卟啉酞菁化合物的设计、合成、表征及自组装性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉酞菁化合物以及三明治型稀土卟啉酞菁配合物作为新型的功能材料,由于其具有迷人的光学、电学、磁学性能而使得它们在分子电子学、分子信息存储和非线性光学上具有潜在的应用价值,在材料科学领域拥有广阔的应用前景。近年来,该类配合物的高度有序的纳米结构由于在光电子分子器件方面的潜在应用价值而吸引了广泛的研究兴趣。但是,如何通过调节分子之间的弱的相互作用力来控制有机纳米聚集体的形貌以及尺寸对化学工作者来说,仍然是一个相当大的挑战。本论文主要设计、合成了具有特殊分子结构的新型卟啉酞菁配合物,对它们进行了详细的表征并研究了它们的自组装性质,讨论了各种弱的相互作用力对分子在聚集体中的排列方式的影响以及对聚集体形貌的影响。其内容主要包括以下几个部分:
     1.手性卟啉化合物组装旋纳米结构的研究
     近年来,卟啉及其衍生物的自组装行为和纳米结构在构建分子水平上的电子和光学器件,例如,分子导线、电子开关、电致发光装置、场效应晶体管以及光伏器件等方面的众多应用而引起了广泛的研究兴趣。在这些广泛研究的基础上,由卟啉衍生物尤其是手性卟啉衍生物制备得到的旋和手性的超分子结构由于具有广阔的应用前景,因而吸引了研究者的浓厚研究兴趣。基于上述原因,大量含有各种不同手性中心的手性卟啉化合物被合成出来,如含有手性氨基酸或手性糖类或烃类基团的卟啉化合物。然而大量研究表明,手性基团修饰的卟啉分子并不是都能组装成旋超分子结构,事实上仅有一部分卟啉化合物得到了旋超分子结构。此外,还有部分卟啉化合物的超分子聚集态虽然可以测得圆二色信号,但是得不到具有旋形貌的纳米结构。这可能是由于分子间的作用力太弱以至于没有得到足够的长呈有序结构。因而,非共价键的作用力和手性识别之间脆弱的平衡在制备旋纳米结构的过程中发挥了非常重要的作用。但是非共价键作用力和手性识别在卟啉化合物的自组装过程中对形成的聚集体的形貌和尺寸所起到的作用依然不是很清晰。在本章中我们设计、合成并表征了一种新型具有光学活性的卟啉化合物(1),并对该化合物的自组装过程进行了系统研究。研究表明,在不加入钾离子的的状态下该卟啉化合物自主装的形貌是纳米球。当加入钾离子后,由于钾离子和冠醚之间的配位作用以及卟啉外围的手性基团的手性识别的协同作用,该卟啉化合物自组装得到的形貌是旋状的纳米线。这项研究将为在超分子层次上研究手性信息传递提供很好的指导作用。
     2.光学活性的混杂三层卟啉酞菁稀土金属配合物的合成、表征及分子水平上手性信息的传递和表达
     手性是自然界中最为迷人也最为复杂的现象之一。受一些天然手性生物分子所展现的特殊功能和性质的启发,利用不对称合成的方法,大量手性化合物包括具有光学活性的卟啉酞菁类配合物被化学科学家合成出来。但是到目前为止,报道的具有手性光学活性的三明治型卟啉酞菁类化合物依然很少。1997年,Aida及其合作者报道了D2对称性的手性卟啉双层锆和铈配合物的合成和手性拆分,这些配合物可以作为金属离子、羧酸以及糖类化合物的受体。Shinkai课题组通过手性二羧酸或糖类与双[四(4-吡啶基)卟啉]铈配合物中吡啶氮原子的氢键结合将手性引入双层卟啉铈配合物。Jiang的课题组报道了利用手性HPLC技术结合利用L-Boc-Phe-OH作为手性解析试剂形成非对映异构体混合物,对不对称卟啉酞菁双层稀土配合物[HMⅢ{Pc(α-3-OC_5H_11)4}{TOAPP}][Pc(a-3-OC_5H11])4=1,8,15,22.四(3-戊氧基)-酞菁;TOAPP=meso-四(4-辛胺基-苯基)卟啉;M=Y, Ho]成功进行了手性拆分。不仅通过酞菁配体的面不对称性可以成功地将手性诱导到混杂卟啉酞菁双层配合物上,在酞菁外围修饰上具有光学活性的芳香族基团后也能成功的将光学活性诱导到混杂卟啉酞菁双层配合物上。受这一结果的启发,我们设计、合成并表征了两种新型卟啉酞菁三层配合物[M2(Pc)2(TCBP)]{TCBP= Meso - tetrakis [3,4-(11,12:13,14-bis(1',2'-naphtho)-1,4,7,10,15,18-hexaoxacycloeicosa-2,11,13-triene)-phe nyl]porphyrinate;M=Eu(1),Y(2)}.CD测试结果表明,由于卟啉和酞菁环之间存在强烈的π-π相互作用,手性信号成功的从手性联二萘酚诱导到了卟啉和酞菁生色团的soret和Q带上。据我们所知,到目前为止这一研究是报道的第一例具有光学活性的混杂卟啉酞菁三层稀土金属配合物。
     3.三明治混杂卟啉酞菁三层稀土金属配合物自组装纳米结构的研究
     有机功能分子自组装成有序的纳米结构在先进功能分子材料方面的众多潜在应用价值而引起了化学家的广泛关注。各种非共价键例如,π-π堆积效应、范德华力、氢键、亲疏水作用、静电作用、金属配位键等是有机功能分子自组装成有序纳米结构的主要驱动力。基于这些作用力,各种各样形貌的有机纳米结构的报道层出不穷:纳米线、纳米带、纳米囊泡、纳米管、纳米球等等。在这些有机功能分子中,共轭分子体系由于在传感器、场效应晶体管以及光化学方面的广泛潜在应用而被认为是构筑超分子自组装纳米分子体系的最佳分子体系。在本文中,作为我们对卟啉酞菁类配合物纳米聚集体的进一步研究,我们合成了一个混杂卟啉酞菁三层稀土金属化合物,Eu2Pc2(TClPP)(1)并研究了它的晶体结构以及它在溶液中的自组装性质,并利用它的晶体结构对其自组装的机理成功进行了解释。这为开发和探索新型分子功能器件的制备提供了一条新的参考途径。
     4.模板法制备三明治混杂卟啉酞菁三层稀土金属配合物纳米管
     由于有机纳米聚集体独特的的电子和光学性质,近年来将一些有机大分子组装成有序的纳米结构吸引了化学工作者的极大兴趣,尤其是一维的纳米聚集体因为它们广泛的潜在应用最近成了材料化学的研究热点。因此大量的一维纳米结构通过不同的制备方法和用不同的材料被制备出来,例如纳米纤维、纳米带、纳米管等。在这些大量的制备一维结构的方法中,由于模板法尤其是氧化铝模板法制备的一维纳米结构排列有序以及纳米结构的尺寸一致而吸引了广泛的关注。通常来说,这种分子高度排列以及聚集体大面积有序排列的一维纳米聚集体被一致认为可以用于纳米器件的制备。本章中我们通过氧化铝模板法将酞菁β位修饰有不同长度烷氧基链的卟啉酞菁三层配合物,Eu2(Pc)2(TClPP) (1), Eu2[Pc(β-OC4H9)8]2(TClPP) (2),和Eu2[Pc(β-OC8H17)8]2(TClPP)
     (3),制备成了一维的纳米管聚集体。系统的研究表明,在卟啉酞菁三层配合物的外围修饰上不同的取代基后影响了分子在纳米管聚集体中的排列方式。这部分工作我们研究了分子的结构对分子在聚集体中的排列方式的影响从而为进一步研究更高性能的新型功能分子材料提供新的思路和方法。
Owing to the intriguing optical, electrical, and properties, porphyrins, phthalocyanines, as well as sandwich type rare complexes, as a novel functional materials, have been expected to be widely potential application in materials science, such as in molecular electronics, molecular information storage, and nonlinear optics, etc. Recently, well-defined nanostructures have attracted increasing attentions due to their potential applications in (opto)electronic molecular devices. However, it must be pointed out that self-assembly of functional molecules into a prerequisite nanostructure with desirable dimension and morphology via controlling and optimizing inter-molecular interaction still remains a great challenge for chemists and material scientists. In this thesis, a series of porphyrin and/or phthalocyanine derivatives have been designed, synthesized, characterized, and some modern measuring techniques were performed to examine the influence of the noncovalent interactions such as hydrogen bonding, metal-ligand coordinate bonding, electrostatics, van der Waals, andπ-πstacking between the adiacent molecules on formation of their aggregate morphologies. Our research work has been focused on the following respects:
     1. Helical Nanostructures of Optically Active Metal Free Porphyrin with Four Optically Active Binaphthyl Moieties. Effect of Metal-ligand Coordination on the Morphology
     Novel optically active metal free porphyrin (1) with four chiral binaphthayl units attaching at the meso-phenyl substituents through crown ether moieties has been designed, synthesized, and characterized. Their self-assembly behavior in the absence and presence of K+ was comparatively investigated by electronic absorption and circular dichroism (CD) spectra, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atom force microscopy (AFM), and energy-dispersive X-ray (EDX) spectroscopy. In the absence of K+, metal free porphyrin self-assembles into nano-particles depending mainly on the van der Waals interaction among neighboring metal free molecules. In the presence of K+ additionally formed metal-ligand K-O_(crown) coordination bonds between K+ and crown units of (R)-and (S)-1 molecule together with chiral discrimination of chiral side chains and intermolecular van der Waals interaction induce respectively a right-handed and left-handed helical arrangement in a stack of (R)-and (S)-1 molecules with an ordered "head-to-tail" internal molecular arrangement, which then further hierarchically self-assembles into highly ordered fibrous nanostructures with the opposite helicity to the original porphyrin stack. This clearly reveals the effect of metal-ligand coordination bonding interaction on the morphology and handedness of self-assembled nanostructures.
     2. Optically Active Mixed (Phthalocyaninato)(porphyrinato) Rare Earth Triple-decker Complexes. Synthesis, Spectroscopy, and Effective Chiral Information Transfer
     With the view to creating novel sandwich-type tetrapyrrole rare earth complexes towards potential applications in material science and chiral catalysis, two new optically active mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes with both (R)-and (S)-enantiomers [M2(Pc)2(TCBP)] {TCBP= Meso-tetrakis [3,4-(11,12:13,14-di(1',2'-naphtho)-1,4,7,10,15,18-hexaoxacycloeicosa-2,11,13-triene)-phen yl] porphyrinate; M=Eu (1), Y (2)} have been designed and prepared by treating optically active metal free porphyrin (R)-/(S)-H2TCBP with M(Pc)2 in the presence of corresponding M(acac)_3·nH_2O (acac=acetylacetonate) in refluxing 1,2,4-trichlorobenzene (TCB). These novel mixed ring rare earth triple-decker compounds were characterized by a wide range of spectroscopic methods including MS,~1H NMR, IR, electronic absorption, and magnetic circular-dichroism (MCD) spectroscopic measurements in addition to elemental analysis. Perfect mirror image relationship was observed in the Soret and Q absorption regions in the circular-dichroism (CD) spectra of the (R)-and (S)-enantiomers, indicating the optically active nature of these two mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes. This result reveals the effective chiral information transfer from the peripheral chiral binaphthyl units to the porphyrin and phthalocyanine chromophores in the triple-decker molecule due to the intenseπ-πinteraction between porphyrin and phthalocyanine rings.
     3. Synthesis, Crystal Structure and Self-assembly Property of A Mixed (Phthalocyaninato)(porphyrinato) Europium Triple-decker Complex
     A mixed phthalocyaninato and porphyrinato triple-decker complex [Eu2(Pc)2(TClPP)] was synthesized and characterized by elemental analysis, FT-IR, UV, and X-ray structure determination. Its self-assembling properties in mixed chloroform/methanol solution were investigated by TEM, SEM and XRD technique. Investigation reveal the availability single crystal, together with the molecular structure, renders it possible to investigate the formation mechanism as well as the molecular packing conformation of self-assembled nano structures fabricated from this complex in a more confirmed manner.
     4. Sandwich-type (Phthalocyaninato)(porphryinato) Europium Triple-decker Nanotubes. Effect of the Substituents on the Molecular Packing
     A series of three sandwich-type (phthalocyaninato)(porphyrinato) europium triple-decker complexes, namely Eu_2(Pc)_2(TClPP) (1), Eu2[Pc(β-OC_4H_9)8]2(TClPP) (2), and Eu2[Pc(β-OC_8H_17)8]2(TClPP) (3), were fabricated into nanotubes using nanoporous anodized aluminum oxide (AAO) membrane as the template. The tubular structure was studied by various spectroscopic, electronic microscopic, and X-ray diffraction techniques. The outer diameter of the nanotubes was revealed to match very well with the pore diameter of AAO membrane, while the wall thickness of the nanotubes changes depending on the immersing time. The effect ofβ-substituents at the two phthalocyanine ligands in the triple-decker molecule on the molecular packing in the nanotubes along the alumina surface was clarified:Depending mainly on the intermolecularπ-πinteraction, the discotic molecules of 1 form columnar structures on the alumina surface with homeotropic (edge-on) stacking. In good contrast, introduction of eight alkyoxyl substituents at theβ-positions of the phthalocyanine ligands of 2 and 3 induces an increase in the interaction of the triple-decker molecules with the alumina surface, resulting in the formation of nanotubes with discotic molecules 2 and 3 parallel (face-on) stacking along the alumina surface.
引文
[1]Ficsher, H. et al. Die Chemie des pyrrols [M] Vol 2, part 1, Akademic Verlagsegesllschft, Liepzig,1937,158.
    [2]Zelaski, J. Porphyrin. [J] Z. Physiol. Chem.,1902,37,54.
    [3]计亮年,彭小彬,黄锦汪.金属卟啉配合物模拟某些金属酶的研究进展.[J]自然科学进展,2002,12,120-129.
    [4](a) Wolffs, M.; Hoeben, F. J. M.; Beckers, E. H. A.; Schenning, A. P. H. J.; Meijer, E. W. Sequential Energy and Electron Transfer in Aggregates of Tetrakis[oligo(p-phenylene vinylene)] Porphyrins and C_6o in Water. [J] J. Am. Chem. Soc. 2005,127,13484-13485. (b) Otsuki, J.; Iwasaki, K.; Nakano, Y.; Itou, M.; Araki, Y.; Ito, O. Supramolecular Porphyrin Assemblies through Amidinium-Carboxylate Salt Bridges and Fast Intra-Ensemble Excited Energy Transfer. [J] Chem. Eur. J.2004,10,3461-3466. (c) Sagawa, T.; Fukugawa, S.; Yamada, T.; Ihara, H. Self-Assembled Fibrillar Networks through Highly Oriented Aggregates of Porphyrin and Pyrene Substituted by Dialkyl L-Glutamine in Organic Media. [J] Langmuir,2002,18,7223-7228.
    [5](a) Armitage, B. Photocleavage of nucleic acids. [J] Chem. Rev.1998,98,1171-1200. (b) Meunier, B. Metalloporphrins as versatile catalysts for Oxidation reactions and oxidative DNA cleavage. [J] Chem. Rev.1992,92,1411-1456. (c)李德平,胡静.血卟啉类化合物诊治肿瘤的研究进展及应用[J]中国生化药物杂志,2003,24,162-163.
    [6]杨新国,孙景志,汪茫,陈红征,黄骥.卟啉类光电功能材料研究进展.[J]功能材料,2003,34,113-117.
    [7](a)马红,韩士田.卟啉在催化剂方面的应用研究进展.[J]河北工业科技,2009,26,205-209.(b)雷亚春,张勇,刘滇生,潘景浩.卟啉及其配合物在分析化学中应用进展.[J]光谱实验室,2003,20,479-485.
    [8]Ng. D. K. P.; Jiang, J. Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes. [J] Chem. Soc. Rev.1997,26,433-442.
    [9](a) N. Uyeda, T. Kobayashi, E. Suito, Y. Harada, M. Watanabe. Molecular image resolution in electron microscopy. [J] J. Appl. Phys.1972,43,5181-5189. (b) T. Kobayashi, S. Isoda. Lattice Images and Molecular Images of Organic Materials. [J] J. Mater. Chem.1993,3,1-14.
    [10]Eley, D. D. Phthalocyanines as semiconductors [J] Nature,1948,162,819-819.
    [11](a) Schramm, C. J., Stojakovic, D. R., Hoffman, B. M.&Marks, T. J. New low-dimensional molecular metals:single-crystal electrical conductivity of nickel phthalocyanine iodide. [J] Science,1978,200,47. (b) Marks, T. J. Electrically conductive metallomacrocyclic assemblies. [J] Science,1985,227,881-889.
    [12](a) Bott, B., Jones, T. A.; A highly sensitive NO2 sensor based on electrical conductivity changes in phthalocyanine films. [J] Sensors&Actuators.1984,5,43. (b) Wright, J. D. Gas adsorption on phthalocyanines and its effects on electrical properties. [J] Prog. Surf. Sci.1989,31,1.
    [13]Vartanyan, A. T. Poluprovodnikovye Svoistva Organicheskikh Krasitel. [J] Zh. Fiz Khim.1948,22,769-774.
    [14]Law, K.-Y. Organic photoconductive materials:recent trends and developments. [J] Chem. Rev.1993,93,449-486.
    [15](a) Tang, C. W. Two-layer organic photovoltaic cell. [J] Appl. Phys. Lett.1986,48, 183-185. (b) Nazeeruddin, M. K., et al. Efficient near IR sensitization of nanocrystalline TiO2 films by ruthenium phthalocyanines. [J] Chem. Commun.1998,719-720.
    [16]Wohrle, D., et al. Microlasers based on organic dyes in nanoporous crystals. [J] Molecular Crystals&Liquid Crystals.1993,230,221.
    [17]王朝晖,衷庆华,熊轶嘉,孙亚,孔繁敖.酞菁锌分子激发态的超快内转换和振动弛豫.[J]化学物理学报,1998,2,15-18.
    [18]De la Torre, G., Vazquez. P. et al. Phthalocyanines and related compounds. [J] J. Mater. Chem.1998,8,1671-1683.
    [19]Shirk J. S., Lindle J. R., Bartoli F. J. et al. Third-order optical nonlinearities of bis(phthalocyanines). [J] J. Phys. Chem.1992,96,5847-5852.
    [20]陈仕艳,刘云圻,黄学斌,邱文丰,朱道本.酞菁在分子材料器件方面的研究进展.[J]自然科学进展,2004,14,125-132.
    [21]陈发普,许德余.酞菁化合物作为新型肿瘤光化学诊治剂的研究进展.[J]国外医药-合成药、生化药.制剂分册,1990,11,78-82.
    [22](a) Anderson, C. Y.; Freye, K.; Tubesing, K. A.; Li, Y.-S.; Kenney, M. E.; Mukhtar, H.; Elmets, C. A. A Comparative Analysis of Silicon Phthalocyanine Photosensitizers for in vivo Photodynamic Therapy of RIF-1 Tumors in C3H Mice. [J] Photochem. Photobiol. 1998,67,332-336. (b) Farrell, T. J.; Wilson, B. C.; Patterson, M. S.; Olivio, M. C. Comparison of the In Vivo Photodynamic Threshold Dose for Photofrin, Mono-and Tetrasulfonated Aluminum Phthalocyanine Using a Rat Liver Model. [J] Photochem, Photobiol.1998,68,394-399. (c) Griffiths, M. A., Wren, B. W. and Wilson, M. Killing of methicillin-resistant Staphylococcus aureus in vitro using aluminium disulphonated phthalocyanine, a light-activated antimicrobial agent. [J] J. Antimicrobial Chemotherapy. 1997,40,873-876.
    [23](a) Hanack, M.; Meng, D.; Beck, A.; Sommerauer, M.; Subramanian, L. R. Separation of structural isomers of tetra-tert-butylphthalocyaninatonickel(Ⅱ). [J] J. Chem. Soc., Chem. Commun.1993,58-60. (b) Laura, P.; Giuliana, V.; Giulio, J.; Reddi, E. Low-density lipoprotein receptors in the uptake of tumour photosensitizers by human and rat transformed fibroblasts. [J] The International Journal of Biochemistry & Cell Biology.2002,34,10-23.
    [24]Borisenkova, S. A. New aspects of the heterogeneous catalysis of thiol oxidation by phthalocyanines. [J] Petroleum Chem.1991, 31,379-398.
    [25]Bennett W. E., Broberg D. E., Baenziger N. C. Crystal structure of stannic phthalocyanine, an eight-coordinated tin complex. [J] Inorg. Chem.1973,12,930-936.
    [26]Kirin I. S., Moskalev P. N., Makashev Yu. A. Formation of phthalocyanines of rare-earth elements. [J] Russ. J. Inorg. Chem.1965,10,1065.
    [27]Cian A. De., Moussavi M., Fischer J. et al. Synthesis, structure, and spectroscopic and magnetic properties of lutetium(III) phthalocyanine derivatives. [J] Inorg. Chem.1985, 24,3162-3167.
    [28]M. Bouvet, J. Smion, Electrical properties of rare earth bisphthalocyanine and bisnaphthalocyanine complexes. [J] Chem. Phys. Lett.1990,172,299
    [29](a) D. K. P. Ng, J. Jiang. Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes. [J] Chem. Soc. Rev.1997,26,433-442. (b)姜建壮,吴基培,刘伟,谢经雷,孙思修,对称的二层及三层三明治型金属酞菁配合物的研究进展.[J]化学通报.1999,2.
    [30]A. Gieren, W. Hoppe. X-Ray crystal structure analysis of bisphthalocy aninatouranium. [J] Chem. Commun.1971,413.
    [31]Cian.A.De; Moussavi M; Fischer J; et al. Synthesis, structure, and spectroscopic and magnetic properties of lutetium(III) phthalocyanine derivatives [J] Inorg. Chem.1985,24, 3162.
    [32]Koike.N., Uekusa.H., Ohashi Y.; et al. Relationship between the Skew Angle and Interplanar Distance in Four Bis(phthalocyaninato)lanthanide(III) Tetrabutyl ammonium Salts ([NBun_4][LnPc_2]; Ln=Nd, Gd, Ho, Lu). [J] Inorg. Chem.1996,35,5798.
    [33]J. Buchler; A. D. C. J. Fischer; M. K. Botulinski; H. Paulus; R. Weiss. Metal complexes with tetrapyrrole ligands. Cerium(IV) bis-(octaethylporphyrinate) and dicerium(III) tris(octaethylporphyrinate):Parents of a new family of lanthanoid double-decker and triple-decker molecules. [J] J. Am. Soc.1986,108,3652.
    [34]G. C. S. Collins; D. J. Schiffrin. The electrochromic properties of lutetium and other phthalocyanines. [J] J. Electroanal. Chem.1982,139,335.
    [35]C. S.Frampton; J. M. O'Connor; J. Peterson; J. Silver. Enhanced colors and properties in the electrochromic behavior of mixed rare-earth-element bisphthalcoyanines. [J] Displays.1988,9,174.
    [36]A. Capobianchi, A. M. Paoletti, G. Pennesi, G. Rossiand S. Paner; Electrochromism in sandwich-type diphthalocyanines:electrochemical and spectroscopic behaviour of bis(phthalocyaninato)titanium(IV) (Ti(Pc)_2) film. [J] Synth. Met.1995,75,37.
    [37]McKeown, N. B.; The general chemistry of phthalcoyanines. [J] Chem. & Industry. 1999, Feb.1,92.
    [38]J. J. Andre, K. Holczer, P. Petit, M. T. Riou, J. Smon; Electrical and magnetic properties of thin films and single crystals of bis(phthalocyaninato) lutetium. [J] Chem. Phys. Lett.1985,115,463.
    [39]J. Padilla and W. E. Hatifield. Magnetic and electrical properties of sandwich-like lanthanide phthalocyanines. [J] Synth. Met.1989,29, F45.
    [40]J. Padilla and W. E. Hatifield; Correlation between п-orbital overlap and conductivity in bis-phthalocyaninato lanthanides. [J] Inorg. Chim. Acta.1991,185,131.
    [41]J. Souto, R. Aroca, J. A. Desaja; Gas Adsorption and Electrical Conductivity of Langmuir-Blodgett Films of Terbium Bisphthalocyanine. [J] J. Phys. Chem.1994,98, 8998.
    [42]M. Trometer, R. Even, J. Simon, A. Dubon and J.-Y. LavalJ. P. Germain, C. Maleysson, A. Pauly and H. Robert; Lutetium bisphthalocyanine thin films for gas detection. [J] Sens. Actuators B.1992,8,129.
    [43]J. Simon and S. Sirlin; Mesomorphic molecular materials for electronics, opto-electronics, iono-electronics:octaalkylphthalocyanine derivatives. [J] Pure Appl. Chem. 1989,61,1625.
    [44]G. Guillaud, M. Al Sadoun, M. Maitrot, J. J. Andre, J. Simon and R. Even. Field-effect transistors based on intrinsic molecular semiconductors. [J] Chem. Phys. Lett.1988,167, 503.
    [45]C. Clarisse, M. T. Riou, M. Gauneau and M. Le Cntellec. Field-Effect Transistor with Diphthalocyanine Thin Film. [J] Electron. Lett.1988,24,674.
    [46]T. Toupance, V. Ahsen and J. Simon. Iono-electronics:crown ether substituted lutetium bisphthalocyanines. [J] J. Chem. Soc., Chem. Commun.1994,75-76.
    [47](a) Nicholson M.M, Pizzarello F. A. The redox chemistry of phthalocyanine. [J] J. Electrochem Soc.1980,127,2617. (b) Nicholson M.M, Pizzarello F. A.; The role of oxygen in the redox chemistry of luterrium diphthalocyanine. [J] J. Electrochem Soc. 1984,131,2311.
    [48]K. L. Trojan, J. L. Kendall, K. D. Kepler and W. E. Hatfield; Strong exchange coupling between the lanthanide ions and the phthalocyaninato ligand radical in bis(phthalocyaninato)lanthanide sandwich compounds. [J] Inorg. Chim. Acta.1992,198, 795.
    [49](a) Lehn, J. M. Supramolecular Chemistry-Concepts and Perspectives. [M] Weinheim: VCH Publishers.1995. (b) Vogtle F.著.张希,林志宏,高倩译, 超分子化学[M]长春:吉林大学出版社,1995. (c) Ringsdorf, H.; Schlarb, B.; Venzmer J. Molecular architecture and function in polymeric oriented systems:models for the study of organization, surface recognition, and dynamics in biomembranes. [J] Angew. Chem. Int. Ed.1998,27,113. (d) Zhang, X.; Shen, J. C. self-assembled ultrathin films:from layered nanoarchitectures to functional assemblies. [J] Adv. Mater.1999,11,1139.
    [50]Vogtle, F. Supramolekulare Chemie, [M] Teubner, Stuttgart,1991.
    [51](a) Cram. D. J. The Design of Molecular Hosts, Guests, and Their Complexes. [J] Angew. Chem. Int. Ed.1988,27,1009-1020. (b) Lehn, J.-M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices. [J] Angew. Chem. Int. Ed.1988,27,89-112.
    [52](a) Lehn, J.-M. Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization. [J] Angew. Chem. Int. Ed.1990,29,1304-1319. (b) Lehn, J.-M. Supramolecular Chemistry. [J] Science.1993,260,1762-1763. (c) Lehn, J.-M. Supramolecular Chemistry:Concepts and Perspectives; [M] VHC, Weinheim,1995.
    [53]Lehn J. M. Programmed Chemical Systems:Multiple Subprograms and Multiple Processing/Expression of Molecular Information. [J] Chem. Eur. J.2000,6,2097-2102.
    [54](a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Artificial Molecular Machines. [J] Angew. Chem. Int. Ed,2000,39,3348-3391. (b)刘育,尤长城,张衡益著超分子化学-合成受体的分子识别与组装[M]天津南开大学出版社,2001.
    [55]刘海洋,胡希明,应晓,刘义,黄锦汪,计亮年.金属卟啉配合物超分子自组装.[J]无机化学学报,1998,14,371-387.
    [56]Drain, C. M, Lehn, J. M. Self-assembly of square multiporphyrin arrays by metal ion coordination. [J] Chem. Commun.1994,2313-2314.
    [57]Drain, C. M.; Nifiatis, F.; Vasenko, A.; Batteas, J. D. Porphyrin Tessellation by Design: Metal-Mediated Self-Assembly of Large Arrays and Tapes. [J] Angew. Chem. Int. Ed., 1998,37,2344-2347.
    [58]Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity. [J] Science,1999,284, 785-788.
    [59](a) Shirakawa, M.; Fujita, N.; Shinkai, S. A Stable Single Piece of Unimolecularly п-Stacked Porphyrin Aggregate in a Thixotropic Low Molecular Weight Gel:A One-Dimensional Molecular Template for Polydiacetylene Wiring up to Several Tens of Micrometers in Length. [J] J. Am. Chem. Soc.2005,127,4164-4165. (b) Kishida, T.; Fujita, N.; Sada, K.; Shinkai, S. Sol-Gel Reaction of Porphyrin-Based Superstructures in the Organogel Phase:Creation of Mechanically Reinforced Porphyrin Hybrids. [J] J. Am. Chem. Soc.2005,127,7298-7299. (c) Shirakawa, M.; Fujita, N.; Shinkai, S. [60]Fullerene-Motivated Organogel Formation in a Porphyrin Derivative Bearing Programmed Hydrogen-Bonding Sites. [J] J. Am. Chem. Soc.2003,125,9902-9903. (d) Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Self-Organization of PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir-Blodgett Films. [J] Langmuir,2001,17,5125-5128.
    [60]Tamaru S. I.; Nakamuira, M.; Takeuchi M.; Shinkai S. Rational Design of a Sugar-Appended Porphyrin Gelator That Is Forced To Assemble into a One-Dimensional Aggregate. [J] Org. Lett.2001,3,3631-3634.
    [61]Ayabe, M.; Yamashita, K.; Shinkai, S.; Ikeda, A.; Sakamoto, S.; Yamaguchi, K. Construction of Monomeric and Polymeric Porphyrin Compartments by a Pd(II)-Pyridine Interaction and Their Chiral Twisting by a BINAP Ligand. [J] J. Org. Chem.2003,68,1059-1066.
    [62]Hu, J.-S.; Guo, Y.-G.; Liang, H.-P.; Wan, L.-J.; Jiang, L. Three-Dimensional Self-Organization of Supramolecular Self-Assembled Porphyrin Hollow Hexagonal Nanoprisms. [J] J. Am. Chem. Soc.2005,127,17090-17095.
    [63](a) Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Porphyrin Nanotubes by Ionic Self-Assembly. [J] J. Am. Chem. Soc.,2004,126,15954-15955. (b) Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Self-Metallization of Photocatalytic Porphyrin Nanotubes. [J] J. Am. Chem. Soc,2004,126,16720-16721.
    [64]Gong, X.; Milic, T.; Xu, C.; Batteas, J. D.; Drain, C. M. Preparation and Characterization of Porphyrin Nanoparticles. [J] J. Am. Chem. Soc.2002,124, 14290-14291.
    [65](a) Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai. H.; Kobayash, N. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines. [J] Langmuir.2000,16,2078-2082. (b) Kimura, M.; Kuroda, T.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Self-Organization of Hydrogen-Bonded Optically Active Phthalocyanine Dimers. [J] Langmuir.2003,19,4825-4830.
    [66](a) Nitschke, C.; O'Flaherty, S. M.; Kroll, M.; Blau, W. J. Material Investigations and Optical Properties of Phthalocyanine Nanoparticles. [J] J. Phys. Chem. B.2004,108, 1287-1295. (b) Zhang, X.; Wang, Y.; Ma, Y.; Ye, Y.; Wang, Y.; Wu, K. Solvent-Stabilized Oxovanadium Phthalocyanine Nanoparticles and Their Application in Xerographic Photoreceptors. [J] Langmuir.2006,22,344-348.
    [67]卢定强,李衍亮,凌岫泉,涂清波,陈佳.手性药物拆分技术的研究进展[J]时珍国医国药,2009,20,1731-1734.
    [68]Tsukube, H.; Shonoda, S. Lanthanide Complexes in Molecular Recognition and Chirality Sensing of Biological Substrates. [J] Chem. Rev.2002,102,2389-2404.
    [69]Allenmark, S. Induced circular dichroism by chiral molecular interaction. [J] Chirality. 2003,15,409-422.
    [70](a) Wang, M.; Silva, G.; Armitage, B. DNA-Templated Formation of a Helical Cyanine Dye J-Aggregate. [J] J. Am. Chem. Soc.2000,122,9977-9986. (b) Garoff, R.; Litzinger, E.; Connor, R.; Fishman, I.; Armitage, B. Helical Aggregation of Cyanine Dyes on DNA Templates:Effect of Dye Structure on Formation of Homo-and Heteroaggregates. [J] Langmuir,2002,6330-6337. (c) Seifert, J.; Connor, R; Kushon, S.; Wang, A.; Armitage, B. Spontaneous Assembly of Helical Cyanine Dye Aggregates on DNA Nanotemplates. [J] J. Am. Chem. Soc.1999,121,2987-2995.
    [71]Yang, W. H.; Chai, X. D.; Chil, L. F. From Achiral Molecular Components to Chiral Supermolecules and Supercoil Self-Assembly. [J] Chem. Eur. J.1999,5,1144-1149.
    [72]Huang, X.; Li, C.; Jiang, S.; Wang, X.; Zhang, B.; Liu, M. Self-Assembled Spiral Nanoarchitecture and Supramolecular Chirality in Langmuir-Blodgett Films of an Achiral Amphiphilic Barbituric Acid. [J] J. Am. Chem. Soc.2004,126,1322-1323.
    [73]K. Ishii, Y. Ohba, M. Iwaizumi and S. Yamauch, Studies on Monomers and Dimers of Y(III) and La(III) Porphyrin Complexes by Time-Resolved Electron Paramagnetic Resonance. [J] J. Phys. Chem.1996,100,3839-3846.
    [74](a) H. Konami, M. Hatano, N. Kobayashi and T. Osa. Redox potentials of a series of lanthanide-bisphthalocyanine sandwich complexes. [J] Chem. Phys. Lett.1990,165, 397-400. (b) J. Padilla and W. E. Hatfield, б and п-interactions of the pyrrolillc ligand of sandwich-like lanthanide phthalocyanines determined from magnetic susceptibility and ligand-field theory. [J] Inorg. Chim. Acta,1990,172,241.
    [75]E. Oriti, J. L. Bredas and C. Clarisse, Studies on Monomers and Dimers of Y(III) and La(III) Porphyrin Complexes by Time-Resolved Electron Paramagnetic Resonance. [J] J. Chem. Phys.1990,92,1228.
    [76]P. C. Martin, J. Arnold, and D. F. Bocian; Spectroscopic characterization of zirconium (IV) and hafnium(IV) sandwich porphyrin complexes. [J] J. Phys. Chem.1993,97,1332.
    [77]J. W. Buchler and B. Scharbert, Metal complexes with tetrapyrrole ligands.50. Redox potentials of sandwichlike metal bis(octaethylporphyrinates) and their correlation with ring-ring distances. [J] J. Am. Chem. Soc.1988,110,4272-4278.
    [78]J. Jiang, W. Liu,-F. Law, and D. K. P. Ng; A new synthetic route to unsymmetrical bis (phthalocyaninato)europium(III) complexes. [J] Inorg. Chim. Acta.1998,268,141-144.
    [1](a) Garoff, R. A.; Litzinger, E. A.; Connor, R. E.; Fishman, I.; Armitage, B. A. Helical Aggregation of Cyanine Dyes on DNA Templates:Effect of Dye Structure on Formation of Homo-and Heteroaggregates. [J] Langmuir 2002,18,6330-6337. (b) Wang, M.; Silva, G. L.; Armitage, B. A. DNA-Templated Formation of a Helical Cyanine Dye J-Aggregate. [J] J. Am. Chem. Soc.2000,122,9977-9986. (c) Pasternack, R. F.; Giannetto, A.; Pagano, P.; Gibbs, E. J. Self-assembly of porphyrins on nucleic acids and polypeptides. [J] J. Am. Chem. Soc.1991,113,7799-7780. (d) Hannah, K. C.; Armitage, B. A. DNA-Templated Assembly of Helical Cyanine Dye Aggregates: A Supramolecular Chain Polymerization. [J] Acc. Chem. Res.2004,37,845-853. (e) Chen, X.; Liu, M. Induced chirality of binary aggregates of oppositely charged water-soluble porphyrins on DNA matrix. [J] J. Inorg. Biochem.2003,94,106-113.
    [2](a) Fuhrhop, J. H.; Helfrich, W. Fluid and solid fibers made of lipid molecular bilayers. [J] Chem. Rev.1993,93,1565-1582. (b) Tamaru, S. I.; Nakamura, M.; takeuchi, M.; Shinkai, S. Rational Design of a Sugar-Appended Porphyrin Gelator That Is Forced To Assemble into a One-Dimensional Aggregate. [J] Org. Lett.2001,3,3631-3634. (c) Tamaru, S.; Uchino, S.; Takeychi, M.; Ikeda, M.; Hatano, T.; Shinkai, S. A porphyrin-based gelator assembly which is reinforced by peripheral urea groups and chirally twisted by chiral urea additives. [J] Tetrahedron Letters,2002,43,3751-3755.
    [3](a) C. Nuckolls, T. J. Katz, T. Verbiest, S. V. Elshocht, H. G. Kuball, S. Kiesewalter, A. J. Lovinger, A. Persoons. Circular Dichroism and UV-Visible Absorption Spectra of the Langmuir-Blodgett Films of an Aggregating Helicene. [J] J. Am. Chem. Soc.1998,120, 8656-8660. (b) J. M. Fox, T. J. Katz, S. V. Elshocht, T. Verbiest, M. Kauranen, A. Persoons, T. Thongpanchang, T. Krauss, L. Brus. Synthesis, Self-Assembly, and Nonlinear Optical Properties of Conjugated Helical Metal Phthalocyanine Derivative. [J] J. Am. Chem. Soc.1999,121,3453-3459.
    [4](a) Z. Wu, G Yang, Q. Chen, J. Liu, S. Yang, J. S. Ma. One-pot synthesis and self-assembly of double stranded helical metal complexes. [J] Inorg. Chem.Commun. 2004,7,249-252. (b) S. Shinoda, T. Okazaki, T. N. Player, H. Misaki, K. Hori, H. Tsukube. Cholesterol-Armed Cyclens for Helical Metal Complexes Offering Chiral Self-Aggregation and Sensing of Amino Acid Anions in Aqueous Solutions. [J] J. Org. Chem.2005,70,1835-1843. (c) T. Kawamoto, B. S. Hammes, B. Haggerty, G. P. A. Yap, A. L. Rheingold, A. S. Borovik. Synthesis and Structure of Helical Supramolecular Arrays. [J] J. Am. Chem. Soc.1996,118,285-286.
    [5](a) H. Engelkamp, S. Middlebeek, R. J. M. Nolte. Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity. [J] Science 1999,284, 785-788. (b) D. Adam, P. Schumacher, J. Simmerer, L. Hausling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, D. Harrer. Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. [J] Nature 1994,371,141-143. (c) J. Wu, M. D. Watson, L. Zhang, Z. Wang, K. Mullen. Hexakis(4-iodophenyl)-peri-hexabenzocoronene-A Versatile Building Block for Highly Ordered Discotic Liquid Crystalline Materials. [J] J. Am.Chem. Soc.2004,126,177-186. (d) V. Dehm, Z. Chen, U. Baumeister, P. Prins, L. D. A. Siebbeles, F. Wulrthner. Helical Growth of Semiconducting Columnar Dye Assemblies Based on Chiral Perylene Bisimide. [J] Org. Lett.2007,9,1085-1088.
    [6](a) H. Goto, H. Q. Zhang, E. Yashima. Chiral Stimuli-Responsive Gels:Helicity Induction in Poly(phenylacetylene) Gels Bearing a Carboxyl Group with Chiral Amine. [J] J. Am. Chem. Soc.2003,125,2516-2523. (b) K. Morino, M. Oobo, E. Yashima. Helicity Induction in a Poly(phenylacetylene) Bearing Aza-18-crown-6 Ether Pendants with Optically Active Bis(amino acid)s and Its Chiral Stimuli-Responsive Gelation. [J] Macromolecules 2005,38,3461-3468. (c) R. Nonokawa, E. Yashima. Detection and Amplification of a Small Enantiomeric Imbalance in a-Amino Acids by a Helical Poly(phenylacetylene) with Crown Ether Pendant. [J] J. Am. Chem. Soc.2003,125, 1278-1283.
    [7]K. Kadish, K. M. Smith, R. Guilard, Eds.; The Porphyrin Handbook; Academic Press: New York,1999.
    [8](a) M. Kimura, H. Narikawa, K. Ohta, K. Hanabusa. Star-Shaped Stilbenoid Phthalocyanine. [J] Chem. Mater.2002,14,2711-2717. (b) X. Huang, F. Zhao, Z. Li, Y. Tang, F. Zhang, C. Tung, Langmuir 2007,23,5617-5172. (c) A. de la Escosura, M. V. M. Dlaz, P. Thoedarson, A. E. Rowan, R. J. M. Nolte, T. Torres. Donor-Acceptor Phthalocyanine Nanoaggregate. [J] J. Am. Chem. Soc.2003,125,12300-12308. (d) P. Chen, X. Ma, M. Liu, Macromolecules 2007,40,4780-4784.
    [9]Y. Li, X. Li, Y. Li, H. Liu, S. Wang, H. Gan, J. Li, N. Wang, X. He, D. Zhu. [J] Controlled Self-Assembly Behavior of an Amphiphilic Bisporphyrin-Bipyridinium-Palladium Complex:From Multibilayer Vesicles to Hollow Capsules. Angew. Chem,. Int. Ed.2006,45,3639-3643.
    [10]T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Yoshishige Okuno, T. Mashiko. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. [J] Nature 2001,413,619-621.
    [11](a) Y. Gao, X. Zhang, C. Ma, X. Li, J. Jiang, Morphology-Controlled Self-Assembled Nanostructures of 5,15-Di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin Derivatives. Effect of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130,17044-17052. (b) Y. Gao, Y. Chen, R. Li, Y. Bian, X. Li, J. Jiang. Nonperipherally Octa(butyloxy)-Substituted Phthalocyanine Derivatives with Good Crystallinity:Effects of Metal-Ligand Coordination on the Molecular Structure, Internal Structure, and Dimensions of Self-Assembled Nanostructures. [J] Chem. Eur. J. 2009,15,13241-13252. (c) G. Lu, Y, Chen, Y. Zhang, M. Bao, Y. Bian, X. Li, J. Jiang. Morphology Controlled Self-Assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(Porphyrinato) Europium Triple-Deckers. Effect of Hydrogen Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130, 11623-11630. (d) G. Lu, X. Zhang, X. Cai, J. Jiang. Nanoscale Hollow Spheres of an Amphiphilic Mixed (Phthalocyaninato)(porphyrinato)europium Double-Decker Complex. [J] Eur. J. Inorg. Chem.2010,753-757.
    [12](a) H. Ogoshi, T. Mizutani. Multifunctional and Chiral Porphyrins:Model Receptors for Chiral Recognition. [J] Acc. Chem. Res.1998,31,81-89. (b) X. Huang, K. Nakanishi, N. Berova. Porphyrins and metalloporphyrins:Versatile circular dichroic reporter groups for structural studies. [J] Chirality 2000,12,237-255.
    [13](a) X. Huang, B. H. Richman, B. Borhan, N. Berova, K. Nakanishi. Zinc Porphyrin Tweezer in Host-Guest Complexation:Determination of Absolute Configurations of Diamines, Amino Acids, and Amino Alcohols by Circular Dichroism. [J] J. Am. Chem. Soc.1998,120,6185-6186. (b) G. Proni, G. Pescitelli, X. Huang, K. Nakanishi, N. Berova. Magnesium Tetraarylporphyrin Tweezer:a CD-Sensitive Host for Absolute Configurational Assignments of a-Chiral Carboxylic Acids. [J] J. Am. Chem. Soc.2003, 125,12914-12927. (c) T. Kurtan, N. Nesnas, Y. Li, X. Huang, K. Nakanishi, N. Berova, J. Am. Chem. Soc.2001,123,5962-5973. (d) T. Kurtan, N. Nesnas, F. E. Koehn, Y. Li, K. Nakanishi, N. Berova. Chiral Recognition by CD-Sensitive Dimeric Zinc Porphyrin Host. 1. Chiroptical Protocol for Absolute Configurational Assignments of Monoalcohols and Primary Monoamines. [J] J. Am. Chem. Soc.2001,123,5974-5982.
    [14](a) D. Mansuy. Activation of alkanes:the biomimetic approach. [J] Coord. Chem. Rev. 1993,125,129-142. (b) J. P. Collman, X. Zhang, V. J. Lee, E. S. Uffelman, J. I. Brauman. Regioselective and enantioselective epoxidation catalyzed by metalloporphyrins. [J] Science 1993,261,1404-1411. (c) Z. Gross, S. Ini. Remarkable Effects of Metal, Solvent, and Oxidant on Metalloporphyrin-Catalyzed Enantioselective Epoxidation of Olefins. [J] J. Org Chem.1997,62,5514-5521.
    [15]E. Bellacchio, R. Lauceri, S. Gurrieri, L. M. Scolaro, A. Romeo, R. Purrello. Template-Imprinted Chiral Porphyrin Aggregates. [J] J. Am. Chem. Soc.1998,120, 12353-12354.
    [16](a) S.-i. Kawano, S.-i. Tamaru, N. Fujita, S. Shinkai. Sol-Gel Polycondensation of Tetraethyl Orthosilicate (TEOS) in Sugar-Based Porphyrin Organogels:Inorganic Conversion of a Sugar-Directed Porphyrinic Fiber Library through Sol-Gel Transcription Processes. [J] Chem. Eur. J.2004,10,343-351. (b) T. Sugimoto, T. Suzuki, S. Shinkai, K. Sada. A Double-Stranded Helix by Complexation of Two Polymer Chains with a Helical Supramolecular Assembly. [J] J. Am. Chem. Soc.2007,129,270-271. (c) M. Wolffs, F. J. M. Hoeben, E. H. A. Beckers, A. P. H. J. Schenning, E. W. Sequential Energy and Electron Transfer in Aggregates of Tetrakis[oligo(p-phenylene vinylene)] Porphyrins and C60 in Water. [J] J. Am. Chem. Soc.2005,127,13484-13485.
    [17](a) X. M. Guo, C. Jiang, T. S. Shi. Prepared Chiral Nanorods of a Cobalt(II) Porphyrin Dimer and Studied Changes of UV-Vis and CD Spectra with Aggregate Morphologies under Different Temperatures. [J] Inorg. Chem.2007,46,4766-4768. (b) J.-H. Fuhrhop, C. Demoulin, C. Boettcher, J. Koning, U. Siggels. Chiral micellar porphyrin fibers with 2-aminoglycosamide head groups. [J] J. Am. Chem. Soc.1992,114,4159-4169. (c) S. Arimori, M. Takeuchi, S. Shinkai. Sugar-Controlled Aggregate Formation in Boronic Acid-Appended Porphyrin Amphiphiles. [J] J. Am. Chem. Soc.1996,118,245-246. (d) T. Ishi-I, J. H. Jung, S. Shinkai. Intermolecular porphyrin-fullerene interactioncan reinforce the organogel structure of a porphyrin-appended cholesterolderivative. [J] J. Mater. Chem.2000,10,2238-2240.
    [18](a) S. Tamaru, M. Takeuchi, M. Sano, S. Shinkai. Sol-Gel Transcription of Sugar-Appended Porphyrin Assemblies into Fibrous Silica:Unimolecular Stacks versus Helical Bundles as Templates. [J] Angew. Chem. Int. Ed.2002,41,853-856. (b) S.-i. Tamaru, M. Nakamura, M. Takeuchi, S. Shinkai. Rational Design of a Sugar-Appended Porphyrin Gelator That Is Forced To Assemble into a One-Dimensional Aggregate. [J] Org. Lett.2001,3,3631-3634.
    [19](a) X. Zhang, A. Muranaka, W. Lv, Y. Zhang, Y. Bian, J. Jiang, N. Kobayashi. Optically Active Mixed Phthalocyaninato-Porphyrinato Rare-Earth Double-Decker Complexes: Synthesis, Spectroscopy, and Solvent-Dependent Molecular Conformations. [J] Chem. Eur. J.2008,14,4667-4674. (b) H. Liu, C. Chen, M. Ai, A. Gong, J. Jiang, F. Xi. Synthesis of optically activel,1'-binaphthyl-phthalocyanines linked via a crown ether unit. [J] Tetrahedron Asymmetry 2000,11,4915-4922. (c) H. Liu, Y. Liu, M. Liu, C. Chen, F. Xi. Synthesis and properties of optically active 6,6'-didodecyl-1,1'-binaphthyl-phthalocyanine linked through crown ether units. [J] Tetrahedron Lett.2001,42,7083-7086.
    [20](a) N. Kobayashi, Y. Kobayashi, T. Osa. Optically active phthalocyanines and their circular dichroism. [J] J. Am. Chem. Soc.1993,115,10994-1099. (b) N. Kobayashi. Optically active'adjacent'type non-centrosymmetrically substituted phthalocyanines. [J] Chem. Commun.1998,4,487-488.
    [21]L. D. Bari, G. Pescitelli, G. Reginato and P. Salvadori. Conformational investigation of two isomeric chiral porphyrins:A convergent approach with different techniques. [J] Chirality 2001, 13,548-555.
    [22]M. Kasha, H. R. Rawls, M. A. EI-Bayoumi. The exciton model in molecular spectroscopy. [J] Pure Appl. Chem.1965,11,371-392.
    [23](a) N. Berova, K. Nakanishi, R. Woody, Circular Dichroism:Princples and Applictions, 2nd ed., Wily-VCH:New York,2000:pp 337-382. (b) A. L. Hofacker, J. R. Parquette. Dendrimer Folding in Aqueous Media:An Example of Solvent-Mediated Chirality Switching. [J] Angew. Chem. Int. Ed.2005,44,1053-1057. (c) M. Balaz, A. E. Holmes, M. Benedetti, P. C. Rodriguez, N. Berova, K. Nakanishi, G. Proni. Synthesis and Circular Dichroism of Tetraarylporphyrin-Oligonucleotide Conjugates. [J] J. Am. Chem. Soc. 2005,127,4172-4173. (d) V. V. Borovkov, J. M. Lintuluoto, M. Fujiki, Y. Inoue, J. Am. Chem. Soc.2000,122,4403-4407.
    [24]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.05; Gaussian, Inc.Pittsburgh, PA, 2003.
    [25]F. D'Souza, R. Chitta, S. Gadde, M. E. Zandler, A. L. McCarty, A. S. D. Sandanayaka, Y. Araki, O. Ito. Potassium Ion Controlled Switching of Intra-to Intermolecular Electron Transfer in Crown Ether Appended Free-Base Porphyrin-Fullerene Donor-Acceptor Systems. [J] J. Phys. Chem. A.2006,110,4338-4347.
    [1](a) Garoff, R. A.; Litzinger, E. A.; Connor, R. E.; Fishman, I.; Armitage, B. A. Helical Aggregation of Cyanine Dyes on DNA Templates:Effect of Dye Structure on Formation of Homo-and Heteroaggregates. [J] Langmuir 2002,18,6330-6337. (b) Wang, M.; Silva, G. L.; Armitage, B. A. DNA-Templated Formation of a Helical Cyanine Dye J-Aggregate. [J] J. Am. Chem. Soc.2000,122,9977-9986. (c) Pasternack, R. F.; Giannetto, A.; Pagano, P.; Gibbs, E. J. Self-assembly of porphyrins on nucleic acids and polypeptides. [J] J. Am. Chem. Soc.1991,113,7799-7780.
    [2](a) Phthalocyanine:Properties and Applications, Vol.1-4 (Eds.:Lever, A. B. P.; Leznoff, C. C.), VCH, New York,1989-1996. (b) Phthalocyanines Materials:Synthesis, Structure and Function (Ed.:McKeown, N. B.), Cambridge University Press, New York, 1998. (c) The Porphyrin Handbook, Vol.1-20 (Eds.:Kadish,K. M.; Smith, K. M.; Guilard, R.), Academic Press, San Diego,2000 and 2003. (d) Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni Mhuircheartaigh, E. M. Nonlinear Optical Properties of Porphyrins. [J] Adv. Mater.2007,19,2734-2774. (e) Bellacchio, E.; Lauceri, R.; Gurrieri, S.; Scolaro, L. M.; Romeo, A.; Purrello, R. Template-Imprinted Chiral Porphyrin Aggregates. [J] J. Am. Chem. Soc.1998,120, 12353-12354. (f) Galardon, E.; Lukas, M.; Le Maux, P.; Simonneaux, G. Synthesis and characterisation of a new chiral ruthenium picket-fence porphyrin and its use in chiral recognition of racemic isocyanides [J] Tetrahedron Lett.1999,40,2753-2756. (g) Boitrel, B.; Baveux-Chambenoit, V.; Richard, P. Synthesis and Spectral and Structural Characterization of a New Series of Bis-Strapped Chiral Porphyrins Derived from L-Proline. [J] Eur. J. Org. Chem.2001,4213-4221. (h) Liang, J.-L.; Huang, J.-S.; Yu, X.-Q.; Zhu, N.; Che, C.-M. Metalloporphyrin-Mediated Asymmetric Nitrogen-Atom Transfer to Hydrocarbons:Aziridination of Alkenes and Amidation of Saturated C-H Bonds Catalyzed by Chiral Ruthenium and Manganese Porphyrins. [J] Chem. Eur. J. 2002,8,1563-1572. (i) Zhang, R.; Yu, W.-Y.; Sun, H.-Z.; Liu, W.-S.; Che, C.-M. Stereo-and Enantioselective Alkene Epoxidations:A Comparative Study of D4-and D2-Symmetric Homochiral trans-Dioxoruthenium(Ⅵ) Porphyrins. [J] Chem. Eur. J. 2002,8,2495-2507.
    [3](a) Jiang, J.; Ng, D. K. P. A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato-Rare Earth Complexes. [J] Acc. Chem. Res.2009,42,79-88. (b) Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. [J] Coord. Chem. Rev.2006,250,424-448. (c) Jiang, J.; Liu, W.; Arnold, D. P. Sandwich complexes of naphthalocyanine with the rare earth metals. [J] J. Porphyrins Phthalocyanines 2003,7,459-473. (d) Jiang, J.; Kasuga, K.; Arnold, D. P. in Supramolecular Photosensitive and Electroactive Materials (Ed.:H. S. Nalwa), Academic Press, New York,2001, chapter 2, pp.113-210. (e) Ng, D. K. P.; Jiang, J. Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes. [J] Chem. Soc. Rev.1997,26,433-442.
    [4](a) Tashiro, K.; Konishi, K.; Aida, T. Enantiomeric Resolution of Chiral Metallobis(porphyrin)s:Studies on Rotatability of Electronically Coupled Porphyrin Ligands. [J] Angew. Chem., Int. Ed. Engl.1997,36,856-858. (b) Tashiro, K.; Fujiwara, T.; Konishi, K.; Aida, T. Rotational oscillation of two interlocked porphyrins in cerium bis(5,15-diarylporphyrinate) double-deckers. [J] Chem. Commun.1998,1121-1122. (c) Tashiro, K.; Konishi, K.; Aida, T. Metal Bisporphyrinate Double-Decker Complexes as Redox-Responsive Rotating Modules. Studies on Ligand Rotation Activities of the Reduced and Oxidized Forms Using Chirality as a Probe. [J] J. Am. Chem. Soc.2000, 122,7921-7926.
    [5](a) Takeuchi, M.; Imada, T.; Shinkai, S. A Strong Positive Allosteric Effect in the Molecular Recognition of Dicarboxylic Acids by a Cerium (IV) Bis[tetrakis (4-pyridyl) porphyrinate] Double Decker. [J] Angew. Chem. Int. Ed.1998,37,2096-2099. (b) Sugasaki, A.; Ikeda, M.; Takeuchi, M.; Shinkai, S. Novel Oligosaccharide Binding to the Cerium(IV) Bis(porphyrinate) Double Decker:Effective Amplification of a Binding Signal through Positive Homotropic Allosterism. [J] Angew. Chem. Int. Ed.2000,39, 3839-3842. (c) Takeuchi, M.; Ikeda, M.; Sugasaki, A.; Shinkai, S. Molecular Design of Artificial Molecular and Ion Recognition Systems with Allosteric Guest Responses. [J] Acc. Chem. Res.2001,34,865-873. (d) Ikeda, M.; Takeuchi, M.; Shinkai, S.; Tani, F.; Naruta, Y.; Sakamoto, S.; Yamaguchi, K. Allosteric Binding of an Ag~+ Ion to Cerium(IV) Bis-porphyrinates Enhances the Rotational Activity of Porphyrin Ligands. [J] Chem. Eur. J.2002, 8,5541-5550.
    [6](a) Negrimovskii, V. M.; Bouvet, M. M.; Luk'yanets, E A.; Simon, J. Towards chiral 1,2-naphthalocyanines:2. Synthesis of lutetium bismacrocyclic derivatives. [J] J. Porphyrins Phthalocyanines 2001,5,423-427. (b) Bian, Y.;Wang, R.;Wang, D.; Zhu, P.; Li, R.; Dou, J.; Liu,W.; Choi, C.-F.; Chan, H.-S.; Ma, C.; Ng, D. K. P.; Jiang, J. Synthesis, Structure, and Spectroscopic and Electrochemical Properties of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes with a C4 Symmetry. [J] Helv. Chim. Acta 2004,87,2581-2596. (c) Bian, Y.;Wang, R.; Jiang, J.; Lee, C.-H.; Wang, J.; Ng, D. K. P. Synthesis, spectroscopic characterisation and structure of the first chiral heteroleptic bis(phthalocyaninato) rare earth complexes. [J] Chem. Commun.2003,1194-1195.
    [7]Lv, W.; Zhu, P.; Bian, Y.; Ma, C.; Zhang, X.; Jiang, J. Optically Active Homoleptic Bis(phthalocyaninato) Rare Earth Double-Decker Complexes Bearing Peripheral Chiral Menthol Moieties:Effect of п-п Interaction on the Chiral Information Transfer at the Molecular Level. [J] Inorg. Chem.2010,49,6628-6635.
    [8]Zhou, Y.; Zhang, Y.; Wang, H.; Jiang, J.; Bian, Y.; Muranaka, A.; Kobayashi, N. Inorg. Chem.2009,48,8925-8933.
    [9]Wang, R.; Li, R.; Li, Y.; Zhang, X.; Zhu, P.; Lo, P.-C.; Ng, D. K. P.; Pan, N; Ma, C.; Kobayashi, N.; Jiang, J. Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Double-Decker Complexes with C4 Chirality:Synthesis, Resolution, and Absolute Configuration Assignment. [J] Chem. Eur. J.2006,12,1475-1485.
    [10]Zhang, X.; Muranaka, A.; Lv, W.; Zhang, Y.; Bian, Y.; Jiang, J.; Kobayashi, N. Optically Active Mixed Phthalocyaninato-Porphyrinato Rare-Earth Double-Decker Complexes:Synthesis, Spectroscopy, and Solvent-Dependent Molecular Conformations. [J] Chem. Eur. J.2008,14,4667-4674.
    [11](a) Buchler, J. W.; Ng, D. K. P. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:San Diego,2000, Vol.3, pp 245-294. (b) Sun, X.; Cui, X.; Arnold, D. P.; Choi, M. T. M.; Ng, D. K. P.; Jiang, J. The Electronic Absorption Characteristics of Mixed Phthalocyaninato Porphyrinato Rare Earth(III) Triple-Deckers M2(TPyP)2(Pc). [J] Eur. J. Inorg. Chem.2003,8,1555-1561. (c) Sun, X.; Li, R.; Wang, D.; Dou, J.; Zhu, P.; Lu, F.; Ma, C.; Choi, Ch-F.; Cheng, D. Y. Y.; Ng, D.K. P.; Kobayashi, N.; Jiang, J. Synthesis and Characterization of Mixed Phthalocyaninato and meso-Tetrakis(4-chlorophenyl)porphyrinato Triple-Decker Complexes-Revealing the Origin of Their Electronic Absorptions. [J] Eur. J. Inorg. Chem.2004,19,3806-3813.
    [12]To detect whether racemization of optically active porphyrin in refluxing TCB occurs, unreacted metal-free porphyrin after synthesizing the europium and yttrium mixed ring triple-decker complexes was recovered and purified. CD spectroscopic measurement results reveal that both the CD spectra and the coefficients of CD curves for both (R)-or (S)-H2TCBP do not change.
    [13]Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. Morphology Controlled Self-Assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(Porphyrinato) Europium Triple-Deckers. Effect of Hydrogen Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130,11623-116320.
    [14](a) Jiang, J.; Arnold, D. P.; Yu, H. Infra-red spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. [J] Polyhedron 1999,18,2129-2139. (b) Lu, F.; Bao, M.; Ma, C.; Zhang, X.; Arnold, D. P.; Jiang, J. Infra-red spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes Part 3. The effects of substituents and molecular symmetry on the IR characteristics of phthalocyanine in bis(phthalocyaninato) rare earth complexes. [J] Spectrochim. Acta. A. 2003,59,3273-3286. (c) Bao, M.; Pan, N.; Ma, C.; Arnold, D. P.; Jiang, J. Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes:Part 4. The infrared characteristics of phthalocyanine in heteroleptic tris(phthalocyaninato) rare earth complexes. [J] Vib. Spectrosc.2003,32,175-184.
    [15]Sheng, N.; Li, R.; Choi, C.; Su, W.; Ng, D. K. P.; Cui, C.; Yoshida, K.; Kobayashi, N.; Jiang, J. Heteroleptic Bis(Phthalocyaninato) Europium(Ⅲ) Complexes Fused with Different Numbers of 15-Crown-5 Moieties. Synthesis, Spectroscopy, Electrochemistry, and Supramolecular Structure. [J] Inorg. Chem.2006,45,3794-3802.
    [16](a) Kobayashi, N.; Kobayashi, Y.; Osa, T. J. Am. Chem. Soc.1993,115,10994-1099; b) Kobayashi, N. Optically active'adjacent'type non-centrosymmetrically substituted phthalocyanines. [J] Chem. Commun.1998,4,487-488.
    [17](a) Stillman, M. J.; Nyokong, T. in Phthalocyanines-Properties and Applications, vol. 1 (Eds.:C. C. Leznoff, A. B. P. Lever), VCH, New York,1989, pp.133-290. (b) Rousseau,R.; Aroca, R.; Rodriguez-Mendez, M. L. J. Mol. Struct.1995,356,49-62. (c) Ishikawa, N. Electronic structures and spectral properties of double-and triple-decker phthalocyanine complexes in a localized molecular orbital view. [J] J. Porphyrins Phthalocyanines 2001,5,87-101.
    [18]Kobayashi, N.; Higashi, R.; Titeca, B. C.; Lamote, F.; Ceulemans, A. Substituent-Induced Circular Dichroism in Phthalocyanines. [J] J. Am. Chem. Soc.1999, 121,12018-12028.
    [1](a) Whitesides, G. M.; Mathias, J. P.; Seto, C. T. [J] Science 1991,254,1312-1319. (b) Philp, D.; Stoddart, J. F. [J] Angew. Chem. Int. Ed. Engl.1996,35,1154-1196. (c) Sanders, J. K. M. [J] Comprehensive Supramolecular Chemistry 1996,9,131-164. (d) Ward, M. D. [J] Chem. Soc. Rev.1997,26,365-375. (e) Lehn, J. M. [J] Science 2002, 295,2400-2403. f) McRae, E. G.; Kasha, M. [J] J. Chem. Phys.1958,28,721-722.
    [2](a) Hartgerink, J. D.; Beniash, E.; Stupp, S. Self-Assembly and Mineralization of Peptide-Amphiphile Nanopbers I. [J] Science 2001,294,1684-1688. (b) Kitamura, T.; Nakaso, S.; Mizoshita, N.; Tochigi, Y.; Shimomura, T.; Moriyama, M.; Ito, K.; Kato, T. Electroactive Supramolecular Self-Assembled Fibers Comprised of Doped Tetrathiafulvalene-Based Gelators. [J] J. Am. Chem. Soc.2005,127,14769-14775.
    [3]Schwab, A. D.; Smith, D. E.; Bond-Watts, B.; Johnston, D. E.; Hone, J.; Johnson, A. T.; de Paula, J. C.; Smith, W. F. Photoconductivity of Self-Assembled Porphyrin Nanorods. [J]Nano. Lett.2004, 4,1261-1265.
    [4]Wang, Z.; Li, Z.; Medforth, C. J.; Shelnutt, J. A. Self-Assembly and Self-Metallization of Porphyrin Nanosheets. [J] J. Am. Chem. Soc.2007,129,2440-2441.
    [5](a) Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular Self-Assembly of Macroscopic Tubes. [J] Science 2004,303,65-67. (b) Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. [J] Chem. Rev.2005,105,1401-1444. (c) Zhi, L.; Gorelik, T.; Wu, J.; Kolb, U.; Mullen, K. Nanotubes Fabricated from Ni-Naphthalocyanine by a Template Method. [J] J. Am. Chem. Soc.2005,127,12792-12793. (d) Hu, J.-S.; Guo, Y.-G.; Liang, H.-P.; Wan, L.-J.; Jiang, L. Three-Dimensional Self-Organization of Supramolecular Self-Assembled Porphyrin Hollow Hexagonal Nanoprisms [J] J. Am. Chem. Soc.2005,127, 17090-17095.
    [6]Liu, R.; Holman, M. W.; Zang, L.; Adams, D. M. Single-Molecule Spectroscopy of Intramolecular Electron Transfer in Donor-Bridge-Acceptor Systems. [J] J. Phys. Chem. A.2003,107,6522-6526.
    [7]Holman, M. W.; Liu, R.; Zang, L.; Yan, P.; DiBenedetto, S. A.; Bowers, R. D.; Adams, D. M. Studying and Switching Electron Transfer:From the Ensemble to the Single Molecule. [J] J. Am. Chem. Soc.2004,126,16126-16133.
    [8]Sauer, M. Single-Molecule-Sensitive Fluorescent Sensors Based on Photoinduced Intramolecular Charge Transfer. [J]Angew. Chem., Int. Ed 2003,42,1790-1793.
    [9]Grimsdale, A. C.; Mullen, K. The Chemistry of Organic Nanomaterials. [J] Angew. Chem. Int. Ed.2005,44,5592-5629.
    [10]Xu, B. Q.; Xiao, X.; Yang, X.; Zang, L.; Tao, N. J. Large Gate Modulation in the Current of a Room Temperature Single Molecule Transistor. [J] J. Am. Chem. Soc.2005, 127,2386-2387.
    [11]Li, X.; Xu, B. Q.; Xiao, X.; Yang, X.; Zang, L.; Tao, N. J. Controlling charge transport in single molecules using electrochemical gate. [J] Faraday Discuss.2006,131,111-120.
    [12](a) Chen, Y.; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y.; Wang, L.; Wang, S. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes. [J] J. Am. Chem. Soc.2005, 127,15700-15701. (b) Li, R.; Ma, P.; Dong, S.; Zhang, X.; Chen, Y.; Li, X.; Jiang, J. Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes with Hydrophilic Poly(oxyethylene) Substituents. [J] Inorg. Chem.2007,46,11397-11404.
    [13]Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. [J] Science 2001,293,1119-1122.
    [14]Gregg, B. A. Excitonic Solar Cells. [J] J. Phys. Chem. B.2003,107,4688-4698.
    [15]Gregg, B. A. Evolution of Photophysical and Photovoltaic Properties of Perylene Bis(phenethylimide) Films upon Solvent Vapor Annealing. [J] J. Phys. Chem.1996,100, 852-859.
    [16]Tamizhmani, G.; Dodelet, J. P.; Cote, R.; Gravel, D. Photoelectrochemical Characterization of Thin Films of Perylenetetracarboxylic Acid Derivatives [J] Chem. Mater.1991,3,1046-1053.
    [17]Liu, Y.; Xiao, S.; Li, H.; Li, Y.; Liu, H.; Lu, F.; Zhuang, J.; Zhu, D. Self-Assembly and Characterization of A Novel Hydrogen-Bonded Nanostructure. [J] J. Phys. Chem. B. 2004,108,6256-6260.
    [18]Peeters, E.; Van Hal, P. A.; Meskers, S. C. J.; Janssen, R. A. J.; Meijer, E. W. Photoinduced Electron Transfer in a Mesogenic Donor-Acceptor-Donor System. [J] Chem. Eur. J.2002,8, 4470-4474.
    [19](a) Hamza I. Intracellular Trafficking of Porphyrins. [J] ACS Chem. Biol.2006,1, 627-629. (b) Lo, P.-C.; Chan, C. M. H.; Liu, J.-Y.; Fong, W.-P.; Ng, D. K. P. Highly Photocytotoxic Glucosylated Silicon(IV) Phthalocyanines. Effects of Peripheral Chloro Substitution on the Photophysical and Photodynamic Properties [J] J. Med. Chem.2007, 50,2100-2107. (c) Vanyur, R.; Heberger, K.; Jakus, J. Prediction of Anti-HIV-1 Activity of a Series of Tetrapyrrole Molecules. [J] J. Chem. Inf. Comput. Sci.2003,43, 1829-1836.
    [20]Li, Y.; Li, X.; Li, Y:Liu, H.; Wang, S.; Gan, H.; Li, J.; Wang, N.; He, X.; Zhu, D. Controlled Self-Assembly Behavior of an Amphiphilic Bisporphyrin-Bipyridinium-Palladium Complex:From Multibilayer Vesiclesto Hollow Capsules. [J] Angew. Chem. Int. Ed.2006,45,3639-3643.
    [21]Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai. H.; Kobayash, N. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines. [J] Langmuir 2000,16,2078-2082.
    [22]Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science Magazine Search Results. [J] Science 1999,284,785-788.
    [23]Moussavi, M.; Decian, A.; Fischer, J.; Weiss, R. (Porphyrinato)bis(phthalocyaninato)dilanthanide(III) complexes presenting a sandwich triple-decker-like structur. [J] Inorg. Chem.1986,25,2107-2108.
    [24]Chabach, D.; Lachkar, M.; Decian, A.; Fischer, J.; Weiss, R. [J] New J. Chem.1997,16, 2107.
    [25]Sun, X.; Li, R.; Wang, D.; Dou, J.; Zhu, P.; Lu, F.; Ma, C.; Choi, C.; Cheng, D. Y. Y.; Ng, D. K. P.; Kobayashi, N.; Jiang. J.Synthesis and Characterization of Mixed Phthalocyaninato and meso-Tetrakis(4-chlorophenyl)porphyrinao Triple-Decker Complexes Reavling the Origin of Their Electronic Absorption. [J] Eur. J. Inorg. Chem. 2004,3806-3813.
    [26]Kasha, M.; Rawls, H. R.; Bayoumi, M. A. E. The Exciton Model in Molecular Spectroscopy. [J] Pure Appl. Chem.1965,11,371-392.
    [1]J. A. A. W. Elemans, R. Van. Hameren, R. J. M. Nolte, A. E. Rowan, Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. [J] Adv. Mater.2006, 18,1251-1226.
    [2]H. Gan, H. Liu, Y. Li, Q. Zhao, Y. Li, S. Wang, T. Jiu, N. Wang, X. He, D. Y, D. Zhu, Fabrication of Polydiacetylene Nanowires by Associated Self-Polymerization and Self-Assembly Processes for Efficient Field Emission Properties. [J] J. Am. Soc. Chem. 2005,127,12452-12453.
    [3]K. Balakrishnan, A. Datar, T. Naddo, J. Huang, R. Oitker, M. Yen, J. Zhao, L. Zang, Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules: Morphology Control. [J] J. Am. Chem. Soc.2006,128,7390-7398.
    [4](a) D. Y. Yan, Y. F. Zhou, J. Hou, Supramolecular Self-Assembly of Macroscopic Tubes. [J] Science 2004,303,65-67. (b) T. Shimizu, M. Masuda, H. Minamikawa, Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. [J] Chem. Rev.2005,105,1401-1444.
    [5](a) M. Steinhart, S. Senz, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Curvature-Directed Crystallization of Poly(vinylidene difluoride) in Nanotube Walls. [J] Macromolecules 2003,36,3646-3651. (b) M. Steinhart, Z. Jia, A. Schaper, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Palladium Nanotubes with Tailored Wall Morphologies. [J] Adv. Mater.2003,15,706-709.
    [6](a) J. Jiang, D. K. P. Ng, A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato-Rare Earth Complexes. [J] Acc. Chem. Res.2009,42,79-88. (b) J. Jiang, M. Bao, L. Rintoul, D. P. Arnold, Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. [J] Coord. Chem. Rev.2006,250,424-448. (c) J. Jiang, K. Kasuga, D. P. Arnold, In Supramolecular PhotosensitiVe and ElectroactiVe Materials; Nalwa, H. S., Ed.; Academic Press:New York,2001; Chapter 2, pp 113-210. (d) D. K. P. Ng, J. Jiang, Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes. [J] Chem. Soc. Rev.1997,26,433-442. (e) S. Yoshimoto, T. Sawaguchi, W. Su, J. Jiang, N. Kobayashi, Superstructure Formation and Rearrangement in the Adlayer of a Rare-Earth-Metal Triple-Decker Sandwich Complex at the Electrochemical Interface. [J] Angew. Chem. Int. Ed.2007,46,1071-1074. (f) T. Ye, T. Takami, R. Wang, J. Jiang, P. S. Weiss, Tuning Interactions between Ligands in Self-Assembled Double-Decker Phthalocyanine Arrays. [J] J. Am. Chem. Soc.2006,128,10984-10985. (g) K. Kadish, K. M. Smith, R. Guilard, Eds.; The Porphyrin Handbook; Academic Press:New York,1999.
    [7](a) W. Y. Tong, A. B. Djurii, M. H. Xie, A. C. M. Ng, K. Y. Cheung, W. K. Chan, Y. H. Leung, H. W. Lin, S. Gwo, Metal Phthalocyanine Nanoribbons and Nanowires. [J] J. Phys. Chem. B.2006,110,17406-17413. (b) V. Duzhko, K. D. Singer, Self-Assembled Fibers of a Disco tic Phthalocyanine Derivative:Internal Structure, Tailoring of Geometry, and Alignment by a Direct Current Electric Field. [J] J. Phys. Chem. C.2007, 111,27-31. (c) Y. Zhang, Z. Zhang, Y. Zhao, Y. Fan, T. Tong, H. Zhang, Y. Wang, Solution-Processed Microwires of Phthalocyanine Copper(II) Derivative with Excellent Conductivity. [J] Langmuir 2009,25,6045-6048.
    [8]Z. Wang, C. J. Medforth, J. A. Shelnutt, Porphyrin Nanotubes by Ionic Self-Assembly. [J] J. Am. Chem. Soc.2004,126,15954-15955.
    [9](a) L. Zhi, T. Gorelik, J. Wu, U. Kolb, K. Mullen, Nanotubes Fabricated from Ni-Naphthalocyanine by a Template Method. [J] J. Am. Chem. Soc.2005,127, 12792-12793. (b) Q. Liu, Y Li, H. Liu, Y. Chen, X. Wang, Y. Zhang, X. Li, J. Jiang, Nanotubes Fabricated from Sandwich-Type Mixed (Porphryinato)(phthalocyaninato)europium Complex by Template Technique. [J] J. Phys. Chem. C.2007,111,7298-7301.
    [10](a) Y Gao, Y. Chen, R. Li, Y. Bian, X. Li, J. Jiang, Nonperipherally OctaACHTUNGTRENUNG(butyloxy)-Substituted Phthalocyanine Derivatives with Good Crystallinity:Effects of Metal-Ligand Coordination on the Molecular Structure, Internal Structure, and Dimensions of Self-Assembled Nanostructures. [J] Chem. Eur. J. 2009,15,13241-13252. (b) X. Wu, W. Lv, Q. Wang, H. Wang, X. Zhang, J. Jiang, Sandwich-type mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes with decreased molecular symmetry of Cs:Single crystal structure and self-assembled nano-structure. [J] Dalton Trans.2011,40,107-113. (c) J. Lu, L. Wu, J. Jiang, X. Zhang, Helical Nanostructures of an Optically Active Metal-Free Porphyrin with Four Optically Active Binaphthyl Moieties:Effect of Metal-Ligand Coordination on the Morphology. [J] Eur. J. Inorg. Chem.2010,4000-4008. (d) L. Wu, Q. Wang, J. Lu, Y. Bian, J. Jiang, X. Zhang, Helical Nanostructures Self-Assembled from Optically Active Phthalocyanine Derivatives Bearing Four Optically Active Binaphthyl Moieties: Effect of Metal-Ligand Coordination on the Morphology, Dimension, and Helical Pitch of Self-Assembled Nanostructures. [J] Langmuir 2010,26,7489-7497.
    [11](a) Y. Luo, S. K. Lee, H. Hofmeister, M. Steinhart, U. Gosele, Pt Nanoshell Tubes by Template Wetting. [J] Nano Lett.2004,4,143-147.
    [12](a) R. Hurt, G. Krammer, G. Crawford, K. Jian, C. Rulison, Liquid Crystalline Nanowires in Porous Alumina:Geometric Confinement versus Influence of Pore Walls. [J] Nano Lett.2005,5,429-434. (b) T. S. Perova, J. K. Vij, A. Kocot, Observation of an anchoring transition in a discotic liquid crystal. [J] Europhys. Lett.1998,44,198-204. (c) T. Uchida, H. Seki, In Liquid Crystals Applications and Uses, Vol.3; Bahadur, B., Ed.; World Scientific:Singapore,1992. (d) A. A. Sonin, The Surface Physics of Liquid Crystals; Gordon and Breach Publishers:Luxembourg,1995.
    [13](a) L. Zhi, J. Wu, J. Li, U. Kolb, K. Mullen, Carbonization of Disclike Molecules in Porous Alumina Membranes:Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation. [J] Angew. Chem., Int. Ed.2005,44,2120-2123. (b) K. Jian, H.-S. Shim, A. Schwartzman, G. P. Crawford, R. H. Hurt, Orthogonal Carbon Nanofibers by Template-Mediated Assembly of Discotic Mesophase Pitch. [J] Adv. Mater.2003,15, 164-167.
    [14]X. Sun, R. Li, D. Wang, J. Dou, P. Zhu, F. Lu, C. Ma, C-F. Choi, D. Y. Y. Cheng, D. K. P. Ng, N. Kobayashi, J. Jiang, Synthesis and Characterization of Mixed Phthalocyaninato and meso-Tetrakis(4-chlorophenyl)porphyrinato Triple-Decker Complexes-Revealing the Origin of Their Electronic Absorptions. [J] Eur. J. Inorg. Chem.2004,19,3806-3813.
    [15]M. Kasha, H. R. Rawls, M. A. EI-Bayoumi, The exciton model in molecular spectroscopy. [J] Pure Appl. Chem.1965,11,371-392.
    [16]J. Lu, D. Zhang, H. Wang, J. Jiang, X. Zhang, Synthesis, crystal structure and self-assembly property of a mixed (phthalocyaninato)(porphyrinato) europium triple-decker complex. [J] Inorg. Chem. Commun.2010,13,1144-1147.
    [17](a) G. Lu, Y. Chen, Y. Zhang, M. Bao, Y. Bao, Y. Bian, X. Li, J. Jiang, Morphology Controlled Self-Assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(Porphyrinato) Europium Triple-Deckers. Effect of Hydrogen Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130, 11623-11630. (b) X. Zhang, Q. Wang, L. Wu, W. Lv, J. Lu, Y. Bain, J.Jiang, Organic Nanostructures with Controllable Morphology Fabricated from Mixed (Phthalocyaninato)(porphyrinato) Europium Double-Decker Complexes. [J] J. Phys. Chem. B.2010,114,1233-1240.
    [18](a) Y. Gao, X. Zhang, C. Ma, X. Li, J. Jiang, Morphology-Controlled Self-Assembled Nanostructures of 5,15-Di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin Derivatives. Effect of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130,17044-17052. (b) Z. Chen, V. Stepanenko, V. Dehm, P. Prins, L. D. A. Siebbeles, J. Seibt, P. Marquetand, V. Engel, F. Wurthner, Photoluminescence and Conductivity of Self-Assembled п-п Stacks of Perylene Bisimide Dyesh. [J] Chem. Eur. J.2007,13,436-449.
    [19](a) J. Motoyanagi, T. Fukushima, N. Ishii, T. Aida, Photochemical Stitching of a Tubularly Assembled Hexabenzocoronene Amphiphile by Dimerization of Coumarin Pendants. [J] J. Am. Chem. Soc.2006,128,4220-4221. (b) W.-S. Li, K. S. Kim, D.-L Jiang, H. Tanaka, T. Kawai, J. H. Kwon, D. Kim, T. Aida, Construction of Segregated Arrays of Multiple Donor and Acceptor Units Using a Dendritic Scaffold:Remarkable Dendrimer Effects on Photoinduced Charge Separation. [J] J. Am. Chem. Soc.2006,128, 10527-10532. (c) T. Yamamoto, T. Fukushima, Y. Yamamoto, A. Kosaka, W. Jin, N. Ishii, T. Aida, Stabilization of a Kinetically Favored Nanostructure:Surface ROMP of Self-Assembled Conductive Nanocoils from a Norbornene-Appended Hexa-peri-hexabenzocoronene. [J] J. Am. Chem. Soc.2006,128,14337-14340. (d) Y. Yamamoto, T. Fukushima, A. Saeki, S. Seki, S. Tagawa, N. Ishii, T. Aida, Molecular Engineering of Coaxial Donor-Acceptor Heteroj unction by Coassembly of Two Different Hexabenzocoronenes:Graphitic Nanotubes with Enhanced Photoconducting Properties. [J] J. Am. Chem. Soc.2007,129,9276-9277. (e) Y. Guo, H. Oike, T. Aida, A Recoverable Enzymatic Microgel Based on Biomolecular Recognition. [J] J. Am. Chem. Soc.2004,126,716-717.
    [20](a) J. Jiang, D. P. Arnold, H. Yu, Infra-red spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. [J] Polyhedron 1999,18,2129-2139. (b) F. Lu, M. Bao, C. Ma, X. Zhang, D. P. Arnold, J. Jiang, Infra-red spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes Part 3. The effects of substituents and molecular symmetry on the IR characteristics of phthalocyanine in bis(phthalocyaninato) rare earth complexes. [J] Spectrochim. Acta. A. 2003,59,3273-3286. (c) M. Bao, N. Pan, C. Ma, D. P. Arnold, J. Jiang, Infrared spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes:Part 4. The infrared characteristics of phthalocyanine in heteroleptic tris(phthalocyaninato) rare earth complexes. [J] Vib. Spectrosc.2003,32, 175-184. porphyrin ring in the molecule of (S)-1 enantiomer.
    Acknowledgement. Financial support from the Natural Science Foundation of China (Grant No.20931001 and 20801031), Ministry of Education of China, Independent Innovation Foundation of USTB and SDU, and Beijing Municipal Commission of Education is gratefully acknowledged.
    [1]a) R. A. Garoff, E. A. Litzinger, R. E. Connor, I. Fishman, B. A. Armitage, Langmuir 2002,18,6330-6337; b) M. Wang, G. L. Silva, B. A. Armitage, J. Am. Chem. Soc.2000,122, 9977-9986; c) R. F. Pasternack, A. Giannetto, P. Pagano, E. J. Gibbs, J. Am. Chem. Soc.1991, 113,7799-7780; d) K. C. Hannah, B. A. Armitage, Acc. Chem. Res.2004,37,845-853; e) X. Chen, M. Liu, J. Inorg. Biochem.2003,94,106-113.
    [2]a) J. H. Fuhrhop, W. Helfrich, Chem. Rev.1993,93,1565-1582; b) S. I. Tamaru, M. Nakamura, M. takeuchi, S. Shinkai, Org. Lett.2001,3,3631-3634; c) S. Tamaru, S. Uchino, M. Takeychi, M. Ikeda, T. Hatano, S. Shinkai, Tetrahedron Letters,2002,43,3751-3755.
    [3]a) C. Nuckolls, T. J. Katz, T. Verbiest, S. V. Elshocht, H. G. Kuball, S. Kiesewalter, A. J. Lovinger, A. Persoons, J. Am. Chem. Soc.1998,120,8656-8660; b) J. M. Fox, T. J. Katz, S. V. Elshocht, T. Verbiest, M. Kauranen, A. Persoons, T. Thongpanchang, T. Krauss, L. Brus, J. Am. Chem. Soc.1999,121,3453-3459.
    [4]a) Z. Wu, G. Yang, Q. Chen, J. Liu, S. Yang, J. S. Ma, Inorg. Chem.Commun.2004,7, 249-252; b) S. Shinoda, T. Okazaki, T. N. Player, H. Misaki, K. Hori, H. Tsukube, J. Org. Chem.2005,70,1835-1843; c) T. Kawamoto, B. S. Hammes, B. Haggerty, G. P. A. Yap, A. L. Rheingold, A. S. Borovik, J. Am. Chem. Soc.1996,118,285-286.
    [5]a) H. Engelkamp, S. Middlebeek, R. J. M. Nolte, Science 1999,284,785-788; b) D. Adam, P. Schumacher, J. Simmerer, L. Hausling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, D. Harrer, Nature 1994,371,141-143; c) J. Wu, M. D. Watson, L. Zhang, Z. Wang, K. Mullen, J. Am.Chem. Soc.2004,126,177-186; d) V. Dehm, Z. Chen, U. Baumeister, P. Prins, L. D. A. Siebbeles, F. Wulrthner, Org. Lett.2007,9,1085-1088.
    [6]a) H. Goto, H. Q. Zhang, E. Yashima, J. Am. Chem. Soc.2003,125,2516-2523; b) K. Morino, M. Oobo, E. Yashima, Macromolecules 2005,38,3461-3468; c) R. Nonokawa, E. Yashima, J. Am. Chem. Soc.2003,125,1278-1283.
    [7]K. Kadish, K. M. Smith, R. Guilard, Eds.; The Porphyrin Handbook; Academic Press: New York,1999.
    [8]a) M. Kimura, H. Narikawa, K. Ohta, K. Hanabusa, Chen. Mater.2002,14,2711-2717; b) X. Huang, F. Zhao, Z. Li, Y. Tang, F. Zhang, C. Tung, Langmuir 2007,23,5617-5172; c) A. de la Escosura, M. V. M. Dlaz, P. Thoedarson, A. E. Rowan, R. J. M. Nolte, T. Torres, J. Am. Chem. Soc.2003,125,12300-12308; d) P. Chen, X. Ma, M. Liu, Macromolecules 2007,40, 4780-4784.
    [9]Y. Li, X. Li, Y. Li, H. Liu, S. Wang, H. Gan, J. Li, N. Wang, X. He, D. Zhu, Angew. Chem,. Int. Ed. 2006,45,3639-3643.
    [10]T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Yoshishige Okuno, T. Mashiko, Nature 2001,413,619-621.
    [11]a) Y. Gao, X. Zhang, C. Ma, X. Li, J. Jiang, J. Am. Chem. Soc.2008,130,17044-17052; b) Y Gao, Y Chen, R. Li, Y. Bian, X. Li, J. Jiang, Chem. Eur. J.2009,15,13241-13252; c) G. Lu, Y, Chen, Y. Zhang, M. Bao, Y. Bian, X. Li, J. Jiang, J. Am. Chem. Soc.2008,130, 11623-11630; d) G. Lu, X. Zhang, X. Cai, J. Jiang, Eur. J. Inorg. Chem. Inpress.
    [12]a) H. Ogoshi, T. Mizutani, Acc. Chem. Res.1998,31,81-89; b) X. Huang, K. Nakanishi, N. Berova, Chirality 2000,12,237-255.
    [13]a) X. Huang, B. H. Richman, B. Borhan, N. Berova, K. Nakanishi, J. Am. Chem. Soc. 1998,120,6185-6186; b) G. Proni, G. Pescitelli, X. Huang, K. Nakanishi, N. Berova, J. Am. Chem. Soc.2003,125,12914-12927; c) T. Kurtan, N. Nesnas, Y. Li, X. Huang, K. Nakanishi, N. Berova, J. Am. Chem. Soc.2001,123,5962-5973; d) T. Kurtan, N. Nesnas, F. E. Koehn, Y. Li, K. Nakanishi, N. Berova, J. Am. Chem. Soc.2001,123,5974-5982.
    [14]a) D. Mansuy, Coord. Chem. Rev.1993,125,129-142; b) J. P. Collman, X. Zhang, V. J. Lee, E. S. Uffelman, J. I. Brauman, Science 1993,261,1404-1411; c) Z. Gross, S. Ini, J. Org. Chem.1997,62,5514-5521.
    [15]E. Bellacchio, R. Lauceri, S. Gurrieri, L. M. Scolaro, A. Romeo, R. Purrello, J. Am. Chem. Soc.1998,120,12353-12354.
    [16]a) S.-i. Kawano, S.-i. Tamaru, N. Fujita, S. Shinkai, Chem. Eur. J.2004,10,343-351; b) T. Sugimoto, T. Suzuki, S. Shinkai, K. Sada, J. Am. Chem. Soc.2007,129,270-271; c) M. Wolffs, F. J. M. Hoeben, E. H. A. Beckers, A. P. H. J. Schenning, E. W. J. Am. Chem. Soc. 2005,127,13484-13485.
    [17]a) X. M. Guo, C. Jiang, T. S. Shi, Inorg. Chem.2007,46,4766-4768; b) J.-H. Fuhrhop, C. Demoulin, C. Boettcher, J. Koning, U. Siggels, J. Am. Chem. Soc.1992,114,4159-4169; c) S. Arimori, M. Takeuchi, S. Shinkai, J. Am. Chem. Soc.1996,118,245-246; d) T. Ishi-I, J. H. Jung, S. Shinkai, J. Mater. Chem.2000,10,2238-2240. [18] a) S. Tamaru, M. Takeuchi, M. Sano, S. Shinkai, Angew. Chem. Int. Ed.2002,41, 853-856; b) S.-i. Tamaru, M. Nakamura, M. Takeuchi, S. Shinkai, Org. Lett.2001,3, 3631-3634.
    [19]a) X. Zhang, A. Muranaka, W. Lv, Y. Zhang, Y. Bian, J. Jiang, N. Kobayashi, Chem. Eur. J.2008,14,4667-4674; b) H. Liu, C. Chen, M. Ai, A. Gong, J. Jiang, F. Xi, Tetrahedron Asymmetry 2000,11,4915-4922; c) H. Liu, Y. Liu, M. Liu, C. Chen, F. Xi, Tetrahedron Lett. 2001,42,7083-7086.
    [20]a) N. Kobayashi, Y. Kobayashi, T. Osa, J. Am. Chem. Soc.1993,115,10994-1099; b) N. Kobayashi, Chem. Commun.1998,4,487-488.
    [21]L. D. Bari, G. Pescitelli, G Reginato and P. Salvadori, Chirality 2001,13,548-555.
    [22]M. Kasha, H. R. Rawls, M. A. EI-Bayoumi, Pure Appl. Chem.1965,11,371-392.
    [23]a) N. Berova, K. Nakanishi, R. Woody, Circular Dichroism:Princples and Applictions, 2nd ed., Wily-VCH:New York,2000:pp 337-382; b) A. L. Hofacker, J. R. Parquette, Angew. Chem. Int. Ed.2005,44,1053-1057; c) M. Balaz, A. E. Holmes, M. Benedetti, P. C. Rodriguez, N. Berova, K. Nakanishi, G. Proni, J. Am. Chem. Soc.2005,127,4172-4173; d) V. V. Borovkov, J. M. Lintuluoto, M. Fujiki, Y. Inoue, J. Am. Chem. Soc.2000,122, 4403-4407.
    [24]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.05; Gaussian, Inc.Pittsburgh, PA,2003.
    [25]F. D'Souza, R. Chitta, S. Gadde, M. E. Zandler, A. L. McCarty, A. S. D. Sandanayaka, Y. Araki, O. Ito, J. Phys. Chem. A.2006,110,4338-4347.
    [26]a) K. Balakrishnan, A. Datar, T. Naddo, J. Huang, R. Oitker, M. Yen, J. Zhao, L. Zang, J. Am. Chem. Soc.2006,128,7390-7398; b) W. Su, Y. Zhang, C, Zhao, X. Li, J. Jiang, J. ChemPhysChem.2007,8,1857-1862; c) Y. Li, X. Li, Y. Li, H. Liu, S. Wang, H. Gan, J. Li, N. Wang, X. He, D. Zhu, Angew. Chem. Int. Ed.2006,45,3639-3643; d) X. Gong, T. Milic, C. Xu, J. D. Batteas, C. M. Drain, J. Am. Chem. Soc.2002,124,14290-14291. Supporting Information Available:(A) Experimental and (a) simulated isotopic patterns for the molecular ion of triple-decker compound 1; IR spectra of complexes 1 and 2 in the region of 400-3800 cm-1 with 2 cm-1 resolution. This material is available free of charge via internet at http://pubs.acs.org
    (1)(a) Garoff, R. A.; Litzinger, E. A.; Connor, R. E.; Fishman, I.; Armitage, B. A. Langmuir 2002,18,6330-6337. (b) Wang, M.; Silva, G. L.; Armitage, B. A. J. Am. Chem. Soc.2000, 122,9977-9986. (c) Pasternack, R. F.; Giannetto, A.; Pagano, P.; Gibbs, E. J. J. Am. Chem. Soc.1991,113,7799-7780.
    (2)(a) Phthalocyanine:Properties and Applications, Vol.1-4 (Eds.:Lever, A. B. P.; Leznoff, C. C), VCH, New York,1989-1996. (b) Phthalocyanines Materials:Synthesis, Structure and Function (Ed.:McKeown, N. B.), Cambridge University Press, New York,1998. (c) The Porphyrin Handbook, Vol.1-20 (Eds.:Kadish,K. M.; Smith, K. M.; Guilard, R.), Academic Press, San Diego,2000 and 2003. (d) Senge, M. O.; Fazekas, M.; Notaras, E. G. A.; Blau, W. J.; Zawadzka, M.; Locos, O. B.; Ni Mhuircheartaigh, E. M. Adv. Mater.2007,19,2734-2774. (e) Kobayashi, N. Coord. Chem. Rev.2001,99-123. (f) Bellacchio, E.; Lauceri, R.; Gurrieri, S.; Scolaro, L. M.; Romeo, A.; Purrello, R. J. Am. Chem. Soc.1998,120, 12353-12354. (g) Galardon, E.; Lukas, M.; Le Maux, P.; Simonneaux, G. Tetrahedron Lett. 1999,40,2753-2756. (h) Boitrel, B.; Baveux-Chambenoit, V.; Richard, P. Eur. J. Org. Chem. 2001,4213-4221. (i) Liang, J.-L.; Huang, J.-S.; Yu, X.-Q.; Zhu, N.; Che, C.-M. Chem. Eur. J. 2002,8,1563-1572. (j) Zhang, R.; Yu, W.-Y.; Sun, H.-Z.; Liu, W.-S.; Che, C.-M. Chem. Eur. J.2002,8,2495-2507. (k) Engelkamp, H.; Middlebeek, S.; Nolte, R. J. M. Science 1999, 284,785-788.
    (3)(a) Jiang, J.; Ng, D. K. P. Acc. Chem. Res.2009,42,79-88. (b) Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Coord. Chem. Rev.2006,250,424-448. (c) Jiang, J.; Liu, W.; Arnold, D. P.; J. Porphyrins Phthalocyanines 2003,7,459-473. (d) Jiang, J.; Kasuga, K.; Arnold, D. P. in Supramolecular Photosensitive andElect roactive Materials (Ed.:H. S. Nalwa), Academic Press, New York,2001, chapter 2, pp.113-210. (e) Ng, D. K. P.; Jiang, J. Chem. Soc. Rev.1997,26,433-442.
    (4)(a) Tashiro, K.; Konishi, K.; Aida, T. Angew. Chem., Int. Ed. Engl.1997,36,856-858. (b) Tashiro, K.; Fujiwara, T.; Konishi, K.; Aida, T. Chem. Commun.1998,1121-1122. (c) Tashiro, K.; Konishi, K.; Aida, T. J. Am. Chem. Soc.2000,122,7921-7926.
    (5)(a) Takeuchi, M.; Imada, T.; Shinkai, S. Angew. Chem. Int. Ed.1998,37,2096-2099. (b) Sugasaki, A.; Ikeda, M.; Takeuchi, M.; Shinkai, S.; Angew. Chem. Int. Ed.2000,39, 3839-3842. (c) Takeuchi, M.; Ikeda, M.; Sugasaki, A.; Shinkai, S. Acc. Chem. Res.2001,34, 865-873. (d) Ikeda, M.; Takeuchi, M.; Shinkai, S.; Tani, F.; Naruta, Y.; Sakamoto, S.; Yamaguchi, K. Chem. Eur. J.2002,8,5541-5550.
    (6)(a) Negrimovskii, V. M.; Bouvet, M. M.; Luk'yanets, E A.; Simon, J. J. Porphyrins Phthalocyanines 2001,5,423-427. (b) Bian, Y.;Wang, R.;Wang, D.; Zhu, P.; Li, R.; Dou, J.; Liu,W.; Choi, C.-F.; Chan, H.-S.; Ma, C.; Ng, D. K. P.; Jiang, J. Helv. Chim. Acta 2004,87, 2581-2596. (c) Bian, Y.;Wang, R.; Jiang, J.; Lee, C.-H.; Wang, J.; Ng, D. K. P. Chem. Commun.2003,1194-1195.
    (7)Lv, W.; Zhu, P.; Bian, Y.; Ma, C.; Zhang, X.; Jiang, J. Inorg. Chem.2010,49,6628-6635.
    (8)Zhou, Y.; Zhang, Y.; Wang, H.; Jiang, J.; Bian, Y.; Muranaka, A.; Kobayashi, N. Inorg. Chem.2009,48,8925-8933.
    (9)Wang, R.; Li, R.; Li, Y.; Zhang, X.; Zhu, P.; Lo, P.-C.; Ng, D. K. P.; Pan, N; Ma, C.; Kobayashi, N.; Jiang, J. Chem. Eur. J.2006,12,1475-1485.
    (10)Zhang, X.; Muranaka, A.; Lv, W.; Zhang, Y.; Bian, Y.; Jiang, J.; Kobayashi, N. Chem. Eur. J.2008,14,4667-4674.
    (11)(a) Kirin, I. S.; Moskalev, P. N.; Makashev, Y A. Russ. J. Inorg. Chem.1965,10, 1065-1066. (b) Buchler, J. W.; Ng, D. K. P. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:San Diego,2000, Vol.3, pp 245-294. (c) Sun, X.; Cui, X.; Arnold, D. P.; Choi, M. T. M.; Ng, D. K. P.; Jiang, J. Eur. J. Inorg. Chem. 2003,8,1555-1561. (d) Sun, X.; Li, R.; Wang, D.; Dou, J.; Zhu, P.; Lu, F.; Ma, C.; Choi, Ch-F.; Cheng, D. Y. Y.; Ng, D.K. P.; Kobayashi, N.; Jiang, J. Eur. J. Inorg. Chem.2004,19, 3806-3813.
    (12)To detect whether racemization of optically active porphyrin in refluxing TCB occurs, unreacted metal-free porphyrin after synthesizing the europium and yttrium mixed ring triple-decker complexes was recovered and purified. CD spectroscopic measurement results reveal that both the CD spectra and the coefficients of CD curves for both (R)-or (S)-H2TCBP do not change.
    (13)Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. J. Am. Chem. Soc.2008, 130,11623-116320.
    (14)(a) Jiang, J.; Arnold, D. P.; Yu, H. Polyhedron 1999,18,2129-2139. (b) Lu, F.; Bao, M.; Ma, C.; Zhang, X.; Arnold, D. P.; Jiang, J. Spectrochim. Acta. A.2003,59,3273-3286. (c) Bao, M.; Pan, N.; Ma, C.; Arnold, D. P.; Jiang, J. Vib. Spectrosc.2003,32,175-184.
    (15)Sheng, N.; Li, R.; Choi, C.; Su, W.; Ng, D. K. P.; Cui, C.; Yoshida, K.; Kobayashi, N.; Jiang, J. Inorg. Chem.2006,45,3794-3802.
    (16)(a) Kobayashi, N.; Kobayashi, Y.; Osa, T. J. Am. Chem. Soc.1993,115,10994-1099; b) Kobayashi, N. Chem. Commun.1998,4,487-488.
    (17)(a) Stillman, M. J.; Nyokong, T. in Phthalocyanines-Propertiesand Applications, vol.1 (Eds.:C. C. Leznoff, A. B. P. Lever), VCH, New York,1989, pp.133-290. (b) Orti, E.; Bredas, J. L. J. Chem. Phys.1990,92,1228-1236. (c) Rousseau,R.; Aroca, R.; Rodriguez-Mendez, M. L. J. Mol. Struct.1995,356,49-62. (d) Ishikawa, N. J. Porphyrins Phthalocyanines 2001,5,87-101.
    (18)Kobayashi, N.; Higashi, R.; Titeca, B. C.; Lamote, F.; Ceulemans, A. J. Am. Chem. Soc. 1999,121,12018-12028.
    (19)Muranaka, A.; Matsumoto, Y.; Uchiyama, M.; Jiang, J.; Bian, Y.; Ceulemans, A.; Kobayashi, N. Inorg. Chem.2005,44,3818-3826.
    (20)Lu, J.; Wu, L.; Zhang, X.; Jiang, J. Eur. J. Inorg. Chem.2010,4000-4008.
    (21)Stites, J. G.; McCarty, C. N.; Quill, L. L. J. Am. Chem. Soc.1948,70,3142-3143.
    (22)Jiang, J.; Liu, R. C. W.; Mak, T. C. W.; Chan, T. W. D.; Ng, D. K. P. Polyhedron 1997, 16,515-520. United Kingdom; Fax:+44(0)1223-336033; e-mail:deposit@ccdc.cam.ac.uk.
    Acknowledgments. Financial support from the Natural Science Foundation of China (Grant No.20931001 and 20801031), Ministry of Education of China, Independent Innovation Foundation of USTB and SDU.
    [1]J. Jiang, D. K. P. Ng. Acc. Chem. Res.42 (2009) 79.
    [2]J. Jiang, M. Bao, L. Rintoul, D. P. Arnold, Coord. Chem. Rev.250 (2006) 424.
    [3]S. Yoshimoto, T. Sawaguchi, W. Su, J. Jiang, N. Kobayashi, Angew. Chem. Int. Ed.46 (2007)1071.
    [4]T. Ye, T. Takami, R. Wang, J. Jiang, P. S. Weiss, J. Am. Chem. Soc.128 (2006) 10984.
    [5]G. Lu, Y. Chen, Y. Zhang, M. Bao, Y. Bian, X. Li, J. Jiang, J. Am. Chem. Soc.130 (2008) 11623.
    [6]X. Zhang, Q. Wang, L. Wu, W. Lv, J. Lu, Y. Bian, J. Jiang, J. Phys. Chem. B.114 (2010) 1233.
    [7]Q. Liu, Y. Li, H. Liu, Y. Chen, X. Wang, Y. Zhang, X. Li, J. Jiang, J. Phys. Chem. C. 111 (2007) 7298.
    [8]I. Chambrier, L. Hughes, J. Swarts, B. Isare, J. Cook, Chem. Commun. (2006) 3504-3506.
    [9]G. Martynov, Q. Zubareva, G. Gorbunova, G. Sakharov, E. Nefedov, M. Dolgushin, Y. Tsivadze, Eur. J. Inorg. Chem. (2007) 4800.
    [10]Y. Bian, L. Li, D. Wang, C. Choi, D. Cheng, P. Zhu, R. Li, J. Dou, R. Wang, P. Na, D. K. P. Ng, N. Kobayashi, J. Jiang, Eur. J. Inorg. Chem. (2005) 2612.
    [11]M. Moussavi, A. Decian, J. Fischer, R. Weiss, Inorg. Chem.25 (1986) 2107.
    [12]D. Chabach, M. Lachkar, A. Decian, J. Fischer, R. Weiss, New J. Chem.16 (1997) 431.
    [13]X. Sun, R. Li, D. Wang, J. Dou, P. Zhu, F. Lu, C. Ma, C. Choi, D. Y. Y. Cheng, D. K. p. Ng, N. Kobayashi, J. Jiang, Eur. J. Inorg. Chem. (2004) 3806.
    [14]J. Jiang, Y. Bian, F. Furuya, W. Liu, M. T. M. Choi, N. kobayashi, H. W. Li, Q. Yang, T. C. W. Mak, D. K. P. Ng, Chem. Eur. J.7 (2001) 5059.
    [15]P. Zhu, N. Pan, R. Li, J. Dou, Y. Zhang, D. Y. Y. Cheng, D. Wang, D. K. P. Ng, J. Jiang, Chem. Eur. J.11 (2005) 1425.
    [16]T Crystals of 1 mounted on glass fiber were studied with a Bruker APEXII CCD Detector single-crystal X-ray diffractometer with a graphite-monochromated Mo KR radiation (γ=0.71073 A) source at 25℃. Absorption corrections were applied using the multiscan program SADABS. All structures were solved by the direct method using the SHELXS program of the SHELXTL package and refined by the full-matrix least-squares method with SHELXL. The metal atoms in each complex were located from the E-maps, and other non-hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on F~2. The organic hydrogen atoms were generated geometrically (C-H 0.96 A). Crystal data for 1:C_(108)H_(62)Cl_4Eu_2N_(20)0_3, M_w 2133.50, T=273 K, triclinic, space group P-1, a=14.7560(12), b=5.2717(12), c= 20.9966(18) A, a=100.02(0), β=92.78(0), γ=102.49(0)°, V=4530.9(6)A~3, Z=2, p_(calcd)= 1.564 g cm~(-3), μ=1.557 mm~(-1), γ(Mo K_a)= 0.71073 A, F(000)=2136,22428 measured reflections,15696 unique reflections with I>1.5б(I) converged at final R1=0.0516, wR_2= 0.1421, GOF=1.045 based on 1234 parameters. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited in the Cambridge Crystallographic Data Center with CCDC Number:771965.
    [17]M. Kasha, H. R. Rawls, M. A. E. Bayoumi, Pure Appl. Chem.11 (1965) 371-392. SDU, and Beijing Municipal Commission of Education is gratefully acknowledged.
    [1]J. A. A. W. Elemans, R. Van. Hameren, R. J. M. Nolte, A. E. Rowan, Adv. Mater.2006, 18,1251-1226.
    [2]H. Gan, H. Liu, Y. Li, Q. Zhao, Y. Li, S. Wang, T. Jiu, N. Wang, X. He, D. Y, D. Zhu, J. Am. Soc. Chem.2005,127,12452-12453.
    [3]K. Balakrishnan, A. Datar, T. Naddo, J. Huang, R. Oitker, M. Yen, J. Zhao, L. Zang, J. Am. Chem. Soc.2006,128,7390-7398.
    [4]a) D. Y. Yan, Y. F. Zhou, J. Hou, Science 2004,303,65-67. b) T. Shimizu, M. Masuda, H. Minamikawa, Chem. Rev.2005,105,1401-1444.
    [5]a) M. Steinhart, S. Senz, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Macromolecules 2003,36,3646-3651. b) M. Steinhart, Z. Jia, A. Schaper, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Adv. Mater.2003,15,706-709.
    [6]a) J. Jiang, D. K. P. Ng, Acc. Chem. Res.2009,42,79-88. b) J. Jiang, M. Bao, L. Rintoul, D. P. Arnold, Coord. Chem. Rev.2006,250,424-448. c) J. Jiang, K. Kasuga, D. P. Arnold, In Supramolecular PhotosensitiVe and ElectroactiVe Materials; Nalwa, H. S., Ed.; Academic Press:New York,2001; Chapter 2, pp 113-210. d) D. K. P. Ng, J. Jiang, Chem. Soc. Rev.1997,26,433-442. e) S. Yoshimoto, T. Sawaguchi, W. Su, J. Jiang, N. Kobayashi, Angew. Chem. Int. Ed.2007,46,1071-1074. f) T. Ye, T. Takami, R. Wang, J. Jiang, P. S. Weiss, J. Am. Chem. Soc.2006,128,10984-10985. g) K. Kadish, K. M. Smith, R. Guilard, Eds.; The Porphyrin Handbook; Academic Press:New York,1999.
    [7]a) W. Y. Tong, A. B. Djurii, M. H. Xie, A. C. M. Ng, K. Y. Cheung, W. K. Chan, Y. H. Leung, H. W. Lin, S. Gwo, J. Phys. Chem. B.2006,110,17406-17413. b) V. Duzhko, K. D. Singer, J. Phys. Chem. C.2007,111,27-31. c) Y. Zhang, Z. Zhang, Y. Zhao, Y. Fan, T. Tong, H. Zhang, Y. Wang, Langmuir 2009,25,6045-6048.
    [8]Z. Wang, C. J. Medforth, J. A. Shelnutt, J. Am. Chem. Soc.2004,126,15954-15955.
    [9]a) L. Zhi, T. Gorelik, J. Wu, U. Kolb, K. Mullen, J. Am. Chem. Soc.2005,127, 12792-12793. b) Q. Liu, Y Li, H. Liu, Y. Chen, X. Wang, Y Zhang, X. Li, J. Jiang. J. Phys. Chem. C.2007, 111,7298-7301.
    [10]a) Y Gao, Y. Chen, R. Li, Y. Bian, X. Li, J. Jiang, Chem. Eur. J.2009,15,13241-13252. b) X. Wu, W. Lv, Q. Wang, H. Wang, X. Zhang, J. Jiang, Dalton Trans.2011,40, 107-113. c) J. Lu, L. Wu, J. Jiang, X. Zhang. Eur. J. Inorg. Chem.2010,4000-4008. d) L. Wu, Q. Wang, J. Lu, Y. Bian, J. Jiang, X. Zhang. Langmuir 2010,26,7489-7497.
    [11]a) Y. Luo, S. K. Lee, H. Hofmeister, M. Steinhart, U. Gosele, Nano Lett.2004,4, 143-147.
    [12]a) R. Hurt, G. Krammer, G. Crawford, K. Jian, C. Rulison. Nano Lett.2005,5,429-434. b) T. S. Perova, J. K. Vij, A. Kocot, Europhys. Lett.1998,44,198-204. c) T. Uchida, H. Seki, In Liquid Crystals Applications and Uses, Vol.3; Bahadur, B., Ed.; World Scientific: Singapore,1992. d) L. T. Creagh, A. R. Kmetz, Mol. Cryst. Liq. Cryst.1973,24,59-68. e) A. A. Sonin, The Surface Physics of Liquid Crystals; Gordon and Breach Publishers: Luxembourg,1995.
    [13]a) L. Zhi, J. Wu, J. Li, U. Kolb, K. Mullen, Angew. Chem., Int. Ed.2005,44,2120-2123. b) R. Hurt, G. Krammer, G. Crawford, K. Jian, C. Rulison, Chem. Mater.2002,14, 4558-4565. c) K. Jian, H.-S. Shim, A. Schwartzman, G. P. Crawford, R. H. Hurt, Adv. Mater. 2003,15,164-167.
    [14]X. Sun, R. Li, D. Wang, J. Dou, P. Zhu, F. Lu, C. Ma, C-F. Choi, D. Y. Y. Cheng, D. K. P. Ng, N. Kobayashi, J. Jiang, Eur. J. Inorg. Chem.2004,3086-3813.
    [15]M. Kasha, H. R. Rawls, M. A. EI-Bayoumi, Pure Appl. Chem.1965,11,371-392.
    [16]J. Lu, D. Zhang, H. Wang, J. Jiang, X. Zhang, Inorg. Chem. Commun.2010,13, 1144-1147.
    [17]a) G Lu, Y. Chen, Y. Zhang, M. Bao, Y. Bao, Y. Bian, X. Li, J. Jiang, J. Am. Chem. Soc. 2008,130,11623-11630. b) X. Zhang, Q. Wang, L. Wu, W. Lv, J. Lu, Y. Bain, J.Jiang, J. Phys. Chem. B.2010,114,1233-1240.
    [18]a) Y. Gao, X. Zhang, C. Ma, X. Li, J. Jiang, J. Am. Chem. Soc.2008,130,17044-17052. b) Z. Chen, V. Stepanenko, V. Dehm, P. Prins, L. D. A. Siebbeles, J. Seibt, P. Marquetand, V. Engel, F. Wurthner, Chem. Eur. J.2007,13,436-449.
    [19]a) J. Motoyanagi, T. Fukushima, N. Ishii, T. Aida, J. Am. Chem. Soc.2006,128,4220-4221. b) W.-S. Li, K. S. Kim, D.-L. Jiang, H. Tanaka, T. Kawai, J. H. Kwon, D. Kim, T. Aida, J. Am. Chem. Soc.2006,128,10527-10532. c) T. Yamamoto, T. Fukushima, Y. Yamamoto, A. Kosaka, W. Jin, N. Ishii, T. Aida, J. Am. Chem. Soc.2006,128,14337-14340. d) Y. Yamamoto, T. Fukushima, A. Saeki, S. Seki, S. Tagawa, N. Ishii, T. Aida, J. Am. Chem. Soc.2007,129,9276-9277. e) Y. Guo, H. Oike, T. Aida, J. Am. Chem. Soc.2004,126,716-717.
    [20]a) J. Jiang, D. P. Arnold, H. Yu, Polyhedron 1999,18,2129-2139. b) F. Lu, M. Bao, C. Ma, X. Zhang, D. P. Arnold, J. Jiang, Spectrochim. Acta. A.2003,59,3273-3286. c) M. Bao, N. Pan, C. Ma, D. P. Arnold, J. Jiang, Vib. Spectrosc.2003,32,175-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700