Ectoines高效制备技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ectoines (1,4,5,6-四氢-2-甲基-4-嘧啶羧酸,Ectoine;1,4,5,6-四氢-2-甲基-5-羟基-4-嘧啶羧酸,Hydroxyectoine)是中度嗜盐菌在渗透压胁迫下合成的一类渗透压补偿溶质。Ectoines在高温、冷冻和干燥等逆环境下,对酶、蛋白质、核酸及整个细胞具有保护作用,被广泛应用于化妆品、生物制剂稳定剂、药物制剂等领域的研究与应用,Ectoines的制备技术日益受到关注。本文分离鉴定Ectoines合成菌株,获得了Ectoine分泌型菌株和耐受渗透压冲击的Hydroxyectoine合成菌株。研究高效制备Ectoines的新工艺。同时研究了Ectoine在高浓度乙醇发酵中的应用。
     从盐场盐池中分离筛选获得了22株Ectoines合成菌株。HPLC方法检测到了菌株DLB06和DLS12的发酵培养基中存在Ectoine特征峰物质。菌株DLC31经HPLC和1H-NMR鉴定合成Hydroxyectoine,生理生化鉴定该菌株为Cobetia marina。克隆了C. marina的Ectoine合成酶基因,并进行了基因结构分析。
     HPLC和LC-MS方法发现并确认了分离菌株DLB06和DLS12的Ectoine分泌现象。考察了NaCl浓度对菌株DLS12 Ectoine分泌的影响。Ectoine分泌量随NaCl浓度的降低而升高。菌株DLS12对NaCl胁迫的应答、Ectoine合成浓度阈值等与已有文献报道的菌株显著不同,是Ectoine合成菌株的一个新类型。10 L发酵罐Ectoine分批发酵,Ectoine分泌型菌株DLS12的Ectoine总合成浓度是H. elongataDSM 2581总合成浓度的2.7倍。
     本文分离鉴定的C. marina,耐受渗透压冲击,适合细菌挤奶工艺条件,利用该菌株进行的Hydroxyectoine细菌挤奶,制备效率较分批发酵提高了71.9%,Hydroxyectoine对底物的转化率是分批发酵的2.5倍。
     高葡萄糖浓度对Zymomonas mobilis CICC 10232的乙醇发酵具有抑制作用。在Z. mobilis CICC 10232的250 g/L葡萄糖浓度乙醇发酵中添加1 mmol/L Ectoine,与未添加Ectoine相比,发酵终了时的糖醇转化率、乙醇发酵度和发酵效率分别提高了16.7%、18.2%和57.1%。Ectoines显著促进了细胞生长和葡萄糖的利用,提高了葡萄糖激酶、6-磷酸葡萄糖脱氢酶和乙醇脱氢酶在高渗透压下的酶活性。
Ectoines (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid, ectoine; 1,4,5,6-tetrahydro-2-methyl-5-hydroxy-4-pyrimidinecarboxylic acid, hydroxyectoine) were compatible solutes synthesized by moderate halophiles under osmotic stress. Ectoines protected enzyme, protein, nucleic acid and the whole cell against high temperature, freeze and dryness, which had been applied in cosmetics, biological preparations and pharmaceutical industry, and other fields. The technology of ectoines preparation had increasingly attracted attention. In this paper, we screened and identified the strains to synthesize ectoines, and obtained ectoine-excreting wild-type strain. Based on this, efficient preparation of ectoines and its application during high-density fermentation of ethanol.
     The 22 strains of ectoines synthesis are screened from salt lakes. The characteristic peak of ectoine by DLB06 and DLS12 was measured by HPLC in medium. The DLC31 synthesized hydroxyectoine by HPLC and 1H-NMR analyses, and the strain was identified as Cobetia marina based on physiological and biochemical characteristics. The genes of ectoine synthase by C. marina were cloned and the structure of the genes was analyzed.
     The strain DLS12 excreted ectoine into outside cells under constant osmotic pressure at the exponential phase of growth by HPLC and LC-MS analyses. The excreted concentration of ectoine increased with decreasing of NaCl concentration. The response on NaCl stress and the threshold concentration of ectoine synthesis. for ectoine-excreting wild-type strain DLS12 were significantly different from those of other strains reported, which was a new type of strains of ectoine synthesis. The batch fermentation in 10 L fermentor was carried out, the total ectoine concentration was 2.7 times higher than that of ectoine non-excreting wild-type strain(Halomonas elongata DSM2581).
     C. marina screened and identified in this paper was enough for bacteria milking. Using this strain, bacteria milking system of hydroxyectoine synthesis was established. The productivity and convertion rate of substrate were significantly increased. The productivity increased by 71.9%, and the conversion rate of subtrate was 2.5 times compared with batch fermentation.
     The high concentration glucose inhibited ethanol fermentation by Zymomonas mobilis CICC10232. During ethanol fermentation in the presence of 250 g/L of glucose, the final sugar-ethanol conversion, ethanol concentration and productivity was elevated by 16.7%,18.2% and 57.1%, respectively, compared to those in the absence of ectoine, respectively. Ectoine significantly promoted cell growth and glucose consumption and increased enzyme activities of glucokinase (GK), glucose-6-phosphate dehydrogenase (G-6-PDH) and alcohol dehydrogenase (ADH).
引文
[1]Ramos-Cormenzana A. Ecology of moderately halophilic bacteria. In:Vreeland R H, Hochstein L I ed. The Biology of Halophilic Bacteria. Boca Raton:CRC Press,1993:55-86.
    [2]Ventosa A, Nieto J J, Oren A. Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews,1998,62 (2):504-544.
    [3]Ventosa A. Taxonomy of moderately halophilic heterotrophic eubacteria. In Rodriguez-Valera F, ed. Halophilic bacteria, vol. I. CRC Press, Inc,1988.
    [4]Ventosa A. Taxonomy and phylogeny of moderately halophilic bacteria. In Priest F G ed. Bacterial diversity and systematics. New York:Plenum Pr.,1994.
    [5]Vreeland R H, Litchfield C D, Martin E L et al. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. International Journal of Systematic and Evolutionary Microbiology,1980, 30(2):485-495.
    [6]Franzmann P D, Burton H R, McMeekin T A. Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. International Journal of Systematic and Evolutionary Microbiology,1987, 37(1):27-34.
    [7]Hebert A M, Vreeland R H. Phenotypic comparison of halotolerantbacteria:Halomonas halodurans sp. nov., nom. rev., comb. nov. International Journal of Systematic and Evolutionary Microbiology,1987, 37(4):347-350.
    [8]Dobson S J, James S R, Franzmann P D et al. Emended description of Halomonas halmophila (NCBM 1971T). International Journal of Systematic and Evolutionary Microbiology,1990,40(4):462-463.
    [9]Mellado E, Moore E R B, Nieto J J et al. Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. International Journal of Systematic and Evolutionary Microbiology,1995,45(4):712-716.
    [10]Quesada E, Valderrama M J, Bejar V et al. Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile gram-negative rod. International Journal of Systematic and Evolutionary Microbiology,1990,40(3):261-267.
    [11]Quesada E, Ventosa A, Ruiz-Berraquero F et al. Deleya halophila, a new species of moderately halophilic bacteria. International Journal of Systematic and Evolutionary Microbiology,1984, 34(3):287-292.
    [12]Dobson S J, Franzmann P D. Unification of the genera Deleya (Baumann et al.1983), Halomonas (Vreeland et al.1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. International Journal of Systematic and Evolutionary Microbiology,1996, 46(2):550-558.
    [13]Bouchotroch S, Quesada E, del Moral A et al. Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology,2001,51:1625-1632.
    [14]Jose Martinez-Canovas M, Quesada E, Llamas I et al. Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology,2004,54:733-737.
    [15]Huval J H, Latta R, Wallace R et al. Description of two new species of Halomonas:Halomonas israelensis sp. nov. and Halomonas canadensis sp. Nov. Canadian Journal of Microbiology,1995(12), 41:1124-1131.
    [16]Romano I, Nicolaus B, Lama L et al. Characterization of a haloalkalophilic strictly aerobic bacterium, isolated from Pantelleria island. Systematic and Applied Microbiology,1996,19(3):326-333.
    [17]Ventosa A, Marquez M C, Ruiz-Berraquero F et al. Salinicoccus roseus gen. nov., sp. nov., a new moderately halophilic grampositive coccus. Systematic and Applied Microbiology,1990,13(1):29-33.
    [18]Mellado E, Moore E R B, Nieto J J et al. Analysis of 16S rRNA gene sequences of Vibrio costicola strains:description of Salinivibrio costicola gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology,1996,46(3):817-821.
    [19]Adkins J P, Madigan M T, Mandelco L et al. Arhodomonas aquaeolei gen. nov., sp. nov., an aerobic halophilic bacterium isolated from a subterranean brine. International Journal of Systematic Bacteriology, 1993,43(3):514-520.
    [20]Hirsch P, Hoffmann B. Dichotomicrobium thermohalophilum, gen. nov., spec. nov., budding prosthecate bacteria from the Solar Lake (Sinai) and some related strains. Systematic and Applied Microbiology,1989,11 (3):291-301.
    [21]Fendrich C. Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid eubacterium from Great Salt Lake, Utah. Systematic and Applied Microbiology, 1988, 11(1):36-43.
    [22]Dobson S J, Colwell R R, McMeekin T A et al. Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. International Journal of Systematic and Evolutionary Microbiology.1993,43(1):77-83.
    [23]Greenberg E P, Canale-Parola E. Spirochaeta halophila sp. nov., a fermentative anaerobic bacterium from a high-salinity pond. Archives of Microbiology,1976,110(23):185-194.
    [24]Claus D, Fahmay F, Rolf H J et al. Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. Systematic and Applied Microbiology,1983,4(4):496-506.
    [25]Spring S., Ludwig W, Marquez M C et al. Halobacillus gen nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. International Journal of Systematic and Evolutionary Microbiology,1996, 46(2):492-496.
    [26]Ventosa A, Garcia M T, Kamekura M et al. Bacillus halophilus sp. nov., a moderately halophilic Bacillus species. Systematic and Applied Microbiology,1989,12(2):162-166.
    [27]Garabito M J, Arahal D R, Mellado E et al. Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. International Journal of Systematic and Evolutionary Microbiology,1997,47(3):735-741.
    [28]Hao M V, Kocur M, Komagata K. Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell walls; and Marinococcus albus sp. nov., and Marinococcus halophilus (Novitsky and Kushner) comb. nov. The Journal of General and Applied Microbiology,1984, 30(6):449-459.
    [29]Marquez M C, Ventosa A, Ruiz-Berraquero F. Phenotypic and chemotaxonomic characterization of Marinococcus halophilus. Systematic and Applied Microbiology,1992,15(1):63-69.
    [30]Marquez M C, Ventosa A, Ruiz-Berraquero F. Marinococcus hispanicus, a new species of moderately halophilic gram-positive cocci. Int. J. Syst. Bacteriol.1990,40(2):165-169.
    [31]Ventosa A, Marquez M C, Weiss N et al. Transfer of Marinococcus hispanicus to the genus Salinicoccus as Salinicoccus hispanicus comb. nov. Systematic and Applied Microbiology,1992, 15(4):530-534.
    [32]Mota R R, Marquez M C, Arahal D A et al. Polyphasic taxonomy of Nesterenkonia halobia. International Journal of Systematic and Evolutionary Microbiology,1997,47(4):1231-1235.
    [33]Stackebrandt E, Koch C, Gvozdiak O et al. Taxonomic dissection of the genus Micrococcus:Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov. and Micrococcus Cohn 1987 gen. emend. International Journal of Systematic and Evolutionary Microbiology,1995, 45(4):682-692.
    [34]Satomi M, Kimura B, Mizoi M et al. Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. International Journal of Systematic and Evolutionary Microbiology,1997,47(3):832-836.
    [35]Yoshida M, Mastubara K, Kudo T et al. Actinopolyspora mortivallis sp. nov., a moderately halophilic actinomycete. International Journal of Systematic Bacteriology,1991,41(1):15-20.
    [36]Ruan J S, Al-Tai A M, Zhou Z H et al. Actinopolyspora iraquiensis sp. nov., a new halophilic actinomycete isolated from soil. International Journal of Systematic and Evolutionary Microbiology,1994, 44:759-763.
    [37]Yassin A F, Galinski E A, Wohlfarth A et al. A new actinomycete species, Nocardiopsis lucentensis sp. nov. International Journal of Systematic and Evolutionary Microbiology,1993,43(2):266-271.
    [38]Al-Tai A M, Ruan J S. Nocardiopsis halophila sp. nov., a new halophilic actinomycete isolated from soil. International Journal of Systematic Bacteriology,1994,44(3):474-478.
    [39]Garrity G M, Bell J A, Lilburn T G. Taxonomic outline of the prokaryotes bergey's manual of systematic bacteriology, second edition.2004
    [40]Kushner D J. Life in high salt and solute concentrations:halophilic bacteria. In Kushner D J ed. Microbial life in extreme environments. Academic Press, Ltd., London, United Kingdom,1978:317-368.
    [41]Wood J M. Osmosensing by Bacteria:Signals and Membrane-Based Sensors. Microbiology and Molecular Biology Reviews,1999,63(1):230-262.
    [42]Christian J H B, Waltho J A. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochimica et Biophysica,1962,65:506-508.
    [43]RoeBler M, Muller V. Quantitative and physiological analyses of chloride dependence of growth of Haiobacillus halophilus. Applied and Environmental Microbiology,1998,64(10):3813-3817.
    [44]Masui M, Wada S. Intracellular concentrations of Na+, K+ and Cl- of a moderately halophilic bacterium. Canadian Journal of Microbiology,1973,19:1181-1186.
    [45]Arahal D R, Ventosa A. The familiy Halomonadaceae. Prokaryotes,2006,6:811-835.
    [46]Epstein W. The roles and regulation of potassium in bacteria. Progress in Nucleic Acid Research & Molecular Biology,2003,75:293-320.
    [47]Lanyi J K. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriology Reviews,1974,38(3):272-290.
    [48]Oren A, Larimer F, Richardson P et al. How to be moderately halophilic with broad salt tolerance: clues from the genome of Chromohalobacter salexigens. Extremophiles,2005,9(4):275-279.
    [49]Eisenberg H, Wachtel E J. Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations. Annual Review of Biophysics and Biophysical Chemistry, 1987,16:69-92.
    [50]Oren A, Mana L. Amino acid composition of bulk protein and salt relationships of selected enzymes of Salinibacter ruber, an extremely halophilic bacterium. Extremophiles,2002,6(3):217-223.
    [51]Anton J, Oren A, Benlloch S et al. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. International Journal of Systematic and Evolutionary Microbiology,2002,52(2):485-491.
    [52]Kunte H J. Osmoregulation in Bacteria:Compatible Solute Accumulation and Osmosensing. Environmental Chemistry,2006,3(2):94-99.
    [53]Galinski E A, Truper H G. Microbial behaviour in salt-stressed ecosystems. FEMS Microbiology Reviews,1994,15 (2-3):95-108.
    [54]da Costa M S, Santos H, Galinski E A. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Advances in Biochemical Engineering/Biotechnology,1998,61:117-153.
    [55]Ventosa A, Nieto J J. Biotechological applications and potentialities of halophilic microorganisms. World Journal of Microbiology and Biotechnology,1995,11 (1):85-94.
    [56]Galinski E A. Osmoadaptation in bacteria. Advances In Microbial Physiology,1995,37:273-328.
    [57]Roberts M F. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems.2005,1:5.
    [58]Saum S H, Muller V. Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Systems,2008,4:4
    [59]Canovas D, Vargas C, Iglesias-Guerra F et al. Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes. The Journal of Biological Chemistry,1997,272 (41):25794-25801.
    [60]Calderon M I, Vargas C, Rojo F et al. Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium Chromohalobacter salexigens DSM 3043. Microbiology,2004, 150(9):3051-3063.
    [61]Louis P, Galinski E A. Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology,1997, 143(4):1141-1149.
    [62]Yancey P H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology,2005,208(15):2819-2830.
    [63]Scheibler C, Uber das Betain, eine im Safte der Zuckerriibe (Beta vulgaris) vorkommende Pflanzenbase. Berichte der Deutschen Chemischen Gesellschaft,1869,2:292-295.
    [64]Imhoff J F, Rodriguez-Valera F. Betaine is the main compatible solute of halophilic eubacteria. The Journal of Bacteriology,1984,160(1):478-479.
    [65]Galinski E A, Truper H G. Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiology Letters,1982,13(4):357-360.
    [66]Imhoff J F. Osmoregulation and compatible solutes in eubacteria. FEMS Microbiology Reviews,1986, 139:57-66.
    [67]Lai, M. C., Sowers, K. R., Robertson, D. E., Roberts, M. F., and Gunsalus, R. P., Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol.173 (1991) 5352-5358.
    [68]Severin J, Wohlfarth A, Galinski E A. The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. Journal of General Microbiology, 1992,138(8):1629-1638.
    [69]Galinski E A. Compatible solutes of halophilic eubacteria:molecular principles, water-solute interaction, stress protection. Cellular and Molecular Life Sciences,1993,49(6-7):487-496.
    [70]Nyyssola A, Kerovuo J, Kaukinen P, et al. Extreme halophiles synthesize betaine from glycine by methylation. The Journal of Biological Chemistry,2000,275:22196-22201.
    [71]Canovas D, Vargas C, Csonka LN, et al. Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Applied and Environmental Microbiology,1998, 64(10):4095-4097.
    [72]Robertson D E, Roberts M F, Belay N, et al. Occurrence of β-glutamate, a novel osmolyte, in marine methanogenic bacteria. Applied and Environmental Microbiology,1990,56(5):1504-1508.
    [73]Robertson D E, Noll D, Roberts M F. Free amino acid dynamics in marine methanogens. β-amino acids as compatible solutes. The Journal of Biological Chemistry,1992,267(21):14893-14901.
    [74]Ciulla R A, Roberts M F. Effects of osmotic stress on Methanococcus thermolithotrophicus: 13C-edited 1H-NMR studies of osmolyte turnover. Biochimica et Biophysica Acta,1999,1427(2):193-204.
    [75]Galinski E A, Pfeiffer H P, Truper H G. 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. European Journal of Biochemistry,1985,149(1):135-139.
    [76]http://www.biomol.de/dateien/infos_nr6.pdf
    [77]Inbar L, Lapidot A. The Structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces panntlus. Use of 13C and 15N-labeled L-glutamate and 13C and 15N NMR spectroscopy. The Journal of Biological Chemistry.1988,63(31):16014-16022.
    [78]Onraedt A E, Walcarius B A, Soetaert W K et al. Optimization of ectoine synthesis through fed-batch fermentation of Brevibacterium epidermis. Biotechnology Progress,2005,21(4):1206-1212.
    [79]Bernard T, Jebbar M, Rassouli Y et al. Ectoine accumulation and osmotic regulation in Brevibacterium linens. Journal of General Microbiology,1993,139(1):129-136.
    [80]Bursy J, Kuhlmann A U, Pittelkow M et al. Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Applied and Environmental Microbiology,2008,74(23):7286-7296.
    [81]Kuhlmann A U, Bremer E. Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Applied and Environmental Microbiology,2002, 68(2):772-783.
    [82]Bursy J, Pierik A J, Pica N et al. Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. Journal of Biological Chemistry,2007,282(43):31147-31155.
    [83]Saum S H, Muller V. Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halphilus. Environmental Microbiology,2008.10(3):716-726.
    [84]Schiraldi C, Maresca C, Catapano A et al. High-yield cultivation of Marinococcus M52 for production and recovery of hydroxyectoine. Research in Microbiology,2006,157(7):693-699.
    [85]Guzman H, Van-Thuoc D, Martin J et al. A process for the production of ectoine and poly(3-hydroxybutyrate) by Halomonas boliviensis. Applied Microbiology and Biotechnology,2009, 84(6):1069-1077.
    [86]Aston J E, Peyton B M. Response of Halomonas campisalis to saline stress:changes in growth kinetics, compatible solute production and membrane phospholipid fatty acid composition. FEMS Microbiology Letters,2007.274(2):196-203.
    [87]Wohlfarth A, Severin J, Galinski E A. The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. Journal of General Microbiology,1990,136(4):705-712.
    [88]Sauer T, Galinski E A. Bacterial milking:A novel bioprocess for production of compatible solutes. Biotechnology and Bioengineering 1998,57(3):306-313.
    [89]Schmitz R P H, Galinski E A. Compatible solutes in luminescent bacteria of the genera Vibrio, Photobacterium and Photorhabdus (Xenorhabdus):Occurrence of ectoine, betaine and glutamate. FEMS Microbiology Letters,1996,142(2-3):195-201.
    [90]Naughton L M, Blumerman S L, Carlberg M et al. Osmoadaptation among Vibrio species and unique genomic features and physiological. Applied and Environmental Microbiology,2009,75(9):2802-2810.
    [91]Clegg J S, Seitz P, Seitz W et al. Cellular responses to extreme water loss:the water-replacement hypothesis. Cryobiology,1982,19:306-316.
    [92]Arakawa T, Timasheff S N. The stabilization of proteins by osmolytes. Biophysical Journal,1985, 47(3):411-414.
    [93]Yu I, Jindo Y, Nagaoka M. Microscopic understanding of preferential exclusion of compatible Solute ectoine:direct interaction and hydration alteration. The Journal of Physical Chemistry B,2007, 111(34):10231-10238.
    [94]Zimmerman S B, Minton A P. Macromolecular crowding:biochemical, biophysical and physiological consequences. Annual Review of Biophysics and Biomolecular Structure,1993,22:27-65.
    [95]Crowe J H, Carpenter J F, Crowe L M et al. Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology,1990, 27(3):219-231.
    [96]Kanias T, Acker J P. Mammalian cell desiccation:Facing the challenges. Cell Preservation Technology,2006,4(4):253-277.
    [97]Hanamura T, Asakawa N, Inoue Y et al. A solid-state 31P NMR study of the interaction between trehalose and DPPC bilayer.1998,27(8):713-714.
    [98]Harishchandra R K, Wulff S, Lentzen G, et al. The effect of compatible solute ectoines on the structural organization of lipid monolayer and bilayer membranes. Biophysical Chemistry,2010,150 (1-3):37-46.
    [99]McNulty B C, Young G B, Pielak G J. Macromolecular crowding in the Escherichia coli periplasm maintains a-synuclein disorder. Journal of Molecular Biology,2006,355(5):893-897.
    [100]Minton A P. Implications of macromolecular crowding for protein assembly. Current Opinion in Structural Biology,2000,10(1):34-39.
    [101]Schebor C, del Pilar Buera M, Chirife J. Glassy state in relation to the thermal inactivation of the enzyme invertase in amorphous dried matrices of trehalose, maltodextrin and PVP. Journal of Food Enginnering,1996,30(3-4):269-282.
    [102]Garcia-Estepa R, Argandona M, Reina-Bueno M et al. The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. Journal of Bacteriology,2006,188(11):3774-3784.
    [103]Bursy J, Pierik A J, Pica N et al. Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. The Journal of Biological Chemistry,2007,282(43):31147-31155.
    [104]Canovas D, Borges N, Vargas C et al. Role of Ny-acetyldiaminobutyrate as an enzyme stabilizer and an intermediate in the biosynthesis of hydroxyectoine. Applied and Envrironmental Microbiology,1999, 65(9):3774-3779.
    [105]Canovas D. Characterization of the genes for the biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halomonas elongata DSM 3043. Systematic and Applied Microbiology, 1998,21 (4),487-497.
    [106]Goller K, Ofer A, Galinski E A. Construction and characterization of an NaCl-sensitive mutant of Halomonas elongata impaired in ectoine biosynthesis. FEMS Microbiology Letters,1998,161(2):293-300.
    [107]Louis L, Galinski E A. Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology,1997, 143(4):1141-1149.
    [108]Takami H, Nakasone K, Takaki Y et al. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Research, 2000,28(21):4317-4331.
    [109]Takami H, Takaki Y, Uchiyama I. Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Research, 2002,30(18):3927-3935.
    [110]Kuhlmann A U, Bursy J, Gimpel S et al. Synthesis of the compatible solute ectoine in Virgibacillus pantothenticus is triggered by high salinity and low growth temperature. Applied and Environemental Microbiology,2008,74(14):4560-4563.
    [111]Kuhlmann A U, Bremer E. Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Applied and Environmental Microbiology,2002, 68(2):772-783.
    [112]Reshetnikov A S, Khmelenina V N, Trotsenko Y A. Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph "Methylomicrobium alcaliphilum 20Z". Archives of Microbiology,2006,184(5):286-297.
    [113]Heidelberg J F, Eisen J A, Nelson W C et al. DNA sequences of both chromosome of the cholera pathogen Vibrio cholerae. Nature,2000,406:477-483.
    [114]Makino K, Oshima K, Kurokawa K. et al. Genome sequence of Vibrio parahaemolyticus:a pathogenic mechanism distinct from that of Vibrio cholerae. Lancet,2003,361(9359):743-749.
    [115]Ruby E G, Urbanowski M, Campbell J W et al. Complete genome sequence of Vibrio fischeri:A symbiotic bacterium with pathogenic congeners. Proceedings of the National Academy of Sciences,2005, 102(8):3004-3009.
    [116]Bentley S D, Chater K F, Cerdeno-Tarraga A M et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature,2002,417(6885):141-147.
    [117]Ikeda H, Ishikawa J, Hanamoto A et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnology,2003,21:526-531.
    [118]Prabhu J, Schauwecker F, Grammel N et al. Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongata. Applied and Environmental Microbiology, 2004,70(5):3130-3132.
    [119]Ishikawa J, Yamashita A, Mikami Y et al. The complete genomic sequence of Nocardia farcinica IFM 10152. The Proceedings of the National Academy of Sciences Online (US),2004, 101(41):14925-14930.
    [120]何建,汪婷,孙纪全等.以四氢嘧啶为主要相容性溶质的中度嗜盐菌115的分离和特性研究.微生物学报,2005,45(6):900-904.
    [121]Kempf B, Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Archives of Microbiology,1998,170(5):319-330.
    [122]Wood J M, Bremer E, Csonka L N et al. Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2001,130(3):437-460.
    [123]Morbach S, Kramer R. Body shaping under water stress:osmosensing and osmoregulation of solute transport in bacteria. ChemBioChem,2002,3(5):384-397.
    [124]Maskow T, Babel W. Calorimetrically obtained information about the efficiency of ectoine synthesis from glucose in Halomonas elongata. Biochimica et Biophysica Acta,2001,1527(1-2):4-10.
    [125]Vargas C, Jebbar M, Carrasco R et al. Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobacter salexigens. Journal of Applied Microbiology,2006, 100(1):98-107.
    [126]Grammann K, Volke A, Kunter H J. New type of osmoregulated solute transporter identified in halophilic members of the Bacteria domain:TRAP transporter TeaABC mMediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T.2002,184(11):3078-3085.
    [127]Schiraldi C, Maresca C, Catapano A et al. High-yield cultivation of Marinococcus M52 for production and recovery of hydroxyectoine. Research in Microbiology,2006,157(7):693-699.
    [128]Schubert T, Maskow T, Benndorf D et al. Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Applied and Environmental Microbiology,2007, 73(10):3343-3347.
    [129]Nagata S, Wang Y, Oshima A et al. Efficient cyclic system to yield ectoine using Brevibacterium sp. JCM 6894 subjected to osmotic downshock. Biotechnology and Bioengineering,2008,99(4):941-948.
    [130]郑昕,马虹 阎喜文等.Halomonas venusta DSM4743渗透压冲击下四氢嘧啶合成与释放.微生物学通报.出版中,2010.
    [131]DeFrank J J, Cheng T. Purification and properties of an organophosphorus acid anhydrase from a halphilic bacterial isolate. The Journal of Bacteriology,1991,173:1938-1943.
    [132]Oren A, ed. Halophilic microorganisms and their environments. Dordrecht:Kluwer Academic Pr., 2002
    [133]Oie C S I, Albaugh C E, Peyton B M. Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism. Water Research,2007,41 (6):1235-1242.
    [134]Hayes V E A, Ternan N G, McMullan G. Organophosphonate metabolism by a moderately halophilic bacterial isolate. FEMS Microbiology Letters,2000,186 (2):171-175.
    [135]Peyton B M, Monnile M R, Petersen J N. Nitrate reduction with Halomonas campisalis:kinetics of denitrification at pH 9 and 12.5% NaCl. Water Research,2001,35 (17):4237-4242.
    [136]Ventosa A, Nieto J J. Biotechnological applications and potentialities of halophilic microorganisms. World Journal of Microbiology and Biotechnology,1995,11(1):85-94.
    [137]Maltseva O, McGowan C, Fulthorpe R, et al. Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology,1996.142 (5):1115-1122.
    [138]Mellado E, Ventosa A. Biotechnological potential of moderately and extremely halophilic microorganisms. In Barredo J L, Ed. Microorganisms for Health Care, Food and Enzyme Production. India: Research Signpost,2003.
    [139]Woolard C R, Irvine R L. Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria. Abstracts of the Annual Water Environmental Fedeation Conference, New York,1992.
    [140]Nieto J J, Fernandez-Castillo R, Marquez M C, et al. Survey of metal tolerance in moderately halophilic eubacteria. Applied and Environmental Microbiology,1989,55:2385-2390.
    [141]Trevors J T. The role of microbial mental resistance and detoxification mechanisms in environmental bioassay research. Hydrobiologia,1989,188/189:143-147.
    [142]Lefever E, Round L A. A preliminary report upon some halophilic bacteria. The Journal of Bacteriology,1979,4:177-182.
    [143]赵白锁,杨礼富,宋蕾,等.中度嗜盐菌在生物技术中的应用.微生物学通报,2007,34(2):359-362.
    [144]刘铁汉,周培瑾.嗜盐微生物.微生物学通报,1999,26(3):232.
    [145]Marhuenda-Egea F C, Bonette M J. Extreme halophilic enzymes in organic solvents. Current Opinion in Biotechnology,2002,13(4):385-389.
    [146]蒋咏梅,章文贤,周晓兰,等.极端环境脂肪酶菌种库建立及其美学性质研究.生物技术,2005,13(5):9-10.
    [147]Khire J M, Pant A. Thermostable, salt-tolerant amylase from Bacillus sp.64. World Journal of Microbiology and Biotechnology,1992,8:167-170.
    [148]Galinski E A, Tindall B J. Biotechnological prospects for halophiles and halotolerant microorganisms. In:Herbert R A and Sharp R J eds. Molecular Biology and Biotechnology of extremophiles. Blackie, Glasgow, UK. Pp.76-114 (1992).
    [149]Quesada E, Bejar V, Calvo C. Exopolysaccharide production by Volcaniella eurihalina. Cellular and Molecular Life Sciences,1993,49(12):1037-1041.
    [150]Lippert K, Galinski E A. Enzyme stabilization be ectoine-type compatible solutes:protection against heating, freezing and drying. Applied Microbiology and Biotechnology,1992,37(1):61-65.
    [151]Kolp S, Pietsch M, Galinski E A et al. Compatible solutes as protectants for zymogens against proteolysis. Biochimica et Biophysica Acta,12006,764(7):1234-1242.
    [152]Kanapathipillai M, Ku S H, Girigoswami K et al. Small stress molecules inhibit aggregation and neurotoxicity of prion peptide 106-126. Biochemical and Biophysical Research Communications,2008, 365(4):808-813.
    [153]Barth S, Huhn M F, Matthey B et al. Compatible solute supported periplasmic expression of functional recombinant proteins under stress conditions. Applied and Environmental Microbiology,2000, 66(4):1572-1579.
    [154]Zhang L, Wang Y, Zhang C et al. Supplementation effect of ectoine on thermostability of phytase. Journal of Bioscience and Bioengineering,2006,102(6):560-563.
    [155]Nagata S, Maekawa Y, Ikeuchi T et al. Effect of compatible solutes on the respiratory activity and growth of Escherichia coll K-12 under NaCl stress. Journal of Bioscience and Bioengineering,2002,94(5): 384-389.
    [156]Goller K, Galinski E A. Protection of a model enzyme (lactate dehydrogenase) against heat, urea and freeze-thaw treatment by compatible solutes additives. Journal of Molecular Catalysys B:Enzymatic,1999, 7(1-4):37-45
    [157]Flock S, Labarbe R, Houssier C.23Na NMR study of the effect of organic osmolytes on DNA counterion atmosphere. Biophysical Journal,1996,71 (3):1519-1529.
    [158]Inbar L, Lapidot A. The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces patvulus. Use of 13C- and 15N-labeled L-glutamate and 13C and 15N NMR spectroscopy. The Journal of Biological Chemistry,1988,263(31):16014-16022.
    [159]Malin G, Lapidot A. Induction of synthesis of tetrahydropyrimidine derivatives in Streptomyces strains and their effect on Escherichia coli in response to osmotic and heat stress. The Journal of Bacteriology,1996,178(2):385-395.
    [160]Manzanera M, Vilchez S, Tunnacliffe A. High survival and stability rates of Escherichia coli dried in hydroxyectoine. FEMS Microbiology Letters,2004,233(2):347-352.
    [161]Baliarda A, Robert H, Jebbar M et al. Potential osmoprotectants for the lactic acid bacteria Pediococcus pentosaceus and Tetragenococcus halophila. International Journal of Food Microbiology, 2003,84(1):13-20.
    [162]Yoshida K. Plant Biotechnology—genetic engineering to enhance plant salt tolerance. Journal of Bioscience and Bioengineering,2002,94(6):585-590.
    [163]Yasuhiko Y, Yoshio K, Eiichiro K et al. Production of L-amino acid by fermentation method using ectoine. Japanese Patent JP9271382.1997.
    [164]Bunger J. Ectoine added protection and care for the skin. Eurocosmetics,1999,7:22-24.
    [165]Bunger J, Degwert J, Driller H. The protective function of compatible solute ectoin on the skin cells and its biomolecules with respect to UV-radiation, immunosuppression and membrane damage. IFSCC Magazine,2001,4:1-6.
    [166]Beyer N, Driller H, Bunger J. Ectoin—a innovative, multifunctional active substance for the cosmetic industry. SOFW-J,2000,126:27-29.
    [167]Graf R, Anzali S, Buenger J et al. The multifunctional role of ectoine as a natural cell protectant. Clinics in Dermatology,2008,26(4):326-333.
    [168]Dobson CM. Protein folding and disease:a view from the first Horizon Symposium. Nature Reviews Drug Discovery,2003,2:154-160.
    [169]Arora A, Ha C, Park C B. Inhibition of insulin amyloid formation by small stress molecules. FEBS Letters,2004,564(2):121-125.
    [170]Kanapathipillai M, Lentzen G, Sierks M et al. Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer's beta-amyloid. FEBS Letters,2005,579(21):4775-4780.
    [171]Furusho K, Yoshizawa T, Shoji S. Ectoine alters subcellular localization of inclusions and reduces apoptotic cell death induced by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiology of Disease,2005,20(1):170-178.
    [172]Bringardner B D, Baran C P, Eubank T D et al. The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. Antioxidants & Redox Signaling,2008,10(2):287-301.
    [173]Macnee W. Pathogenesis of chronic obstructive pulmonary disease. Clinics In Chest Medicine,2007, 28(3):479-513.
    [174]Peters A, von Klot S, Heier M et al. Exposure to traffic and the onset of myocardial infarction. The New England Journal of Medicine,2004,351(17):1721-1730.
    [175]Krutmann J. Use of osmolytes obtained from extremophilic bacteria the production of inhalable medicaments for the prophylaxis and treatment of pulmonary and cardiovascular diseases and an inhalation device comprising an osmolyte as active agent component. US20060246007 A1.2006.
    [176]Krutmann J, Georg L, Thomas S. Osmolytes for the treatment of allergic or viral respiratory diseases. WO 2009027069 A2.2007.
    [177]Cordingley M G, LaFemina R L, Callahan P L et al. Sequence-specific interaction of Tat protein and Tat peptides with the transactivation-responsive sequence element of human immunodeficiency virus type 1 in vitro. Proceedings of the National Academy of Sciences,1990,87(22):8985-8989.
    [178]Dingwall C, Ernberg I, Gait M J et al. HIV-1 tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure. The EMBO Journal,1990,9(12):4145-4153.
    [179]Roy S, Delling U, Chen C H et al. A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated. Genes & Development,1990,4(8):1365-1373.
    [180]Lapidot A, Ben-Asher E, Eisenstein M. Tetrahydropyrimidine derivatives inhibit binding of a Tat-like, arginine-containing peptide, to HIV TAR RNA in vitro. FEBS Letters,1995,367(1):33-38.
    [181]Larsen P I, Sydnes L K, Landfald B et al. Osmoregulation in Escherichia coli by accumulation of organic osmolytes:betaines, glutamic acid, and trehalose. Archives of Microbiology,1987,147(1):1-7.
    [182]东秀珠,蔡妙英等著.常见细菌系统鉴定手册.第一版.北京:科学出版社,2001.
    [183]Arahal D R, Castillo A M, Ludwig W et al. Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. Systematic and Applied Microbiology,2002,25 (2):207-211.
    [184]Robertson D E, Noll D, Roberts M F et al. Detection of the Osmoregulator Betaine in Methanogens. Applied and Environmental Microbiology,1990,56(2):563-565.
    [185]Kappes R M, Kempf B, Kneip S et al. Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Molecular Microbiology,1999,32(1):203-216.
    [186]Hagemann M, Richter S, Mikkat S. The ggtA gene encodes a subunit of the transport system for the osmoprotective compound glucosylglycerol in Synechocystis sp. strain PCC 6803. The Journal of Bacteriology,1997,179(3):714-720.
    [187]Kunte J, Galinski E A. Producing compounds, especially ectoin, useful e.g. for stabilizing biological macromolecules, in organisms in which uptake systems for the compounds have been deleted. DE10114189A1.2002.
    [188]Achkar J, Ferrandez A. Method for preparing hydroxytyrosol. US2010047887 A1.2010.
    [189]Cotter J L, Chinn M S, Grunden A M. Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess and Biosystems Engineering,2009, 32(3):369-380.
    [190]Ramana K V, Karanth N G. Production of biosurfactants by the resting cells of Pseudomonas aeruginosa CFTR-6. Biotechnology Letters,1989,11(6):437-442.
    [191]Pareilleux A, Vinas R. A study on the alkaloid production by resting cell suspensions of Catharanthus roseus in a continuous flow reactor. Applied Microbiology and Biotechnology,1984, 19(5):316-320.
    [192]Tanaka T, Xing X H, Matsumoto K et al. Preparation and characteristics of resting cells of bioluminescent Pseudomonas putida BLU. Biochemical Engineering Journal,2002,12(1):29-36.
    [193]Martin J F, McDaniel L E. Biosynthesis of candicidin by phosphate-limited resting cells of Streptomyces griseus. European Journal of Applied Microbiology,1976,3(2):135-144.
    [194]Khan A, Bhide A, Gadre R. Mannitol production from glycerol by resting cells of Candida magnoliae. Bioresource Technology,2009,100(20):4911-4913.
    [195]Benkortbi O, Hanini S, Bentahar F. Batch kinetics and modeling of pleuromutilin production by Pleurotus mutilis. Biochemical Engineering Journal,2007,36 (1):14-18.
    [196]Gaden E L. Fermentation kinetics and productivity. Journal of Biochemical and Microbiological Technology,1959,1(4):413-429.
    [197]Luedeking R, Piret E L. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Journal of Biochemical and Microbiological Technology,1959,1(4):393-412.
    [198]Mulchandani A, Luong J H T, Groom C. Substrate inhibition kinetics for microbial growth and synthesis of poly-β-hydroxybutyric acid by Alcaligenes eutrophus ATCC 17697. Applied Microbiology and Biotechnology,1989,30(1):11-17.
    [199]Wang C X, Zhu D C, Nagata S. Supplementation effects of hydroxyectoine on praline uptake of downshocked Brevibacterium sp. JCM 6894. Journal of Bioscience and Bioengineering,2006,101 (2): 178-184.
    [200]周月慧,张苓花,:王飞等.一株中度嗜盐菌SL21合成Ectoine的研究.河南工业大学学报(自然科学版),2006,27(2):81-85.
    [201]Jeffries TW. Ethanol fermentation on the move. Nature Biotechnology,2005,23(1):40-41.
    [202]Loos H, Kramer R, Sahm H et al. Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar:evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. The Journal of Bacteriology,1994,176(24):7688-7693.
    [203]Sprenger G A. Carbohydrate metabolism in Zymomonas mobilis:a catabolic highway with some scenic routes. FEMS Microbiology Letters,1996,145(3):301-307.
    [204]Scope R K, Testolin V, Stoter A et al. Simultaneous purification and characterization of glucokinase, fructokinase and glucose-6-phosphate dehydrogenase from Zymomonas mobilis. Biochemical Journal,1985, 228(3):627-634.
    [205]Kinoshita S, Kakizono T, Kodota K et al. Purification of two alcohol dehydrogenases from Zymomonas mobilis and their properties. Applied Microbiology and Biotechnology,1985,22(4):249-254.
    [206]Rogers P L, Lee K J, Skotnicki M L et al. Ethanol production by Zymomonas mobilis. Advances in Biochemical Engineering/Biotechnology, Berlin:Springer; 1982,23:37-84.
    [207]Baratti J C, Bulock J D. Zymomonas mobilis:a bacterium for ethanol production. Biotechnology Advances,1986,4:95-115.
    [208]Viikari L. Formation of levan and sorbitol from sucrose by Zymomonas mobilis. Applied Microbiology and Biotechnology,1984,19(4):252-255.
    [209]Struch T, Neuss B, Bringer-Meyer S et al. Osmotic adjustment of Zymomonas mobilis to concentrated glucose solutions. Applied Microbiology and Biotechnology,1990,34(4):518-523.
    [210]Underwood S A, Buszko M L, Shanmugam K T et al. Lack of protective osmolytes limits final cell density and volumetric productivity of ethanologenic Escherichia coli KO11 during xylose fermentation. Applied and Environmental Microbiology,2004,70(5):2734-2740.
    [211]Wang Y, Zhang L H. Ectoine improves yield of biodiesel catalyzed by immobilized lipase. Jouranl Molecular Catalysis B:Enzymatic,2010,62:91-96.
    [212]Jia S R. Bioprocessing and engineering experiment technology. Production of wine. Beijing:China Light Industry Press; 2004:87.
    [213]Zhang Y J. Measuring Method of relative density for liquid food. Food analytical technique. Beijing: China Light Industry Press; 2001:65-66.
    [214]Algar E M, Scopes R K. Studies on cell-free metabolism:Ethanol production by extracts of Zymomonas mobilis. Journal of Biotechnology,1985,2(5):275-287.
    [215]Miyata R, Yonehara T. Breeding of high-pyruvate-producing torulopsis glabrata with acquired reduced pyruvate decarboxylase. Journal of Bioscience and Bioengineering,1999,88(2):173-177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700