基于N/O多齿配体配位框架的合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选用四种N/O多齿配体作为主配体,在溶剂/水热条件下合成了24个新的金属-有机框架化合物。通过单晶衍射、红外光谱、元素分析以及粉末衍射对它们的结构进行了表征。详细分析了它们的结构和拓扑,并对部分配合物的荧光性质、光催化活性、磁性以及气体吸附性质做了初步研究。主要内容如下:
     第一章,概述了配位聚合物的研究背景和多齿配体基配位聚合物的研究现状,在此基础上提出了本课题的选题依据。并且对本论文取得的主要进展做了概述。
     第二章,以三齿吡啶配体2,4,6-tris(4-pyridyl)pyridine (L1)为主配体,借助不同尺寸、柔韧性和形状的配体为辅助配体,与金属离子配位得到了10个金属-有机框架化合物,并对它们的结构进行了表征。配合物1代表了第一例具有二重互穿的lohl拓扑结构。此外,我们还研究了配合物1的光催化活性和磁性质。配合物1、5、6、9和10拓扑结构的不同,表明辅助配体的引入至关重要。
     第三章,引入多钼酸盐得到了配合物11和12两个杂金属基金属-有机框架材料。它们展现了相似的“层柱”结构,且包含杂金属纯无机层结构,光催化实验表明它们在紫外灯照射下能够降解甲基橙染料。配合物13具有四重螺旋孔道,水稳定性好,在水溶液中它能够通过简易的颜色变化来识别不同的无机阴离子。气体吸附测试表明,活化的配合物13在接近于室温下能够捕获CO2气体。
     第四章,合成了7个N/O多齿配体基金属-有机框架化合物。在相同的合成条件下,通过引入有机连接子实现了配合物16到17的结构转变。详细分析了合成条件对配合物结构的影响。磁性测试表明配合物16和17具有反铁磁行为。
     第五章,合成了4个包含金属簇单元的金属-有机框架化合物。配合物21的合成为这类结构的构筑提供了一种新的途径。并对配合物23和24的吸附和荧光性质进行了系统研究。
     第六章,全文总结。
The aim of this thesis is the synthesis of new metal-organic frameworks (MOFs) based on four N/O multidentate ligands. Twenty-four new MOFs have been synthesized under the solvothermal or hydrothermal conditions and structurally characterized by single crystal X-ray diffraction, IR, elemental analyses and powder X-ray diffraction. The structures and topologies of these complexes have been analyzed in detail. And, the fluorescent, photocatalytic activity, magnetic and gas adsorption properties of part of complexes have also been investigated. The main contents of this work are summarized as below:
     In chapter1, a brief introduction of the research background of coordination polymers and the current progresses of coordination polymers based on multidentate ligands have been reviewed. Based on the aforementioned review, the foundation of this thesis has been introduced. Moreover, the progresses of this thesis have been outlined.
     In chapter2, we selected some auxiliary ligands with different size, flexibility and shape, and ten MOFs have been synthesized and structurally characterized based on2,4,6-tris(4-pyridyl)pyridine ligand. Complex1represents the first example of interpenetrated coordination framework with unique (3,6)-connected lohl topology. Furthermore, the photocatalytic activity and magnetic properties of1have been investigated. The structural difference of complexes1,5,6,9and10indicates that organic carboxylate ligands play important roles in the formation of such coordination architectures.
     In chapter3, two metal-organic hybrids (complexes11and12) have been synthesized by the introduction of polymolybdate. Both of complexes display three-dimensional "pillar-layer" frameworks based on bimetal-oxide inorganic layer. Good photocatalytic activities were observed for both complexes in the photo-decomposition of methyl orange solution under UV light irradiation. On the other hand, complex13possesses4-fold helical channel and is a water-stable MOF, which can sense anions with different geometries. The exchanged-products can be conveniently recognized by visual chroma. Moreover, the desolvated complex13 shows selective uptake of CO2over N2at ambient temperature.
     In chapter4, seven MOFs have been synthesized based on N/O multidentate ligands. The structural transformation between complexes16and17was achieved successfully by the pillar organic ligand under the same reaction conditions. The effect of synthetic conditions on the resulting structures have been discussed in detail. Moreover, the magnetic properties of16and17have been investigated and both of them show antiferromagnetic behaviour.
     In chapter5, four metal cluster-based MOFs have been obtained. The synthesis strategy of complex21opens up a new avenue for synthesizing metal cluster-based coordination frameworks. Furthermore, the gas adsorption and luminescent properties of complexes23and24have been systematically studied.
     In chapter6, a conclusion on this work is given.
引文
[1](a) Werner A. Beitrag zur Konstitution anorganischer Verbindungen[J]. Z. Anorg. Chem.,1893,3:267-300.(b)宋伟朝.基于四唑类配体的配位聚合物构筑与性质研究[博士学位论文].天津:南开大学,2010.
    [2]Hoskins B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. J. Am. Chem. Soc.,1989,111(15):5962-5964.
    [3]For examples:(a) Eddaoudi M, Moler D B, Li H, et al. Modular Chemistry:□ Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J]. Acc. Chem. Res.,2001,34(4):319-330. (b) Rowsell J L C, Yaghi O M. Metal-organic frameworks:a new class of porous materials[J]. Micro. Meso. Mater.,2004,73:3-14. (c) Kitagawa S, Noro S Compreh. Synthesis and Crystal Structure of [Cu(N-salicylidene-3-aminopyridine)2]n Constructed from Unsymmetric Bridging Ligand with Two Dissimilar Metal-Binding Sites[J]. J. Coord. Chem.,2000,342:231-236.
    [4](a) Yaghi O M, Li H, Davis C, et al. Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids[J]. Acc. Chem. Res,1998,31:474-484.(b)何坤欢.金属簇基配位聚合物的合成、结构与性质研究[博士学位论文].天津:南开大学,2012.
    [5]Hong M C, Zhao Y J, Su W P, et al. A Nanometer-Sized Metallosupramolecular Cube with Oh, Symmetry[J]. J. Am. Chem. Soc.,2000,122(19):4819-4820.
    [6]Kostakis G E, Casella L Boudalis A K, Monzani E, et al. Structural variation from 1D chains to 3D networks:a systematic study of coordination number effect on the construction of coordination polymers using the terepthaloylbisglycinate ligand[J]. New J. Chem.,2011,35: 1060-1071.
    [7]Wang X Z, Zhu D R, Xu Y, et al. Three Novel Metal-Organic Frameworks with Different Topologies Based on 3,3'-Dimethoxy-4,4'-biphenyldicarboxylic Acid:Syntheses, Structures, and Properties[J]. Cryst. Growth Des.,2010,10:887-894.
    [8]Yao X Q, Zhang M D, Hu J S, et al. Two Porous Zinc Coordination Polymers with (10,3) Topological Features Based on a N-Centered Tripodal Ligand and the Conversion of a (10,3)-d Subnet to a (10,3)-a Subnet[J]. Cryst. Growth Des.,2011,11 (7):3039-3044.
    [9]Li J R, Zhou H C. Bridging-Ligand-Substitution Strategy for the Preparation of Metal-Organic Polyhedra[J]. Nature Chem.,2010,2:893-898.
    [10]Yang Q X, Chen X Q, Chen Z J, et al. Metal-Organic Frameworks Constructed from Flexible V-shaped Ligand:Adjust the Topology, Interpenetration and Porosity via Solvent System[J]. Chem. Commun.,2012,48:10016-10018.
    [11](a) Lehn J M. Supramolecular Chemistry- Scope and Perspectives:Molecules, Supermolecules, and Molecular Devices (Nobel Lecture)[J].Angew. Chem. Int. Ed. Engl., 1988,27:89-112. (b) Vilar R. Anion Recognition and Templation in Coordination Chemistry[J]. Eur. J. Inorg. Chem.,2008,35:357-367. (c)陈勇强.基于菲咯啉衍生物配体的配位聚合物的合成、结构和性质研究[硕士学位论文].锦州:渤海大学,2010.
    [12]Mondal R, Basu T, Sadhukhan D, et al. Influence of Anion on the Coordination Mode of a Flexible Neutral Ligand in Zn(II) Complexes:From Discrete Zero-Dimensional to Infinite 1D Helical Chains,2D Nanoporous Bilayer Networks, and 3D Interpenetrated Metal-Organic Frameworks[J]. Cryst. Growth Des.,2009,9(2):1095-1105.
    [13]Zhang K L, Hou C T, Song J J, et al. Temperature and auxiliary ligand-controlled supramolecular assembly in a series of Zn(II)-organic frameworks:syntheses, structures and properties[J]. CrystEngComm,2012,14:590-600.
    [14]Chen M, Chen S S, Okamura T, et al. pH Dependent Structural Diversity of Metal Complexes with 5-(4H-1,2,4-Triazol-4-yl)benzene-1,3-dicarboxylic Acid[J]. Cryst. Growth Des.,2011,11 (5):1901-1912.
    [15](a) Wells A F. Three Dimensional Nets and Polyhedra[M]. New York,1977. (b) Wells A F. Structrual Inorganic Chemistry[M].5th ed., Oxford Univ. Press,1984. (c) Wells A F. Further Studies of Three-Dimensional Nets, American Crystallographic Association Monogr[M]. No. 8, Polycrystal Book Service, Pittsburgh,1979.
    [16]For examples:(a) Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4",41'"-tetracyanotetraphenylmethane]BF4.xC6H5NO2[J]. J. Am. Chem. Soc.,1990, 112(4):1546-1554. (b) Abrahams B F, Hoskins B F, Michail D M, et al. Assembly of porphyrin building blocks into network structures with large channels[J]. Nature,1994,369: 727-729. (c) Robson R. A net-based approach to coordination polymers[J]. J. Chem. Soc., Dalton Trans.,2000:3735-3744.
    [17](a) Desiraju G R. Desiraju. Supramolecular Synthons in Crystal Engineering-A New Organic Synthesis[J]. Angew. Chem. Int. Ed.,1995,34:2311-2327. (b) Simard M, Su D, Wuest J D. Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers[J]. J. Am. Chem. Soc.,1991,113: 4696-4698.
    [18]O'Keeffe M, Hyde B G Crystal Structures. I. Patterns and Symmetry, Mineralogical Society of America Monograph, Mineralogical Society of America[M]. Washington, DC,1996.
    [19]Ohrstrom L, Larsson K. Molecule-based Materials, the Structural Network Approach, Elsevier[M]. Amsterdam,2005.
    [20]For examples:(a) Lee E Y, Suh M P. A Robust Porous Material Constructed of Linear Coordination Polymer Chains:Reversible Single-Crystal to Single-Crystal Transformations upon Dehydration and Rehydration[J]. Angew. Chem. Int. Ed.,2004,43:2798-2801. (b) Moon H R, Kim J H, Suh M P. Redox-Active Porous Metal-Organic Framework Producing Silver Nanoparticles from Agl Ions at Room Temperature[J]. Angew. Chem. Int. Ed.,2005, 44:1261-1265.
    [21]For examples:Zaman M B, Smith M D, Ciurtin D M, et al. New Cd(Ⅱ)-, Co(Ⅱ)-, and Cu(II)-Containing Coordination Polymers Synthesized by Using the Rigid Ligand 1,2-Bis(3-pyridyl)ethyne (3,3'-DPA)[J]. Inorg. Chem.,2002,41(19):4895-4903.
    [22]For examples:Tong M L, Chen H J, Chen X M. Molecular Ladders with Multiple Interpenetration of the Lateral Arms into the Squares of Adjacent Ladders Observed for [M2(4,4'-bpy)3(H2O)2(phba)2](NO3)2-4H2O (M= Cu2+or Co2+; 4,4'-bpy= 4,4'-Bipyridine; phba= 4-Hydroxybenzoate)[J]. Inorg. Chem.,2000,39(10):2235-2238.
    [23]Zheng S R, Yang Q Y, Liu Y R, et al. Assembly of CdI2-type coordination networks from triangular ligand and octahedral metal center:topological analysis and potential framework porosity[J]. Chem. Commun.,2008; 356-358.
    [24]Wang X L, Qin C, Lan Y Q, et al. Metal-organic replica of y-Pu:the first uninodal 10-connected coordination network based on pentanuclear cadmium clusters[J]. Chem. Commun.,2009:410-412.
    [25](a) Reticular Chemistry Structure Resource (RCSR), http://rcsr.anu.edu.au/. (b) Blatov V A., Shevchenko A P, TOPOS 4.0, Samara State University, Russia.
    [26]Eddaoudi M, Li H, O.'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402:276-279.
    [27]Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature,1999,402:276-279.
    [28]侯磊.含芳香羧酸配体的微孔配位聚合物的合成、结构与性质研究[博士学位论文].广州:中山大学,2009
    [29](a) Furukawa H, Ko N, Go Y B, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427:523-527. (b) Rowsell J L C, Yaghi O M. Strategies for Hydrogen Storage in Metal-Organic Frameworks[J]. Angew. Chem. Int. Ed., 2005,44:4670-4679.
    [30]Furukawa H, Ko N, Go Y B, et al. Ultrahigh Porosity in Metal-Organic Frameworks[J]. Science,2010,329(5990):424-428.
    [31]Hirscher M, Hydrogen Storage by Cryoadsorption in Ultrahigh-Porosity Metal-Organic Frameworks[J]. Angew. Chem. Int. Ed.,2011,50:581-582.
    [32]Mendoza-Cortes J L, Goddard III W A, Furukawa H, et al. A Covalent Organic Framework that Exceeds the DOE 2015 Volumetric Target for H2 Uptake at 298 K[J]. J. Phys. Chem. Lett.,2012,3(18):2671-2675.
    [33]Fang Q R, Yuan D Q, Sculley J, et al. A novel MOF with mesoporous cages for kinetic trapping of hydrogen[J]. Chem. Commun.,2012,48:254-256.
    [34](a) Britt D, Furukawa H, Wang B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites[J]. PNAS:,2009,106:20637-20640. (b) Roswell J L C, Yaghi O M. Effect of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks[J]. J. Am. Chem. Soc.,2006,128:1304-1315.
    [35]Burd S D, Ma S Q, Perman J A, et al..Highly Selective Carbon Dioxide Uptake by [Cu(bpy-n)2(SiF6)] (bpy-1= 4,4'-Bipyridine; bpy-2=1,2-Bis(4-pyridyl)ethene)[J]. J. Am. Chem. Soc.,2012,134(8):3663-3666.
    [36]For examples:(a) Caskey S R, Wong-Foy A G, Matzger A J. Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores[J]. J. Am. Chem. Soc.,2008,130(33):10870-10871. (b) Parka H J, Suh M P. Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions[J]. Chem. Sci.,2013,4:685-690. (c) Duan J G, Yang Z, Bai J F, et al. Highly selective CO2 capture of an agw-type metal-organic framework with inserted amides:experimental and theoretical studies[J]. Chem. Commun.,2022,48: 3058-3060.
    [37]Eddaoudi M, Kim J, Rosi N, et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science,2002,295(5554): 469-472.
    [38](a) Chen B L, Wang L B, Xiao Y Q, et al. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions[J]. Angew. Chem. Int. Ed.,2009, 121:508-511. (b) Xiao Y Q, Cui Y J, Zheng Q, et al. A microporous luminescent metal-organic framework for highly selective and sensitive sensing of Cu2+ in aqueous solution[J]. Chem. Commun.,2010,46:5503-5505. (c) Cui Y J, Xu H, Yue Y F, et al. A Luminescent Mixed-Lanthanide Metal-Organic Framework Thermometer[J]. J. Am. Chem. Soc.,2012,134(9):3979-3982.
    [39]An J, Shade C M, Chengelis-Czegan D A, et al. Zinc-Adeninate Metal-Organic Framework for Aqueous Encapsulation and Sensitization of Near-infrared and Visible Emitting LanthanideCations[J]. J.Am. Chem. Soc.,2011,133(5):1220-1223.
    [40]Qi X L, Lin R B, Chen Q, et al. A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide[J]. Chem. Sci.,2011,2: 2214-2218.
    [41]Horcajada P, Serre C, Maurin G., et al. Flexible Porous Metal-Organic Frameworks for a Controlled Drug Delivery[J]. J. Am. Chem. Soc.,2008,130(21):6774-6780.
    [42]Wang H N, Meng X, Yang G S, et al. Stepwise assembly of metal-organic framework based on a metal-organic polyhedron precursor for drug delivery[J]. Chem. Commun.,2011,47: 7128-7130.
    [43]Nguyen J G, Cohen S M, Moisture-Resistant and Superhydrophobic Metal-Organic Frameworks Obtained via Postsynthetic Modification[J]. J. Am. Chem. Soc.,2010,132(13): 4560-4561.
    [44]Ma L Q, Abney C, Lin W B. Enantioselective catalysis with homochiral metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38:1248-1256.
    [45]Yoon M Y, Srirambalaji R, Kim K, Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis[J]. Chem. Rev.,2012,112(2):1196-1231.
    [46]Ferey G, Serre C. Large breathing effects in three-dimensional porous hybrid matter:facts, analyses, rules and consequences[J]. Chem. Soc. Rev.,2009,38:1380-1399.
    [47]Uemura T, Yanai N, Kitagawa S. Polymerization reactions in porous coordination polymers[J]. Chem. Soc. Rev.,2009,38:1228-1236.
    [48]Xuan W M, Zhu C F, Liu Y, et al. Mesoporous metal-organic framework materials[J]. Chem. Soc. Rev.,2012,41:1677-1695.
    [49]Song F J, Wang C, Lin W B. A chiral metal-organic framework for sequential asymmetric catalysis[J]. Chem. Commun.,2011,47:8256-8258.
    [50]Sun C Y, Liu S X, Liang D D, et al. Highly Stable Crystalline Catalysts Based on a Microporous Metal-Organic Framework and Polyoxometalates[J]. J. Am. Chem. Soc.,2009, 131(5):1883-1888.
    [51]谢冬.基于氮氧多齿配体的金属有机配位聚合物的合成、结构和性能研究[硕士学位论文].大连:大连理工大学,2009.
    [52]Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material[J]. Science,1999,283:1148-1151.
    [53]For examples:(a) Ibarra I A, Lin X, Yang S H, et al. Structures and H2 Adsorption Properties of Porous Scandium Metal-Organic Frameworks[J]. Chem. Eur. J.,2010,16:13671-13679. (b) Gedrich K, Senkovska I, Klein N, et al. A Highly Porous Metal-Organic Framework with Open Nickel Sites[J]. Angew. Chem. Int. Ed.,2010,49:8489-8492. (c) Hou L, Zhang J P, Chen X M. Two Metal-Carboxylate Frameworks Featuring Uncommon 2D+3D and 3-Fold-Interpenetration:(3,5)-Connected Isomeric hms and gra Nets[J]. Cryst. Growth Des., 2009,9:2415-2419.
    [54](a) Prakash M J, Zou Y, Hong S, et al. Metal Organic Polyhedron Based on a CuⅡ Paddle-Wheel Secondary Building Unit at the Truncated Octahedron Corners[J]. Inorg. Chem.,2009,48:1281-1283. (b) Hong S, Oh M, Park M., et al. Large H2 storage capacity of a new polyhedron-based metal-organic framework with high thermal and hygroscopic stability[J]. Chem. Commun.,2009, (36):5397-5399. (c) Zheng B S, Bai J F, Duan J G, et al. Enhanced CO2 Binding Affinity of a High-Uptake rht-Type Metal-Organic Framework Decorated with Acylamide Groups[J]. J. Am. Chem. Soc.,2011,133:748-751.
    [55](a) Schnobrich J K, Lebel O, Cychosz K A, et al. Linker-Directed Vertex Desymmetrization for the Production of Coordination Polymers with High Porosity[J]. J. Am. Chem. Soc.,2010, 132:13941-13948. (b) Fang Q R, Yuan D Q, Sculley J, et al. Functional Mesoporous Metal-Organic Frameworks for the Capture of Heavy Metal Ions and Size-Selective Catalysis[J]. Inorg. Chem.,2010,49:11637-11642.
    [56](a) Kawamichi T, Hanedal T, Kawano M, et al. X-ray observation of a transient hemiaminal trapped in a porous network. Nature,2009,461:633-635. (b) Osuga T, Murase T, Ono K, et al. [m×n] Metal Ion Arrays Templated by Coordination Cages[J]. J. Am. Chem. Soc.,2010, 132:15553-15555.
    [57]Heine J, Giinne J S auf der, Dehnen S. Formation of a Strandlike Polycatenane of Icosahedral Cages for Reversible One-Dimensional Encapsulation of Guests[J]. J. Am. Chem. Soc.,2011, 133:10018-10021.
    [58](a) Li J R, Tao Y, Yu Q, et al. Selective Gas Adsorption and Unique Structural Topology of a Highly Stable Guest-Free Zeolite-Type MOF Material with N-rich Chiral Open Channels[J]. Chem. Eur. J,2008,14:2771-2776. (b) Hu T L, Tao Y, Chang Z, et al. Zinc(Ⅱ) Complexes with a Versatile Multitopic Tetrazolate-Based Ligand Showing Various Structures:Impact of Reaction Conditions on the Final Product Structures[J].Inorg. Chem.,2011,50: 10994-11003.
    [59](a) Dinca M, Dailly A, Liu Y, et al. Hydrogen Storage in a Microporous Metal Organic Framework with Exposed Mn2 Coordination Sites[J]. J. Am. Chem. Soc.,2006,128: 16876-16883. (b) Li M N, Du D Y, Yang G S, et al.3D Chiral Microporous (10,3)-a Topology Metal-Organic Framework Containing Large Helical Channels[J]. Cryst. Growth Des.,2011,11:2510-2514. (c) Qin J S, Du D Y, Li W L, et al. N-rich zeolite-like metal-organic framework with sodalite topology:high CO2 uptake, selective gas adsorption and efficient drug delivery[J]. Chem. Sci.,2012,3:2114-2118. (d) Lin Q P, Wu T, Zheng S T, et al. Single-Walled Polytetrazolate Metal-Organic Channels with High Density of Open Nitrogen-Donor Sites and Gas Uptake[J]. J. Am. Chem.Soc.,2012,134:784-787.
    [60]Li X J, Jiang F L, Wu M Y, et al. Self-Assembly of Discrete M6L8 Coordination Cages Based on a Conformationally Flexible Tripodal Phosphoric Triamide Ligand[J].Inorg. Chem.,2012, 51:4116-4122.
    [61]For examples:(a) Batten S R, Neville S M, Turner D R. Coordination Polymers:Design, Analysis and Application:[dissertation] [M]. UK:The Royal Society of Chemistry, Cambridge,2009. (b) Cotton F A, Lin C, Murillo C. Supramolecular Arrays Based on Dimetal Building Units[J]. Acc. Chem. Res.,2001,34(10):759-771. (c) Stock N, Biswas S. Synthesis of Metal-Organic Frameworks (MOFs):Routes to Various MOF Topologies, Morphologies, and Composites[J]. Chem. Rev.,2012,112(2),933-969. (d) Ferey G. Hybrid porous solids:past, present, future[J]. Chem. Soc. Rev.,2008,37(1):191-214. (e) Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials [J]. Nature,2003,423:705-714. (f) Cui Y J, Yue Y F, Qian G D, et al. Luminescent Functional Metal-Organic Frameworks [J]. Chem. Rev.,2012,112(2):1126-1162. (g) Gandara F, Medina M E, Snejko N, et al. Ligand dependent topology changes in six zinc coordination polymers[J]. CrystEngComm,2010,12(3):711-719.
    [62](a) Zou J P, Peng Q, Wen Z H, et al. Two Novel Metal-Organic Frameworks (MOFs) with (3,6)-Connected Net Topologies:Syntheses, Crystal Structures, Third-Order Nonlinear Optical and Luminescent Properties [J]. Cryst. Growth Des.,2010,10(6),2613-2619. (b) Su Z, Cai K, Fan J, et al. Cadmium(II) complexes with 3,5-di(1H-imidazol-1-yl)benzoate: topological and structural diversity tuned by counteranions[J]. CrystEngComm,2010,12(1), 100-108. (c) Song X K, Zou Y, Liu X F, et al. A two-fold interpenetrated (3,6)-connected metal-organic framework with rutile topology showing a large solvent cavity[J]. New J. Chem.,2010,34(11):2396-2399. (d) Pochodylo A L, LaDuca R L. Topological diversity in zinc coordination polymers with 5-substituted isophthalate and bis(4-pyridylmethyl)piperazine ligands[J]. CrystEngComm,2011,13(7):2249-2261. (e) Robson R. A net-based approach to coordination polymers[J]. J. Chem. Soc., Dalton Trans., 2000,3735-3744. (f) Guo S Q, Tian D, X Zheng, et al. A rare 4-connected neb topological metal-organic framework with ferromagnetic characteristics[J]. CrystEngComm,2012,14(9): 3177-3182.
    [63](a)Yin P X, Zhang J, Qin Y Y, et al. Role of molar-ratio, temperature and solvent on the Zn/Cd 1',2,4-triazolate system with novel topological architectures [J]. CrystEngComm,2011, 13(10):3536-3544. (b) Bernini M C, Platero-Prats A E, Snejko N, et al. Tuning the magnetic properties of transition metal MOFs by metal-oxygen condensation control:the relation between synthesis temperature, SBU nuclearity and carboxylate geometry [J]. CrystEngComm,2012,14(17):5493-5504.
    [64]Zou R Q, Abdel-Fattah A I, Xu H W, et al. Porous Metal-Organic Frameworks Containing Alkali-Bridged Two-Fold Interpenetration:Synthesis, Gas Adsorption, and Fluorescence Properties[J]. Cryst. Growth Des.2010,10(3),1301-1306.
    [65](a) Chen P K, Qi Y, Che Y X, et al. Network topology and property studies for two binodal self-penetrated coordination polymers[J]. CrystEngComm,2010,12:720-724. (b) Goodgame D M L, Menzerand S, Williams D J. Formation of an infinite interpenetrating three-dimensional network by tris(N,N'-butylenebismidazole)manganese(II) tetrafluoroborate[J]. Chem.Commun.,1996, (18):2127-2128. (c) Zhang Z H, Song Y, Okamura T A, et al. Syntheses, Structures, Near-Infrared and Visible Luminescence, and Magnetic Properties of Lanthanide-Organic Frameworks with an Imidazole-Containing Flexible Ligand[J]. Inorg. Chem.,2006,45(7):2896-2902.
    [66](a) Liu C, Ding Y B, Shi X H, et al. Interpenetrating Metal-Organic Frameworks Assembled from Polypyridine Ligands and Cyanocuprate Catenations[J]. Cryst. Growth Des.,2009,9(3): 1275-1277. (b) Deepa Balamurugan G, Balamurugan R, Kannan P. Photoactive liquid crystalline polyesters based on bisbenzylidene and pyridine moieties[J]. J. Mol. Struct.2010, 963:219-227.
    [67]Sheldrick G M. Program for Empirical Absorption Correction:[dissertation] [M]. Germany:University of Gottingen,2008.
    [68]Sheldrick G M. SHELXTL NT Version 5.1. Program for Solution and Refinement of Crystal Structures, University of Gottingen, Germany,1997.
    [69]Spek A L. PLATON, an integrated tool for the analysis of the results of a single crystal structure determination[J]. Acta Crystallogr., Sect. A,1990,46:C34.
    [70]Ye B H, Tong M L, Chen X M. Metal-organic molecular architectures with 2,2'-bipyridyl-like and carboxylate ligands[J]. Coord. Chem. Rev.,2005,249:545-565.
    [71]Du M, Guo Y M, Chen S T, et al. Preparation of Acentric Porous Coordination Frameworks from an Interpenetrated Diamondoid Array through Anion-Exchange Procedures:Crystal Structures and Properties[J].'Inorg. Chem.,2004,43(4):1287-1293.
    [72](a) Blatov V A. IUCr CompComm Newsletter,2006,7,4; see also http://www.topos.ssu.samara.ru. (b) Blatov V A, Carlucci L, Ciani G, et al. Interpenetrating metal-organic and inorganic 3D networks:a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database[J]. CrystEngComm,2004,6(65):378-395. (c) Zhan S Z, Li M, Zhou X P, et al. From Simple to Complex:Topological Evolution and Luminescence Variation in a Copper(I) Pyridylpyrazolate System Tuned via Second Ligating Spacers[J]. Inorg. Chem.,2011,50(18):8879-8892.
    [73]Mautner F A, Speed S, El Fallah M S, et al. Three new dinuclear manganese (II) complexes with bis (μ-phosphinato)-bridges[J]. Polyhedron,2011,30(18):3067-3072.
    [74](a) Hu Y, Luo F, Dong F F. Design synthesis and photocatalytic activity of a novel lilac-like silver-vanadate hybrid solid based on dicyclic rings of [V4O12]4- with{Ag7}7+cluster[J]. Chem. Commun.,2011,47(2):761-763. (b) Gong Y, Wu T, Lin J H. Metal-organic frameworks based on naphthalene-1,5-diyldioxy-di-acetate:structures, topologies, photoluminescence and photocatalytic propertie[J]. CrystEngComm,2012,14(10): 3727-3736.
    [75]Qiu W, Zheng Y, Haralampides K A. Study on a novel POM-based magnetic photocatalyst: Photocatalytic degradation and magnetic separation [J]. Chem. Eng. J.,2007,125:165-176.
    [76](a) Yang E C, Li J, Ding B, et al. An eight-connected 3D lead(Ⅱ) metal-organic framework with octanuclear lead(Ⅱ) as a secondary building unit:synthesis, characterization and luminescent property[J]. CrystEngComm,2008,10(2):158-161. (b) Zhang L, Zhao J L, Lin Q P, et al. Synthesis, Structure, and Luminescent Properties of Hybrid Inorganic-Organic Framework Materials Formed by Lead Aromatic Carboxylates:Inorganic Connectivity Variation from 0D to 3D[J]. Inorg. Chem.,2009,48(14):6517-6525.
    [77](a) Tong X L, Wang D Z, Hu T L, et al. Zinc and Cadmium Coordination Polymers with Bis(tetrazole) Ligands Bearing Flexible Spacers:Synthesis, Crystal Structures, and Properties[J]. Cryst. Growth Des.,2009,9(5):2280-2286. (b) Zheng S L, Yang J H, Yu X L, et al. Syntheses, Structures, Photoluminescence, and Theoretical Studies of d10 Metal Complexes of 2,2'-Dihydroxy-[1,1']binaphthalenyl-3,3'-dicarboxylate[J]. Inorg. Chem.,2004, 43(2):830-838.
    [78](a) Kong Z P, Weng L H, Tan D J, et al. Hydrothermal Synthesis, Crystal Structure, Conductivity, and Thermal Decomposition of [Cu(4,4'-bipy)(H20)(Mo3O0o)]-H20[J]. Inorg. Chem.,2004,43(18):5676-5680. (b) Li F Y, Xu L. Coordination assemblies of polyoxomolybdate cluster framework:From labile building blocks to stable functional materials[J]. Dalton Trans.,2011,40(16):4024-4034.
    [79](a) Kim J, Lim W T, Koo B K. Hydrothermal synthesis and crystal structure of one-dimensional organic/inorganic hybrid material:[Mo4O12(2,2'-bpy)3]n[J]. Inorg. Chim. Acta,2007,360:2187-2191. (b) Li S L, Lan Y Q, Ma J F, et al. Syntheses and Structures of Organic-Inorganic Hybrid Compounds Based on Metal-Fluconazole Coordination Polymers and the (3-Mo8O26 Anion[J]. Inorg. Chem.,2007,46(20):8283-8290. (c) Li J, Huth I, Chamoreau L M, et al. Insertion of Amides into a Polyoxometalate[J]. Angew. Chem., Int. Ed.,2009,48(11):2035-2038. (d) Li S Z, Ma P T, Wang J P, et al. A 3D organic-inorganic network constructed from an Anderson-type polyoxometalate anion, a copper complex and a tetrameric [Na4(H2O)14]4+ cluster[J]. CrystEngComm,2010,12(6):1718-1721. (e) Ma P T, Zhao J W, Wang J P, et al. Sandwich-type polyoxotungstate hybrids decorated by nickel-aromatic amine complexes [J]. Solid State Chem.,2010,183:150-156.
    [80](a) Hagrman P J, Hagrman D, Zubieta J. Organic-Inorganic Hybrid Materials:From "Simple" Coordination Polymers to Organodiamine-Templated Molybdenum Oxides [J]. Angew. Chem., Int. Ed.,1999,38(18):2638-2684. (b) Hagrman D, Zubeita C, Rose D J, et al. Composite Solids Constructed From One-Dimensional Coordination Polymer Matrices and Molybdenum Oxide Subunits:Polyoxomolybdate Clusters within [{Cu(4,4'-bpy)}4Mo8O26] and [{Ni(H2O)2(4,4'-bpy)2}2Mo8O26] and One-Dimensional Oxide Chains in [{Cu(4,4'-bpy)}4Mo15O47]·8H2O[J]. Angew. Chem., Int. Ed.,1997,36(8):873-876. (c) Hagrman D, Haushalter R C, Zubieta J. Three-Dimensional Organic/Inorganic Hybrid Materials Constructed from One-Dimensional Copper Diamine Coordination Polymers Linked by Bridging Oxoanion Tetrahedra:[Cu(dpe)(MoO4)] and [Cu(dpe)(SO4)(H2O)] (dpe =1,2-trans-(4-pyridyl)ethene)[J]. Chem. Mater.,1998,10(1):361-365. (d) Hagrman D, Zapf P J, Zubieta J. A two-dimensional network constructed from hexamolybdate, octamolybdate and [Cu3(4,7-phen)3]3+clusters:[{Cu3(4,7-phen)3}2{Mo14O45}][J]. Chem. Commun.,1998, (12):1283-1284.
    [81](a) Kan W Q, Ma J F, Liu Y Y, et al. pH-Dependent assembly of two octamolybdate hybrid materials:A self-threading CdSO4-type framework and a 3D 4-connected framework[J]. CrystEng Comm,2011,13(23):7037-7043. (b) Xu Y, Zhou G P, Zhu D R. Three New Organically Templated 1D,2D, and 3D Vanadates:Synthesis, Crystal Structures, and Characterizations[J]. Inorg. Chem.,2008,47(2):567-571. (c) Ou G C, Jiang L, Feng X L, et al. Vanadium polyoxoanion-bridged macrocyclic metal complexes:from one-dimensional to three-dimensional structures[J]. Dalton Trans.,2009, (1):71-76. (d) Xu Y, Lu J J, Goh N K. Hydrothermal assembly and crystal structures of three novel open frameworks based on molybdenum(VI) oxides[J]. J. Mater. Chem.,1999,9(7):1599-1602.
    [82](a) Yang M X, Lin S, Chen L J, et al. Two novel 3D bimetallic oxide framework with 16-membered wheel clusters based on{M05O16} ribbon-like chains[J]. Inorg. Chem. Comm., 2011,14(10):1652-1655. (b) Yang M X, Chen L J, Lin S, et al. Inorganic-organic hybrid compounds based on molybdenum oxide chains and tetrazolate-bridged polymeric silver cations[J]. Dalton Trans.,2011,40(9):1866-1872. (c) Tripuramallu B K, Kishore R, Das S K. Understanding the formation of metal-oxide based inorganic solids:Assessing the influence of tetrazole molecule[J]. Inorg. Chim. Acta,2011,368(1):132-140.
    [83](a) Wang X L, Li J, Tian A X, et al. A 3D organopolymolybdate polymer with unusual topology functionalized by 1,4-bis(1,2,4-triazol-1-yl)butane through Mo-N bond[J]. CrystEngComm,2011,13(7):2194-2196. (b) Dong P, Zhang Q K, Wang F, et al. A New Molybdenum-Oxide-Based Organic-Inorganic Hybrid Compound Templated by 5-(2-Pyridyl)tetrazole with New Topology and Canted Antiferromagnetism[J]. Cryst. Growth Des.,2010,10(7):3218-3221.
    [84](a) Sadakane M, Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysts[J]. Chem. Rev.,1998,28(1):219-238. (b) Dolbecq A, Mialane P, Secheresse F, et al. Functionalized polyoxometalates with covalently linked bisphosphonate, N-donor or carboxylate ligands:from electrocatalytic to optical properties [J]. Chem. Commun.,2012, 48(67):8299-8316. (c) Hao J, Xia Y, Wang L S, et al. Unprecedented Replacement of Bridging Oxygen Atoms in Polyoxometalates with Organic Imido Ligands[J]. Angew. Chem., Int. Ed.,2008,47(14):2626-2630.
    [85](a) Gao S Y, Cao R, Lu J, et al. Photocatalytic properties of polyoxometalate-thionine composite films immobilized onto microspheres under sunlight irradiation[J]. J. Mater. Chem.,2009,19(24):4157-4163. (b) Keita B, Nadjo L. Polyoxometalate-based homogeneous catalysis of electrode reactions:Recent achievements[J]. J. Mol. Catal. A, 2007,262 (1-2):190-215. (c) Lu J, Lin J X, Zhao X L, et al. Photochromic hybrid materials of cucurbituril and polyoxometalates as photocatalysts under visible light[J]. Chem. Commun.,2012,48(5):669-671.
    [86](a) Yamase T. Photo- and Electrochromism of Polyoxometalates and Related Materials[J]. Chem. Rev.,1998,98(1):307-326. (b) Zhang M Y, Shao C L, Mu J B, et al. One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity[J]. CrystEng Comm,2012,14(2):605-612.
    [87](a) Rarig R S, Bewley L, Golub V, et al. Hydrothermal synthesis and characterization of a novel bimetallic polyoxocation, [Cu6(dtbbpy)6MoO26]2+ (dtbbpy=4,4'-ditertbutyl-2,2'-biyridine)[J]. Inorg. Chem. Commun.,2003,6(5):539-542. (b) Liu C M, Luo J L, Zhang D Q, et al. Spin Glass Behaviour in a 1D Mixed Molybdenum-Vanadium Heteropolyoxometalate-Bridged Coordination Polymer[J]. Eur. J. Inorg. Chem.,2004, (24):4774-4779. (c) Liu C M, Zhang D Q, Xu C Y, et al. Two novel windmill-like tetrasupporting heteropolyoxometalates: [MoⅥ7MoⅤVⅥ8O4(PO4)][M(phen)2(OH)]2[M(phen)2(OEt)]2 (M=Co, Ni)[J]. Solid State Sci., 2004,6(7):689-696. (d) Chen J, Lu S, Yu R, et al. A novel compound with an interpenetrating 2D network structure constructed by [MO5P2O23] and Ni-4,4'-bipyridine components:its synthesis, characterization and magnetic behaviour[J]. Chem. Commun., 2002, (22):2640-2641. (e) Liu C M, Zhang D Q, Xiong M, et al. A novel two-dimensional mixed molybdenum-vanadium polyoxometalate with two types of cobalt(Ⅱ) complex fragments as bridges[J]. Chem. Commun.,2002, (13):1416-1417. (f) Lin B Z, Liu S X. First hexadecavanadate compound:hydrothermal synthesis and characterization of a three-dimensional framework [{Cu(1,2-pn)2}7{V16O38(H20)}2]-4H20[J]. Chem. Commun., 2002, (18):2126-2127.
    [88](a) Yang H X, Liu T F, Cao M N, et al. A water-insoluble and visible light induced polyoxometalate-based photocatalyst[J]. Chem. Commun.,2010,46(14):2429-2431.(b) Streb C. New trends in polyoxometalate photoredox chemistry:. From photosensitisation to water oxidation catalysis[J]. Dalton Trans.,2012,41(6):1651-1659.
    [89](a) Martlnez-Manez R, Sancenon F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions[J]. Chem. Rev.,2003,103(11):4419-4476. (b) Wenzel M, Hiscock J R, Gale P A, Anion receptor chemistry:highlights from 2010[J]. Chem. Soc. Rev.,2012,41(1): 480-520. (c) Steed J W. Coordination and organometallic'compounds as anion receptors and sensors[J]. Chem. Soc. Rev.,2009,38(2):506-519. (d) Fabbrizzi L, Poggi A. Anion recognition by coordinative interactions:metal-amine complexes as receptors[J]. Chem. Soc. Rev.,2013,42(4):1681-1699.
    [90]For examples:(a) Ma J P, Yu Y, Dong Y B. Fluorene-based Cu(II)-MOF:a visual colorimetric anion sensor and separator based on an anion-exchange approach[J]. Chem. Commun.,2012,48(24):2946-2948. (b) Fang C, Liu Q K, Ma J P, et al. Independent 1D Nanosized Metal-Organic Tube:Anion Exchange, Separation, and Anion-Responsive Luminescence[J]. Inorg. Chem.,2012,51(7):3923-3925. (c) Gong Y, Qin J B, Wu T, et al. Synthesis, structural characterization and anion-sensing studies of metal(II) complexes based on 3,3',4,4'-oxydiphthalate and N-donor ligands[J]. Dalton Trans.,2012,41(7):1961-1970. (d) Yang H Y, Li L K, Wu J, et al.3D Coordination Framework with Uncommon Two-Fold Interpenetrated{335963}-lcy Net and Coordinated Anion Exchange[J]. Chem. Eur. J.,2009, 15(16):4049-4056. (e) Manna B, Chaudhari A K, Joarder B, et al. Dynamic Structural Behavior and Anion-Responsive Tunable Luminescence of a Flexible Cationic Metal-Organic Framework[J]. Angew. Chem., Int. Ed.,2013,52(3):998-1002.
    [91](a) Palacios M A, Nishiyabu R, Marquez M, et al. Supramolecular Chemistry Approach to the Design of a High-Resolution Sensor Array for Multianion Detection in Water[J]. J. Am. Chem. Soc.,2007,129(24):7538-7544. (b) Lavigne J J, Anslyn E V. Teaching Old Indicators New Tricks:A Colorimetric Chemosensing Ensemble for Tartrate/Malate in Beverages[J]. Angew.Chem., Int. Ed.,1999,38(24):3666-3669.
    [92](a) Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature,2003,423:705-714. (b) Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers[J]. Angew. Chem., Int. Ed.,2004,43(18):2334-2375. (c) Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38(5):1477-1504. (d) Qin J S, Du D Y, Li W L, et al. N-rich zeolite-like metal-organic framework with sodalite topology:high CO2 uptake, selective gas adsorption and efficient drug delivery[J]. Chem. Sci.,2012,3(6):2114-2118. (e) Cohen S M. Modifying MOFs:new chemistry, new materials[J]. Chem. Sci.,2010,1(1): 32-36.
    [93](a) Liu J, Zhang X P, Wu T, et al. Solvent-Induced Single-Crystal-to-Single-Crystal Transformation in'Multifunctional Chiral Dysprosium(III) Compounds [J]. Inorg. Chem., 2012,51(16):8649-8651. (b) He Y C, Yang J, Yang G C, et al. Conversion of double layer charge-stabilized Ag@citrate colloids to thiol passivated luminescent quantum clusters[J]. Chem. Commun.,2012,48(6):859-861. (c) Hu B W, Zhao J P, Yang Q, et al. Interconversion of two new nickel(II) coordination polymers with different topologies: synthesis, structure and magnetic properties[J]. J. Mater. Chem.,2009,19(37):6827-6832.
    [94](a) Lv G C, Wang P, Liu Q, et al. Unprecedented crystal dynamics:reversible cascades of single-crystal-to-single-crystal transformations[J]. Chem. Commun.,2012,48(82): 10249-10251. (b) Chen M S, Chen M, Takamizawa S, et al. Single-crystal-to-single-crystal transformations and selective adsorption of porous copper(II) frameworks[J]. Chem. Commun.,2011,47(13):3787-3789.
    [95](a) Rocchiccioli-Deltcheff C, Fournier M, Franck R, et al. Vibrational investigations of polyoxometalates. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure[J]. Inorg. Chem.,1983,22(2): 207-216. (b) Wu H. Contribution to the chemistry of phosphomolybdic acids, phosphotungstic acids, and allied substances [J]. J. Biol. Chem.,1920,43:189-220.
    [96](a) Wu H, Liu H Y, Yang J, et al. Series of Coordination Polymers Based on Different Carboxylates and a Tri(4-imidazolylphenyl)amine Ligand:Entangled Structures and Photoluminescence[J]. Cryst. Growth Des.,2011,11(6):2317-2324. (b) Blatov V A, Carlucci L, Ciani G, et al. Interpenetrating metal-organic and inorganic 3D networks:a computer-aided systematic investigation. Part Ⅰ. Analysis of the Cambridge structural database[J]. CrystEngComm,2004,6(65):378-395.
    [97]Spek A L, Acta Crystallogr., Sect. A,1990,46, C34; available via http://www.cryst.chem.uu.nl/platon/platon.
    [98](a) Wang X L, Hu H L, Tian A X, et al. Solvothermal Synthesis of Two Polymorphs of an Indium Germanate Incorporating an Organic Amine Ligand:β-and γ-In2Ge6O15(NH2CH2CH2NH2)2[J]. Inorg. Chem.,2010,49(22):10299-10231. (b) Wang X L, Hu H L, Liu G C, et al. Self-assembly of nanometre-scale metallacalix[4]arene building blocks and Keggin units to a novel (3,4)-connected 3D self-penetrating framework[J]. Chem. Commun.,2010,46(35):6485-6487.
    [99]Gong Y, Wu T, Lin J H. Metal-organic frameworks based on naphthalene-1,5-diyldioxy-di-acetate:structures, topologies, photoluminescence and photocatalytic properties [J]. CrystEngComm,2012,14(10):3727-3736.
    [100](a) Guo J, Yang J, Liu Y Y, et al. Two novel 3D metal-organic frameworks based on two tetrahedral ligands:syntheses, structures, photoluminescence and photocatalytic properties[J]. CrystEngComm,2012,14:6609-6617. (b) Li G Z, Wang Z L, Yu M, et al. Fabrication and optical properties of core-shell structured spherical SiO2@GdVO4:Eu3+ phosphors via sol-gel process[J]. Solid State Chem.,2006,179(8):2698-2706. (c) Li G Z, Yu M Z, Wang L, et al. Sol-gel fabrication and photoluminescence properties of SiO2@Gd2O3:Eu3+ core-shell particles[J]. Nanosci. Nanotechnol.,2006,6(5):1416-1422.
    [101](a) Kim S, Yeo J, Choi W. Simultaneous conversion of dye and hexavalent chromium in visible light-illuminated aqueous solution of polyoxometalate as an electron transfer catalyst[J]. Appl. Catal. B,2008,84(1-2):148-155. (b) Kim S, Park H, Choi W J. Comparative Study of Homogeneous and Heterogeneous Photocatalytic Redox Reactions: PW12O403vs.TiO2[J]. Phys. Chem. B,2004,108:6402-6411.
    [102]Luo F, Yuan Z Z, Feng X F, et al. Multifunctional 3-Fold Interpenetrated Porous Metal-Organic Frameworks Composed of Unprecedented Self-Catenated Networks[J]. Cryst. Growth Des.,2012,12(7):3392-3396.
    [103](a) Lin Q, Wu T, Zheng S T, et al. Single-Walled Polytetrazolate Metal-Organic Channels with High Density of Open Nitrogen-Donor Sites and Gas Uptake[J]. J. Am. Chem. Soc., 2012,134(2):784-787. (b) Gao W Y, Yan W M, Cai R, et al. Porous double-walled metal triazolate framework based upon a bifunctional ligand and a pentanuclear zinc cluster exhibiting selective CO2 uptake[J]. Inorg. Chem.,2012,51(8):4423-4425. (c) Parka H J, Suh M P. Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions[J]. Chem. Sci.,2013,4:685-690. (d) Coriani S, Halkier A, Rizzo A, et al. On the molecular electric quadrupole moment and the electric-field-gradient-induced birefringence of CO2 and CS2[J]. Phys. Lett.,2000,326: 269-278.
    [104](a) Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38:1477-1504. (b) Qi X L, Lin R B, Chen Q, et al. A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide[J]. Chem. Sci.,2011,2:2214-2218.
    [105](a) Jiang L, Meng X R, Xiang H, et al. Variations of Structures and'Gas Sorption Properties of Three Coordination Polymers Induced by Fluorine Atom Positions in Azamacrocyclic Ligands[J]. Inorg. Chem.,2012,51(3):1874-1880. (b) Blake K M, LaDuca R L. A self-penetrated chiral cobalt camphorate coordination polymer with antiferromagnetically coupled paddlewheel clusters[J]. Inorg. Chem. Commun.,2011,14(8):1250-1253.
    [106](a) Yuan D, Zhao D, Timmons D J, et al. A stepwise transition from microporosity to mesoporosity in metal-organic frameworks by thermal treatment[J]. Chem. Sci.,2011,2: 103-106. (b) Chen M, Chen S S, Okamura T, et al. pH Dependent Structural Diversity of Metal Complexes with 5-(4H-1,2,4-Triazol-4-yl)benzene-1,3-dicarboxylic Acid[J].Cryst. Growth Des.,2011,11(5):1901-1912. (c) Xiao J, Liu B Y, Wei G, et al. Solvent Induced Diverse Dimensional Coordination Assemblies of Cupric Benzotriazole-5-carboxylate: Syntheses, Crystal Structures, and Magnetic Properties[J]. Inorg. Chem.,2011,50(21): 11032-11038. (d) Zhang Z H, Wang H M, Niu Y Y, et al. Design and the cation-templated self-assembly on the [MoOS3Cu3]+ based supramolecular polymeric clusters[J]. Inorg. Chem. Commun.,2011,14(11):1783-1787.
    [107](a) Li Z X, Chu X, Cui G H, et al. Benzoate acid-dependent formation of a series of interpenetrating metal-organic frameworks based on the cobalt∩1,4-bis(imidazolyl)benzene coordination substrate[J]. CrystEngComm,2011,13:1984-1989. (b) Wang Z, Setb M. Cohen. Postsynthetic modification of metal-organic frameworks[J]. Chem. Soc. Rev.,2009, 38:1315-1329. (c) Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuⅠZnⅡ(CN)4] and CuⅠ[4,4',4",4"'-tetracyanotetraphenylmethane]BF4.xC6H5NO2[J]. J. Am. Chem. Soc.,1990, 112(4):1546-1554. (d) Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature,2003,423:705-714. (e) Chang Z, Zhang D S, Chen Q, et al. Rational Construction of 3D Pillared Metal-Organic Frameworks:Synthesis, Structures, and Hydrogen Adsorption Properties[J]. Inorg. Chem.,2011,50(16):7555-7562. (f) Padmanaban M, Muller P, Lieder C, et al. Application of a chiral metal-organic framework in enantioselective separation [J]. Chem. Commun.,2011,47:12089-12091.
    [108](a) Zhang Y, Wang Q, Xiao Y J, et al. Structure diversity of a series of new coordination polymers based on a C3-symmetric tridentate ligand with rosette architecture[J]. Polyhedron, 2012,33(1):127-136. (b) Ma R N, Chen C, Sun B, et al. A new 3D metal-organic framework with (4,8)-connected AlB2 topology constructed from coordinated evolution of a C3 symmetry ligand[J]. Inorg. Chem. Commun.,2011,14(9):1532-1536. (c) Song X K, Zou Y, Liu X F, et al. A two-fold interpenetrated (3,6)-connected metal-organic framework with rutile topology showing a large solvent cavity[J]. New J. Chem.,2010,34:2396-2399.
    [109](a) Gardner G B, Venkataraman D, Moore J S, et al. Spontaneous assembly of a hinged coordination network[J]. Nature,1994,374:792-795. (b) Zhang X M, Jiang T, Wu H S, et al. Spin Frustration and Long-Range Ordering in an AlB2-like Metal-Organic Framework with Unprecedented N,N,N-Tris-tetrazol-5-yl-amine Ligand[J]. Inorg. Chem.,2009,48(10): 4536~4541. (c) Chae H K, Siberio-Perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427:523-527.
    [110]Pang J, Tao Y, Freiberg S, et al. Syntheses, structures, and electroluminescence of new blue luminescent star-shaped compounds based on 1,3,5-triazine and 1,3,5-trisubstituted benzene[J]. J. Mater. Chem.,2002,12,206-212.
    [111](a) Zhang S Y, Lan J B, Mao Z H, et al. Crystal Water of Cadmium Acetate-Dependent Formation of One-Dimensional Channel Structure Based on 4,4'-bis(1-Imidazolyl)biphenyl[J]. Cryst. Growth Des.,2008,8(9):3134-3136. (b) Altman R A, Buchwald S L.4,7-Dimethoxy-1,10-phenanthroline:An Excellent Ligand for the Cu-Catalyzed N-Arylation of Imidazoles[J]. Org. Lett.,2006,8:2779-2782.
    [112](a) Zhou R W, Li N, Ma C B, et al. Synthesis, Structure and Magnetic Properties of a Linear Trinuclear Mn(II) Complex with a Multifunctional Group Ligand[J]. Chinese J. Struct. Chem.,2010,29(11):1626-1631. (b) Zhang M Y, Shan W J, Han Z B. Syntheses and magnetic properties of three Mn(II) coordination polymers based on a tripodal flexible Hgand[J]. CrystEngComm,2012,14:1568-1574.
    [113](a) Ferey G, Mellot-Draznieks C, Serre C, et al. Crystallized Frameworks with Giant Pores: Are There Limits to the Possible[J]. Acc. Chem. Res.,2005,38(4):217-225. (b) Kim J, Chen B L, Reineke T M, et al. Assembly of Metal-Organic Frameworks from Large organic and Inorganic Secondary Building Units:New Examples and Simplifying Principles for Complex Structures[J]. J. Am. Chem. Soc.,2001,123(34):8239-8247.
    [114]Zhang Y B, Zhou H L, Lin R B, et al. Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology[J]. Nature Comm.,2012,3:642-646.
    [115]Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38:1477-1504.
    [116](a) Demessence A, D'Alessandro D M, Foo M L, et al. Strong CO2 Binding in a Water-Stable, Triazolate-Bridged Metal-Organic Framework Functionalized with Ethylenediamine[J]. J. Am. Chem. Soc.,2009,131(25):8784-8786. (b) Britt D, Furukawa H, Wang B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites [J]. Proc. Natl. Acad. Sci. U. S. A.,2009,106(49):20637-20640. (c) Hwang Y K, Hong D Y, Chang J S, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs:consequences for catalysis and metal encapsulation J]. Angew. Chem., Int. Ed.,2008,47(22):4144~4148. (d) Duan J G, Yang Z, Bai J F, et al. Highly selective CO2 capture of an agw-type metal-organic framework with inserted amides: experimental and theoretical studies[J], Chem. Commun.,2012,48:3058-3060.
    [117](a) Debatin F, Thomas A, Kelling A, et al. In Situ Synthesis of an Imidazolate-4-amide-5-imidate Ligand and Formation of a Microporous Zinc-Organic Framework with H2-and C02-Storage Ability[J]. Angew. Chem., Int. Ed.,2010,49(7): 1258-1262. (b) Chen B L, Xiang S C, Qian G D. Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules [J]. Acc. Chem. Res.,2010,43(8): 1115-1124. (c) Arstad B, Fjellvag H, Kongshaug K O, et al. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide[J]. Adsorption,2008,14(6): 755-762. (d) Neofotistou E, Malliakas C D, Trikalitis P N. Unprecedented Sulfone-Functionalized Metal-Organic Frameworks and Gas-Sorption Properties[J]. Chem. Eur. J.,2009,15(18),4523-4527.
    [118]Hasegawa S, Horike S, Matsuda R, et al. Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:Selective Sorption and Catalysis[J]. J. Am. Chem. Soc.,2007,129(9):2607-2614.
    [119](a) Biswas S, Tonigold M, Speldrich M, et al. Nonanuclear Coordination Compounds Featuring{M9LI2}6+ Cores (M=NiⅡ, CoⅡ,or ZnⅡ; L=-1,2,3-Benzotriazolate)[J]. Eur. J. Inorg. Chem.,2009,21:3094~3101. (b) Lan Y Q, Li S L, Jiang H L, et al. Tailor-Made Metal-Organic Frameworks from Functionalized Molecular Building Blocks and Length-Adjustable Organic Linkers by Stepwise Synthesis[J]. Chem. Eur. J.,2012,18: 8076-8083.
    [120]Bruker AXS, SAINT Software Reference Manual, Madison, WI,1998.
    [121](a) Bai Y L, Tao J, Huang R B, et al. The Designed Assembly of Augmented Diamond Networks From Predetermined Pentanuclear Tetrahedral Units[J]. Angew. Chem, Int. Ed., 2008,47(29):5344-5347. (b) Wang X L, Qin C, Wu S X, et al. Bottom-Up Synthesis of Porous Coordination Frameworks:Apical Substitution of a Pentanuclear Tetrahedral Precursor[J]. Angew. Chem., Int. Ed.,2009,48:5291-5295.
    [122](a) Guo Z Y, Li G H, Zhou L, et al. Magnesium-Based 3D Metal-Organic Framework Exhibiting Hydrogen-Sorption Hysteresis[J]. Inorg. Chem.,2009,48(17):8069-8071. (b) Zhong D C, Lin J B, Lu W G, et al. Strong Hydrogen Binding within a 3D Microporous Metal-Organic Framework[J]. Inorg. Chem.,2009,48(18):8656-8658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700