification Technology.2010,75(1):39-47
    [50]Klomklao S, Benjakul S, Visessanguan W, Simpson BK, Kishimura H. Partitioning and recovery of proteinase from tuna spleen by aqueous two-phase systems. Process Biochemistry. 2005,40(9):3061-3067
    [51]Su C-K, Chiang BH. Partitioning and purification of lysozyme from chicken egg white using aqueous two-phase system. Process Biochemistry.2006,41(2):257-263
    [52]Mayerhoff ZDVL, Roberto IC, Franco TT. Purification of xylose reductase from Candida mogii in aqueous two-phase systems. Biochemical Engineering Journal.2004,18(3): 217-223
    [53]Tianwei T, Qing H, Qiang L. Purification of glycyrrhizin from Glycyrrhiza uralensis Fisch with ethanol/phosphate aqueous two phase system. Biotechnology letters.2002,24: 1417-1420
    [54]Zijlstra GM, Gooijer CDd, Pol LAvd, Tramper J. Design of aqueous two-phase systems supporting animal cell growth:A first step toward extractive bioconversions. Enzyme and Microbial Technology.1996,19:2-8
    [55]Li H, Cao X. Bioconversion of cephalosporin-G to 7-ADCA in a pH-thermo sensitive recycling aqueous two-phase systems. Process Biochemistry.2011,46(9):1753-1758
    [56]Li M, Kim J-W, Peeples TL. Amylase partitioning and extractive bioconversion of starch using thermoseparating aqueous two-phase systems. Journal of Biotechnology.2002, 93:15-26
    [57]Ng HS, Ooi CW, Mokhtar MN, Show PL, Ariff A, Tan JS, et al. Extractive bioconversion of cyclodextrins by Bacillus cereus cyclodextrin glycosyltransferase in aqueous two-phase system. Bioresource technology.2013,142:723-726
    [58]Li X, Lian Z, Dong B, Xu Y, Yong Q, Yu S. Extractive bioconversion of xylan for production of xylobiose and xylotriose using a PEG6000/sodium citrate aqueous two-phase system. Korean Journal of Chemical Engineering.2011,28(9):1897-1901
    [59]Amina W. Effective extraction of cephalosporin C from whole fermentation broth of Acremonium chrysogenum utilizing aqueous two phase systems. African Journal of Biotechnology.2012,11(31):
    [60]Mukataka S, Haynes CA, Prausnitz JM, Blanch HW. Extractive Bioconversions in Aqueous Two-Phase Systems:Enzymatic Hydrolysis of Casein Proteins. Biotechnology and bioengineering.1992,40(195-206):
    [61]Loc NH, Mien NTT, Thuy DTB. Purification of extracellular α-amylase from Bacillus subtilis by partitioning in a polyethylene glycol/potassium phosphate aqueous two-phase system. Annals of Microbiology.2010,60(4):623-628
    [62]Yang S, Huang Z, Jiang Z, Li L. Partition and purification of a thermostable xylanase produced by Paecilomyces thermophila in solid-state fermentation using aqueous two-phase systems. Process Biochemistry.2008,43(1):56-61
    [63]Chouyyok W, Wongmongkol N, Siwarungson N, Prichanont S. Extraction of alkaline protease using an aqueous two-phase system from cell free Bacillus subtilis TISTR 25 fermentation broth. Process Biochemistry.2005,40(11):3514-3518
    [64]Pereira JFB, Vicente F, Santos-Ebinuma VC, Araujo JM, Pessoa A, Freire MG, et al. Extraction of tetracycline from fermentation broth using aqueous two-phase systems composed of polyethylene glycol and cholinium-based salts. Process Biochemistry.2013, 48(4):716-722
    [65]Pandey SK, Banik RM. Extractive fermentation for enhanced production of alkaline phosphatase from Bacillus licheniformis MTCC 1483 using aqueous two-phase systems. Bioresource technology.2011,102(5):4226-4231
    [66]Ooi CW, Hii SL, Kamal SMM, Ariff A, Ling TC. Extractive fermentation using aqueous two-phase systems for integrated production and purification of extracellular lipase derived from Burkholderia pseudomallei. Process Biochemistry.2011,46(1):68-73
    [67]Kwon YJ, Kaul R, Mattiasson. Extractive Lactic Acid Fermentation in Poly(ethyleneimine)-Based Aqueous Two-Phase System. Biotechnology and bioengineering. 1995,50:280-290
    [68]Silva CS, Bovarotti E, Rodrigues MI, Hokka CO, Barboza M. Evaluation of the effects of the parameters involved in the purification of clavulanic acid from fermentation broth by aqueous two-phase systems. Bioprocess and biosystems engineering.2009,32(5):625-632
    [69]Shibukawa M, Nakayama N, Hayashi T, Shibuya D, Endo Y, Kawamura S. Extraction behaviour of metal ions in aqueous polyethylene glycol-sodium sulphate two-phase systems in the presence of iodide and thiocyanate ions. Analytica chimica acta.2001,427:293-300
    [70]张天喜,李文钧,吴瑾光,周维金,高宏成,陈景.双水相体系从碱性氰化液中萃取分离金研究.化工学报.2000,51:97-100
    [71]邓凡政,石影,张广军.聚乙二醇-硫酸钠-硫氰酸钾体系中Co(Ⅱ). Ni(Ⅱ), Mo(Ⅵ)的萃取分离研究.稀有金属.1998,22(3):187-190
    [72]Bulgariu L, Bulgariu D. Extraction of metal ions in aqueous polyethylene glycol-inorganic salt two-phase systems in the presence of inorganic extractants:correlation between extraction behaviour and stability constants of extracted species. Journal of chromatography A.2008,1196-1197:117-124
    [73]Rogers RD, Bond AH, Bauer CB, Zhang J, Griffin ST. Metal ion separations in polyethylene glycol-based aqueous biphasic systems:correlation of partitioning behavior with available thermodynamic hydration data. Journal of Chromatography B.1996,680:221-229
    [74]Graber TA, Andrews BA, Asenjo JA. Model for the partition of metal ions in aqueous two-phase systems. Journal of Chromatography B.2000,743:57-64
    [75]Rosa PAJ, Azevedo AM, Sommerfeld S, Mutter M, Backer W, Aires-Barros MR. Continuous purification of antibodies from cell culture supernatant with aqueous two-phase systems:From concept to process. Biotechnol J.2012,8:352-362
    [76]Wu Q, Lin DQ, Zhang QL, Gao D, Yao SJ. Evaluation of a PEG/hydroxypropyl starch aqueous two-phase system for the separation of monoclonal antibodies from cell culture supernatant. Journal of separation science.2014,37(4):447-453
    [77]Marszal E, Suchova M, Konecny P, Scouten WH. Study of cell-free protein synthesis in aqueous two-phase systems. Journal of Molecular Recognition.1995,8:151-156
    [78]Yamada M, Kasim V, Nakashima M, Edahiro J, Seki M. Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices. Biotechnology and bioengineering.2004,88(4):489-494
    [79]Lee J-H, Loc N-H, Kwon T-H, Yang M-S. Partitioning of recombinant human granulocyte macrophage colony stimulate factor (hGM-CSF) from plant cell suspension culture in PEG/sodium phosphate aqueous two-phase systems. Biotechnology and Bioprocess Engineering.2004,9:12-16
    [80]Wang W, Wan J, Ning B, Xia J, Cao X. Preparation of a novel light-sensitive copolymer and its application in recycling aqueous two-phase systems. Journal of chromatography A. 2008,1205(1-2):171-176
    [81]Alvarez-Lorenzo C, Bromberg L, Concheiro A. Light-sensitive Intelligent Drug Delivery Systems. Photochemistry and Photobiology.2009,85:848-860
    [82]Jiang X, Lavender CA, Woodcock JW, Zhao B. Multiple Micellization and Dissociation Transitions of Thermo-and Light-Sensitive Poly(ethylene oxide)-b-poly(ethoxytr (ethylene glycol) acrylate-co-o-nitrobenzyl acrylate) in Water. Macromolecules.2008,41:2632-2643
    [83]Wan J, Cao X, Wang W, Ning B, Li X. Partition of several model bioproducts in recycling aqueous two-phase systems with pH/light responsive copolymers. Separation and Purification Technology.2010,76(2):104-109
    [84]Li X, Wan J, Cao X. Preliminary application of light-pH sensitive recycling aqueous two-phase systems to purification of lipase. Process Biochemistry.2010,45(4):598-601
    [85]Dallora NLP, Klemz JGD, Pessoa Filho PdA. Partitioning of model proteins in aqueous two-phase systems containing polyethylene glycol and ammonium carbamate. Biochemical Engineering Journal.2007,34(1):92-97
    [86]Waziri SM, Abu-Sharkh BF, Ali SA. Protein Partitioning in Aqueous Two-Phase Systems Composed of a pH-Responsive Copolymer and Poly(ethylene glycol). Biotechnol Prog.2004,20:526-532
    [87]Cai Q, Zeng K, Ruan C, Desai TA, Grimes CA. A Wireless, Remote Query Glucose Biosensor Based on a pH-Sensitive Polymer. Anal Chem.2004,76:4038-4043
    [88]Ding Z, Cao X. Affinity precipitation of cellulase using pH-response polymer with Cibacron Blue F3GA. Separation and Purification Technology.2013,102:136-141
    [89]Liang W, Cao X. Preparation of a pH-sensitive polyacrylate amphiphilic copolymer and its application in cellulase immobilization. Bioresource technology.2012,116:140-146
    [90]Liu J, Cao X. Biodegradation of cellulose in novel recyclable aqueous two-phase systems with water-soluble immobilized cellulase. Process Biochemistry.2012,47(12):1998-2004
    [91]Zhang P, Wang X, Li S. Synthesis of the Functional Hydrogels: Poly(N-isopropylacrylamide) Threaded onto the PEG Backbones Via RAFT. Journal of Macromolecular Science, Part A.2010,47(10):1019-1025
    [92]Li W, Wang J, Zou L, Zhu S. Synthesis and characteristic of the thermo-and pH-sensitive hydrogel and microporous hydrogel induced by the NP-10 aqueous two-phase system. European Polymer Journal.2008,44(11):3688-3699
    [93]Jiang J, Hua D, Tang J. One-pot synthesis of pH-and thermo-sensitive chitosan-based nanoparticles by the polymerization of acrylic acid/chitosan with macro-RAFT agent. International Journal of Biological Macromolecules.2010,46(1):126-130
    [94]Gupta NR, Ghute PP, Badiger MV. Synthesis and characterization of thermo-sensitive graft copolymer of carboxymethyl guar and poly(N-isopropylacrylamide). Carbohydrate Polymers.2011,83(1):74-80
    [95]Zhang R. Synthesis, characterization and reversible transport of thermo-sensitive carboxyl methyl dextran/poly (N-isopropylacrylamide) hydrogel. Polymer.2005,46(8): 2443-2451
    [96]Zhao S, Cao M, Li H, Li L, Xu W. Synthesis and characterization of thermo-sensitive semi-IPN hydrogels based on poly(ethylene glycol)-co-poly(epsilon-caprolactone) macromer, N-isopropylacrylamide, and sodium alginate. Carbohydrate research.2010,345(3):425-431
    [97]Qu T, Wang A, Yuan J, Gao Q. Preparation of an amphiphilic triblock copolymer with pH-and thermo-responsiveness and self-assembled micelles applied to drug release. Journal of colloid and interface science.2009,336(2):865-871
    [98]Persson J, Johansson H-O, Tjerneld F. Purification of protein and recycling of polymers in a new aqueous two-phase system using two thermoseparating polymers. Journal of Chromatography A.1999,864:31-48
    [99]Miao S, Chen J, Cao X. Preparation of a novel thermo-sensitive copolymer forming recyclable aqueous two-phase systems and its application in bioconversion of Penicillin G Separation and Purification Technology.2010,75(2):156-164
    [100]Shah S, Pal A, Gude R, Devi S. Synthesis and characterization of thermo-responsive copolymeric nanoparticles of poly(methyl methacrylate-co-N-vinylcaprolactam). European Polymer Journal.2010,46(5):958-967
    [101]Shubo F, Shuyuan L, Cunfeng H, Erli Z, Xinliang T. Synthesis of N-vinyl caprolactam. Catalysis Today.2009,140(3-4):169-173
    [102]Verbrugghe S, Laukkanen A, Aseyev V, Tenhu H, Winnik FM, Du Prez FE. Light scattering and microcalorimetry studies on aqueous solutions of thermo-responsive PVCL-g-PEO copolymers. Polymer.2003,44(22):6807-6814
    [103]Li X, Liu W, Ye G, Zhang B, Zhu D, Yao K, et al. Thermosensitive N-isopropylacrylamide-N-propylacrylamide-vinyl pyrrolidone terpolymers:synthesis, characterization and preliminary application as embolic agents. Biomaterials.2005,26(34): 7002-7011
    [104]Pollock JF, Healy KE. Mechanical and swelling characterization of poly(N-isopropyl acrylamide-co-methoxy poly(ethylene glycol) methacrylate) sol-gels. Acta biomaterialia. 2010,6(4):1307-1318
    [105]Anufrieva EV, Gromova RA, Kirsh YE, Yanul NA, Krakovyak MG, Lushchik VB, et al. Complexing properties and structural characteristics of thermally senstive copolymers of N-vinylpyrrolidone and N-vinylcaprolactam. European Polymer Journal.2001,37:323-328
    [106]Maladkar NK. Enzymatic production of cephalexin. Enzyme Microb Technol.1994,16: 715-718
    [107]Cecchini DA, Pavesi R, Sanna S, Daly S, Xaiz R, Pregnolato M, et al. Efficient biocatalyst for large-scale synthesis of cephalosporins, obtained by combining immobilization and site-directed mutagenesis of penicillin acylase. Applied microbiology and biotechnology. 2012,95(6):1491-1500
    [108]Ospina S, Barzaua E, Ramirez OT, Lbpez-Munguia A. Effect of pH in the synthesis of ampicillin by penicillin acylase. Enzyme and Microbial Technology.1996,19:462-469
    [109]Samanta TB. Enzymatic synthesis of β-lactams:Constraints and control. Indian Journal of Biotechnology.2012,11:7-15
    [110]Van Langen LM, Oosthoek NHP, van Rantwijk F, Sheldon RA. Penicillin Acylase Catalysed Synthesis of Ampicillin in Hydrophilic Organic Solvents. Advanced Synthesis & Catalysis.2003,345(67):797-801
    [111]Shaw S-Y, Shyu J-C, Hsieh Y-W, Yeh H-J. Enzymatic synthesis of cephalothin by penicillin G acylase. Enzyme and Microbial Technology.2000,26:142-151
    [112]Kurochkina VB, Sklyarenko AV, Satarova JE, Yarotsky SV. Ionization constants and solubility of compounds involved in enzymatic synthesis of aminopenicillins and aminocephalosporins. Bioprocess and biosystems engineering.2011,34(9):1103-1117
    [113]R.B.Goncalves L, Fernandez-Lafuente R, JoseM.Guisan, Giordano RLC, Giordano RC. Inhibitory effects in the side reactions occurring during the enzymic synthesis of amoxicillin: p-hydroxyphenylglycine methyl ester and amoxicillin hydrolysis. Biotechnol Appl Biochem. 2003,38:77-85
    [114]Pan J-L, Syu M-J. Kinetic study on substrate and product inhibitions for the formation of 7-amino-3-deacetoxy cephalosporanic acid from cephalosporin G by immobilized penicillin G acylase. Biochemical Engineering Journal.2005,23(3):203-210
    [115]Aguirre C, Concha I, Vergara J, Riveros R, Illanes A. Partition and substrate concentration effect in the enzymatic synthesis of cephalexin in aqueous two-phase systems. Process Biochemistry.2010,45(7):1163-1167
    [116]Hernandez-Justiz O, Fernandez-Lafuente R, Terreni M, Guisan JM. Use of Aqueous Two-Phase Systems for in situ Extraction of Water Soluble Antibiotics During Their Synthesis by Enzymes Immobilized on Porous Supports. Biotechnology and bioengineering.1997, 59(1):76-79
    [117]Tjerneld F, Persson I, Albertsson P-A, Hahn-Hagerdal B. Enzymatic Hydrolysis of Cellulose in Aqueous Two-Phase Systems. I. Partition of Cellulases from Trichoderma reesei. Biotechnology and bioengineering.1984, XXVII:1036-1043
    [118]Sharma S, Teotia S, Gupta MN. Bioconversion in an aqueous two-phase system using a smart biocatalyst:casein hydrolysis by a chymotrypsin derivative. Enzyme and Microbial Technology.2003,32:337-339
    [119]Andersson E, Hahn-Hagerdal B. Bioconversions in aqueous two-phase systems. Enzyme Microb Technol.1990,12:242-252
    [120]Wei D-Z, Zhu J-H, Cao X-J. Enzymatic synthesis of cephalexin in aqueous two-phase systems. Biochemical Engineering Journal.2002,11:95-99
    [121]Li M, Kim J-W, Peeples TL. Kinetic enhancement of starch bioconversion in thermoseparating aqueous two-phase reactor systems. Biochemical Engineering Journal.2002, 11:25-32
    [122]Kitano H, Maeda Y, Yamamoto M, Izumida R. Thermolysin-catalyzed peptide synthesis in aqueous polymer two-phase systems. Macromol Chem Phys.197:4173-4181
    [123]Bartlett TJ, Rastall RA, Rees NH, Adlard MW, Bucke C. The Application of Aqueous Two-Phase Systems to Oligosaccharide Synthesis by a-Mannosidase Catalysed Glycosyl Transfer Reactions. J Chem Tech Biotechnol.1992,55:73-78
    [124]Barbhaiya RH, Shukla UA, Gleason CR, Shyu WC, Wilber RB, Pittman KA. Comparison of cefprozil and cefaclor pharmacokinetics and tissue penetration. Antimicrobial Agents and Chemotherapy.1990,34(6):1204-1209
    [125]Milatovic D, Adam D, Hamilton H, Materman E. Cefprozil versus penicillin V in treatment of streptococcal tonsillopharyngitis. Antimicrobial Agents and Chemotherapy.1993, 37(8):1620-1623
    [126]冯胜昔,梁世中,龟山丰.反式头孢丙烯的酶法合成及其体外抗菌活性.分离纯化与化学合成.2007,32(1):22-24
    [127]McCarty JM. Comparative Efficacy and Safety of Cefprozil Versus Penicillin, Cefaclor and Erythromycin in the Treatment of Streptococcal Pharyngitis and Tonsillitis. Eur J Clin Microbiol Infect Dis.1994,13(10):846-850

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700