新型无机功能材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料晶粒在磁、光、电、热、力及化学等方面具有独特的性能,新型功能纳米材料在工业发展的各个领域都有着广泛的应用和前景。层状化合物是一类新的纳米结构材料,由于其结构的特殊性,本身可以认为是一种特殊的纳米结构,同时可作为制备无机-无机、无机-有机纳米复合材料的母体材料。
     近年来,随着工农业的发展,环境水污染日益严重,环境科学家致力于研究和开发各种新型环境材料。作为变价金属氧化物之一的锰氧化物,近年来在降解水环境中的污染物方面已显示出巨大的潜能。
     本文第一篇的主要研究内容是采用不同的分析测试手段对新方法制备的新型混凝剂的结构进行表征和分析,从结构改变的本质上研究其混凝机理。同时通过混凝效能的对比实验证实使用新型混凝剂可以大大提高混凝效果。论文采用硫酸亚铁和高锰酸钾反应制备新型混凝剂,在同样的投加量的情况下,新型混凝剂对水中的污染物具有更好的去除效果。利用XRD、BET、FTIR、XPS、SEM等分析方法对制得的产物进行了表征。结果表明,新型混凝剂是铁锰氧的复合金属氧化物,表面含有大量的羟基,利用N_2吸附法测得其BET比表面积为153.03g/m~2,结构上具有更多的化学活性位点。结合XRD晶相鉴定,新型混凝剂主体为δ-MnO_2依然具备其层状结构而铁的氧化物为无定形态。通过XPS定量分析和金属含量的分析进一步确定了新型混凝剂表面以δ-MnO_2为主体内层主要为氢氧化铁的结构。该结构使得新型混凝剂表面带有更多的正电荷,更容易与带电粒子发生强烈的吸附,使更多的带电的胶体粒子在相对更大的范围内聚结形成以新型混凝剂粒子为絮凝中心的较大的凝聚体而混凝沉降。结合混凝效能的对比实验研究,进一步验证了新型混凝剂具有优异的混凝效能。
     高岭土主要用于造纸、橡胶、陶瓷、颜料、水泥、建材、耐火材料等行业。高岭土一些特征参数包括比表面积、亮度、晶粒的大小和形状直接决定其在技术上的应用性。若能在较短时间内,成功使高岭石剥片达到纳米级别,将会带来工业上的革新,产生良好的效益。
     论文第二篇采用微波剥离水合肼插层高岭土的方法,在短时间内可将高岭土的的晶粒厚度从原土的30 nm减小到剥离后的8.6 nm,剥离效果显著提高。经XRD,SEM等表征手段,证实了高岭土剥片变薄,颗粒变小,片层的径厚比明显。经FTIR和TG-DTA分析表明,高岭土剥离后出现了两个失重台阶(100-400℃和>400℃),初始的脱羟基温度也从原土的530℃降低为510℃。同时,高岭土总的失重率也从原土的11.3%增大为13.4%。论文还系统考察了不同因素对新方法剥离效果的影响,结果表明高岭土剥片的晶粒厚度随着高岭土-水合肼插层复合物插层率的增大而减小。
Nanomaterials have the unique performance in different properties such as the aspects of magnetic,light,electricity,heat,power and chemicals.New functional nanomaterials have a wide range of applications and prospects in all fields of industrial development.Layered compounds is a new type of nano-structured materials,as a result of the specificity of its structure,it can be regarded as a special kind of nano-structure material.At the same it can also be the matrix of the preparation of inorganic-inorganic, inorganic-organic nanocomposite.
     Recently,with the development of industrial and agricultural,the environmental pollution especially the contamination of water becomes more and more serious.Environmental scientists committed to research and develop a variety of new environmental materials.As one of the most important metals oxide,manganese oxides have shown great potential in degradation of the water pollutants in recent years.
     In this paper,different means were used to test the novel coagulant in order to make clear of the flocculent mechanism from the quite basic structure,the effectiveness of the novel coagulant was confirmed through coagulation experiments which indicate that the coagulation effect has been greatly enhanced.
     A-novel coagulant which has an outstanding coagulation effect and a better ability to remove contamination from water was prepared by FeSO_4 and KMnO_4.XRD,BET,FTIR,XPS,SEM and other analytical methods were used to characterize the product.The result indicated that,the novel coagulant is an oxygen-rich ferromanganese metal oxide,containing a large number of surface hydroxyl groups and the Obtained specific surface area is 153.03g/m~2 which proves abundant active sites on the surface.Combined with the XRD identification,the crystal form for the novel coagulant wasδ-MnO_2 with the layered structure and the state of the ferric hydroxide was amorphous.XPS quantitative analysis and the metal content analysis further identified that the basic surface structure of the coagulant was that theδ-MnO_2 stated as the main body which coated with a relatively small amount of ferric hydroxide.This structure can make more positive charge on the surface of the novel coagulant and it is easy to form a strong adsorption with the particles in the water thus formed a new particle Center for the flocculation and made it easy to shape the particles into network structure in the water.The experimental studies may further validate that the new coagulant has excellent coagulation performance.
     Kaolinite[Al_2Si_2O_5(OH)_4]is a kind of layered silicate material.The thickness,specific surface area,brightness and structure of kaolinite particles significantly affect their dispersibility,agglomeration and rheological properties,whenever kaolinite is used as a coating,pigment paper,ceramics,rubber,refractory materials or polymers etc.Therefore,the rapid delamination of kaolinite is very important,which will result in the industrial innovation and produce good economic benefits.
     This work presents a novel method of microwave to delaminate kaolinite rapidly.It is found that the treatment with microwave can delaminate kaolinite more effectively in a short time.And the thickness decreases to 8.6 nm from 30 nm for raw kaolinite.Study on the changes of functional groups and thermal decomposition behavior were investigated. The microwave caused the loss of some OH groups due to the prototropy. The TG curve shows a two-step weight loss(100~400℃and>400℃).The initial dehydroxylation temperature also decreases to 510℃from 530℃and the total mass loss also increases to 13.4%from 11.3%.The research of factors affecting the delamination also had been carried out.The thickness of kaolinite decreases with the increase of intercalation ratio.
引文
[1]贺志荣.纳米材料及其应用研究进展[J].纳米科技2005 10(5):8-12.
    [2]张莉莉,赵朴素,张维光,杨绪杰,汪信,陆路德.层状新型纳米复合功能材料研究进展[J].化学世界,2005,10:632-637.
    [3]Nalwa HS.Handbook of nanostructured material and nanoteehnology[M].San Diego:Chap I Academic Press,1999,159-161.
    [4]Byeon SH,Nam HJ.Neutron diffraction and FT-Roman study of ion-exchangeable layered titanates and niobates[J].Chem.Mater.,2000,12(6):1771-1778.
    [5]Witold Brostow,Sagar Pal,Ram P.Singh.A model of flocculation[J].Mater.Lett.,2007,61:4381-4384.
    [6]Erdem E,Karapinar N,Donat R.The removal of heavy metal cations by natural zeolites [J].Colloid Interf.Sci.,2004,280:309-314.
    [7]Yong Sik Ok,Jae E Yang,Yong-Seon Zhang,Su-Jung Kim,Doug-Young Chung.Heavy metal adsorption by a formulated zeolite-portland cement mixture,J.Hazard.Mater.2007,147:91-96.
    [8]严瑞.水处理剂应用手册[M].北京:化学工业出版社,2000.42-139.
    [9]胡俊虎,刘喜元,李晓宏,刘启旺.复合型絮凝剂聚合氯化铝铁(PAFC)的合成及其应用[J].环境化学,2007,26(1):35-38.
    [10]苏彩燕,周勤.高浓度聚铝硅的制备及其混凝性能[J].工业水处理,2007,27(8):88-92.
    [11]陆金仁,王修林,单宝田,郭娟娟.镁铁复合絮凝剂处理印染废水的研究[J].水处理技术,2007,33(2):71-74.
    [12]杜杰,张诚,王婷,丁珂.新型絮凝剂含硼聚硅酸硫酸铁锌的制备及性能研究[J].上海化工,2006,31(2):18-22.
    [13]郑怀礼,龙腾锐,舒型武.聚合铁类絮凝剂絮凝作用机理分析[J].重庆环境科学,2000,22(5):51-55.
    [14]田玲,王九思,李玉金.水处理絮凝剂的絮凝原理及其研究进展[J].甘肃教育学院学报,2004,18(1):54-58.
    [15]Ma J,Graham N,Li GB.Effectiveness of permanganate preoxidation in enhancing the coagulation of surface water Laboratory case studies[J].Water SRT-Aqua,1997,46:1-11.
    [16]许保玖.关于混凝技术术语规范化的建议[J].中国给水排水,1987,3(3)36-39.
    [17]乐志强.国外硫酸铝技术动态[J].无机盐工业.1982,4:20-23.
    [18]李润生.水处理新药剂碱式氯化铝[M].中国建筑I业出版社,北京1981.
    [19]河野劝.美国净水技术设施现状[J].水道协会杂志(日),1972,10:20-25.
    [20]Vorchheimer N.Synthetic Polyelectrolytes in Polyelectrolytes for Water and Wastewater Treatment[M].Schowyer,W.L.K.ED CRC,Boca Raton,Fla,1981,1
    [21]萧锦.水处理用改性絮凝剂研究现状与对策[J],工业水处理,1983,3(3)26-30.
    [22]Levine NM.Natural Polymer Sources in Polyelectrolytes for Water and Wastewater Treatment[J].Schowyer,W.L.K.ED CRC,Boca Raton,FL,1981,47:48-59
    [23]Armundsen B,Paulsen J.Novel lithium-ion cathode materials based on layered manganese oxides[J].Adv.Mater.,2001,13:943-956.
    [24]Thackeray M M.Manganese oxides for lithium batteries[J].Sol.State Chem.,1997,25:1-71.
    [25]Kannugo SB,Paride KM.Interfacial behavior of some synthetic MnO_2 samples during their adsorption of Cu~(2+) and Ba~(2+) from aqueous at 300 K[J].Colloid Interf.Sci.,1984,98:252-260.
    [26]Gray MJ,Malati MA..Adsorption from aqueous solution by dmanganese dioxide Ⅱ.Adsorption of some heavy metal cations[J].J.Chem.Tech.& Biotech.,1979,29, 135-144.
    [27]Hasany SM,Chaudhary MH.Adsorption studies of strontium on manganese dioxide from aqueous solutions[J].International Journal of Applied Radiation and Isotopes,1981,32:899-904.
    [28]Tang B,Wang G,Zhuo L,et al.Novel dandelion-like beta-manganese dioxide microstrnctures and their magnetic properties[J].Nanotechnology.2006,17:947-951.
    [29]Wu C,Xie Y,Wang D,et al.Selected-Control Hydrothermal Synthesis of γ-MnO_2 3D Nanostructures[J].J.Phys.Chem.B,2003,107:13583-13587.
    [30]Li Z,Ding Y,Xiong Y,et al.One-step solution-based catalytic route to fabricate novel α-MnO_2 hierarchical structures on a large scale[J].Chem.Commun..2005:918-920.
    [31]Zhou X,Chen S,Zhang D,et al.Pattemed Colloid Assembly by Grafted Photochromic Polymer Layers[J].Langmuir,2006,22:1383-1387.
    [32]Li B,Rong G,Xie Y,et al.Low-Temperature Synthesis of α-MnO_2 Hollow Urchins and Their Application in Rechargeable Li~+ Batteries[J].Inorg.Chem.,2006,45:6404-6410.
    [33]Yang Z,Zhang Y,Zhang W,et al.Nanorods of manganese oxides:Synthesis,characterization and catalytic application[J].J.Solid State Chem.,2006,179:679-684.
    [34]Ma R,Bando Y,Zhang L,et al.Synthesis and Magnetic Properties of a Novel Birnessite Oxide Cs MnO[J],Adv.Mater.,2004,16:918-922.
    [35]Oliver S,Dahn J R.Thermodynamic Stability of Chemically Delithiated Li(Li_xMn_(2-x))O_4[J].J Electrochem Soc.,1998,145(2):568.
    [36]Shao Horn Y,Ein-Eli Y,Robertson A D.Morphology Modification and Delithiation Mechanisms of LiMn_2O_4 and Li_2MnO_3 by Acid Digestion[J].J Electrochem Soc.,1998,145(2):569-575.
    [37]Parida KM,Kanugo SB.Studies on MnO_2 Chemical composition,microstructure and other characteristics of some synthetic MnO_2 of various crystalline modifications[J].Electrochim Acta,1981,26(3):435-443.
    [38]Bach S,Pereira,Ramos JP.A new MnO_2 tunnel related phase as host lattice for Li intercalation[J].Solid Strate Ionics,1995,80:151-158.
    [39]Ohzuke T,Kitagawa M.Topotactic Reduction of Alpha-Manganese(Di) Oxide in Nonaqueous Lithium Cells[J],J Electrochem Soc.,1991,138:360-365.
    [40]Brent J.Methodes chimiques de preparation des bioxydes de manganese a haute reactivite electrochimique et haut pouvoir oxydant[J].J Power Sources,1992,39:349-368.
    [41]Shao YH,Hackbey A.Microstructural Features of α-MnO_2 Electrodes for Lithium Batteries[J].J Electrochem Soc.,1998,145(2):582-589.
    [42]李娟,李清文,夏熙.纳米MnO_2粉体的固相合成及其电化学性能(Ⅲ)固相氧化还原反应合成纳米α-MnO_2的性能[J].应用化学,1999,16(3):103-105.
    [43]李娟,夏熙.纳米MnO_2的固相合成及其电化学性能的研究--纳米γ-MnO_2的合成及表征,高等学校化学学报,1999,20(9):1434-1437.
    [44]Petit F,Lenglet M,Arsene J.Thermal behaviour of gamma manganese dioxide:Ⅱ.Evolution of crystal defects related to structural water[J].Mater Res Bull.1993,28:1093-1100.
    [45]Colthurst JM,Singer PC.Removing trihalomethane precursors by permanganate oxidation and manganese dioxide adsorption[J].AWWA,1982,74(2):78-83.
    [46]Post JE,Veblen.DR.Crystal structure determinations of three synthetic birnessites using TEM and the Rietveld method.American Mineralogist Amer Mineral,1990,75:477-489.
    [47]Giovanoli R.Gelolgy and Geochemistry of Manganese[M]Budapest Akademia Kiado,1998.
    [48]Yang YSOKJE,Zhang YS,Kim SJ,Chung DY.Heavy metal adsorption by a formulated zeolite-portland cement mixture[J].Hazard.Mater.2007,147:91-96.
    [49]Murray JW.The surface chemistry of hydrous manganese dioxide[J].Colloid Interf.Sci.,1974,46(3):357-371.
    [50]刘锐平,杨艳玲,李圭白等.腐殖酸在水合二氧化锰表面的吸附行为[J].环境科学学 报,2005,25(3):351-355.
    [51]董丽丽.新生态MnO_2吸附法处理阳离子染料废水的研究[J].工业用水与废水,2002,33(2):28-30.
    [52]张锦,李圭白,余敏等.新生态水合二氧化锰对水中酚类化合物的吸附和氧化[J].水处理技术,2002,28(5):263-265.
    [53]梁慧锋,刘清福,马子川.新生态MnO_2对水中砷的去除效果[J].光谱实验室,2004,21(5):966-969.
    [54]国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [55]张自杰,林荣忱,金儒霖.排水工程(下,第4版)[M].北京:中国建筑工业出版社,2000.
    [56]王东升,汤鸿霄.聚铁硅型复合无机高分子絮凝剂及其制备方法[J].水处理信息报道,1996,96:40-41.
    [57]Carlsson,Olof.Flocculantion agent and a process for its product[P].US4582627,1986.
    [58]周定,胡 翔,孟军.高效无机混凝剂聚硅酸铁的研究fJ].哈尔滨工业大学学报,1998,30(3):28-31.
    [59]席美云,郭楠.聚硅酸絮凝剂研究[J].环境科学,2001,11(5):37-40.
    [60]高宝玉,岳钦艳,王吉顺等.含铝离子的聚硅酸絮凝剂的性能及应用[J].工业水处理,1993,13(1):17-19.
    [61]李明玉,陈伟红,唐启东等.聚硅硫酸铝的混凝性能研究[J].水处理技术,2001,27(4):207-209.
    [62]马青山.絮凝化学和絮凝剂[M].北京:中国环境科学出版社,1988.
    [63]王炳建,高宝玉,岳钦艳.无机高分子絮凝剂聚合硅酸铝铁的研究[J].环境化学,2002,2 1(6):533-538.
    [64]郑怀礼,龙腾锐,袁宗宣.聚合硫酸铁制备方法研究及其发展[J].环境污染治理技术与设备,2000,1(5):21-27.
    [65]史建国.聚合硫酸铁的研制与应用[J].水利电力劳动保护,1996,6(2):28-30.
    [66]Karcher S,Caceres L,Jekel M.etal.Arsenic removal from water supplies in northern Chile using ferric chloride coagulation[J].J.Inst.Water Environ.Manage.,1999,13(3):164-169.
    [67]Han B,Runnells T,Zimbron J.etal.Arsenic removal from drinking water by flocculation and microfiltration[J].Desalination,2002,145:293-298.
    [68]Fenny AM.etal.Hydroxylated Ferric Sulfatean aluminum salt alterative[J].Water Sup.1992,10(4):167-174.
    [69]邱慧琴.利用盐酸酸洗废液制取聚合氯化铁[J].工业水处理,1997,17(6):18-19.
    [70]李凤亭,刘遂庆.无机高分子混凝剂聚合氯化铁的合成方法[J].工业水处理,1999,19(6):26-27.
    [71]Chan SH,Chen ZJ.The effect of ferric chloride On silica fouling[J].J.Heat Trans.,1995,117(2):323-328.
    [72]陈伟红,李明玉,唐启红.聚硅酸盐混凝剂的性能研究[J].化学研究,2000,11(4):28-31.
    [73]陈同云,古绪鹏,檀杰.高效复合絮凝剂的研制与性能研究[J].上海环境科学,2001,20(4):178-180.
    [74]汉迪化学品有限公司.聚合碱式硅酸硫酸铝[P].CN1042340A,1990.
    [75]李玉江,吴涛.新型混凝剂聚硅氯化铁的制备和性能研究[J].山东化工,1999,4:6-8.
    [76]许佩瑶,卢素焕,张振声.聚硅酸金属盐类混凝剂的絮凝机理研究[J].环境科学研究,2000,13(6):26-29.
    [77]高宝玉,王秀芬,丁慧,等.聚合氯化铝铁絮凝剂的性能研究[J].环境化学,1994,13(5):415-420.
    [78]Mustafa S,Naeena,Murtaza S,et al.Comparative sorption properties of metal(Ⅲ)Phosphates[J].Colloid Interf.Sci.,1999,220:67-74.
    [79]郑雅杰,龚竹青,张钦发,等.用新型絮凝剂聚磷硫酸铁处理城市生活废水[J].中南工业大学学报,2002,33(2):141-144.
    [80]马晓鸥,康思琦,房金刚.含硼聚硅酸硫酸铁的制备及性能研究[J].现代化工,2000,20(11):42-46.
    [81]马晓鸥,康思琦,房金刚.新型混凝剂含硼聚硅酸氯化铁的应用性能研究[J].精细化工,2002,19(2):74-76.
    [82]刘莉.聚合氯化硫酸铁的合成[J].黑龙江石油化工,1998,9(3):18-20.
    [83]周光柱,程建光,刘晓明,等.聚硅酸硫酸铝铁的合成及性能研究[J].煤矿环境保护,2002.16(3):29-31.
    [84]Hong En Wang,Dong Qian.Synthesis and electrochemical properties of α-MnO_2microspheres[J].Mate.Chem.Phy.,2008,109:399-403.
    [85]蔡冬鸣.新生态二氧化锰净水作用研究[D].哈尔滨工业大学博士论文,2002.5.
    [86]王小敏,陈震,郑曦,陈日耀.α、β、γ和8-MnO_2吸附Li~+的研究[J],电池,2007,37(4)282-283.
    [87]Posselt HS,Anderson FJ,Walter WJ.Cation Sorption on Colloidal Hydrous Manganese Dioxide[J],Environ.Sci.Technol,1968,2(12),1087-1093.
    [88]刘锐平,杨艳玲,夏圣骥,何文杰,韩宏大,李圭白.水合二氧化锰界面特性及其除污染效能[J].环境化学,2005,24(3):338-341.
    [89]Yao W,Millero FJ.Adsorption of Phosphate onManganese Dioxide in Seawater[J].Environ.Sci.Technol.,1996,30(2):536-541.
    [90]Healy TW,Herring AP,Fuerstenau DW.The effect of crystal structure on the surface properties of a series of manganese dioxides[J].Colloid Interf.Sci.1966,21:435-444.
    [91]Darren S Baldwin.Hydrolysis of an organophosphate ester by manganese dioxide[J].Environ.Sci.Technol.2001,35(4):713-735.
    [92]Russell J D.Infrared specrtosscopy of ferrihyduite:evidence for the presence of structual hydroxyl group[J].Clay Miner,1979,14:109-114.
    [93]马子川,张素坤.新生态MnO_2在造纸黑液处理中的应用[J].中国给水排水,2002,18(2):10-13.
    [94]郑红,汤鸿霄.锰矿砂对取代酚的光氧化作用研究[J].环境科学学报,1999,19(5):550-555.
    [95]刘锐平.高锰酸钾及其复合剂氧化吸附集成化除污染效能与机制[D].哈尔滨:哈尔滨工业大学,2005.
    [96]梁慧锋,马子川,刘占牛.新生态二氧化锰的性质及pH值影响除砷效果的研究[J].无机化学学报,2004,22(4):743-747
    [97]Gaosheng Zhang,Jiuhui Qu,Huijuan Liu,Ruiping Liu,Rongcheng Wu.Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal[J].Water Reaserch.2007,41:1921-1928.
    [98]Toru Yamashita,Peter Hayes.Analysis of XPS spectra of Fe~(2+) and Fe~(3+) ions in oxide materials[J].Appl.Surf.Sci.2008,254:2441-2449.
    [99]Mullet M,Guillemin Y,Ruby C.Oxidation and deprotonation of synthetic Fe~Ⅱ-Fe~Ⅲ(oxy)hydroxycarbonate Green Rust:An X-ray photoelectron study[J].Journal of Solid State Chemistry,2008,181:81-89.
    [100]Kosova NV,Devyatkina ET,Kaichev VV.Mixed layered Ni-Mn-Co hydroxides:Crystal structure electronic state of ions and thermal decomposition[J].Journal of Power Sources,2007,174:735-740.
    [101]Weifeng Wei,Weixing Chen,Douglas G.Ivey.Rock Salt-Spinel Structural Transformation in Anodically Electrodeposited Mn-Co-O Nanocrystals[J].Chem.Mater.2008,20(5):1941-1947.
    [102]杨威,杨艳玲,李星,李圭白.胶态水合二氧化锰絮凝粒子的结构形貌及其混凝机理[J].环境科学,2007,28(5):1050-1056.
    [103]杨威,杨艳玲,陈杰,李圭白.水合二氧化锰混凝去除原水中的浊度物质[J].化学黏合,2006,28(6):416-418.
    [104]Maxwell CB,Evans,Malla PB,et al.Kaolin-potassium acetate intercalation complex and process of forming same[P].US Patent 5,672,555,1997.
    [105]张先如,孙嘉,徐政.PEG在微波诱导下对高岭石插层及剥片的研究[N].无杨化学学报,2005.9.
    [106]Theng BKG,Churchman GJ,Whitton JS,Claridge GG..Comparison of Intercalation Methods Differentiating Halloysite from Kaolinte[J].Clays Clay Miner.,1984,32(4):249-258.
    [107]Yoshi Sugahara,Shigeo Shigeo Satokawa,Kabuki Kuroda,Chuzo Kato.Evidence for the Formation of Interlayer Polyacrylonitrile in Kaolinte[J].Clays Clay Miner.,1988,36(4):343-348.
    [108]James J,Tunne,Christian Detellier.Interlamellar covalent grafting of organic units on kaolinit[J].Chem.Mater.,1993,5(6):747-748.
    [109]Tunney JJ,Detellier C.Chemically modified kaolinite.Grafting of methoxy groups on the interlamellar aluminol surface of kaolinite[J].Chem.Mater.,1996,6(10):1679-1685.
    [110]Tunney JJ,Detellier C.Aluminosolieate Nanocomposite Materials.Poly(ethylene glycol)-Kaolinte Intercalates[J].Chem.Mater.,1996,8(4):927-935.
    [111]王林江,吴大清.高岭土有机插层的研究进展[J].材料导报,2001,15(6):41-43.
    [112]曹秀华,王炼石.高岭土层间复合物的合成、结构和应用[J].材料科学与工程学报,2003,21(3):456-459.
    [113]杨华明,陈德良,邱冠周.超细粉碎机械化学的研究进展[J].《中国粉体技术,2002,(2):32-37.
    [114]殷海荣,武丽华,陈福等.纳米高岭土的研究与应用[J1.材料导报,2006,20(6):196-199.
    [115]赵顺平,夏华,张生辉.高岭石/有机插层复合材料的研究进展[J].材料科学与工程学报,2003,21(2):621-623.
    [116]Michael A,Philippe D,The sysnthesis and properties research of elastomeric polyurethane (EPU)/organic montmonillonite(OMMT) nanocomposites[J].Mater.Sci.& Eng.,2000,(28):61-63.
    [117]夏华,李学强,孟祥庆.高岭土佃比啶插层复合物的制备与表征[J].矿物学报,2003,23(3):216-218.
    [118]陈洁渝,严春杰.煤系高岭土/醋酸钾插层复合物制备意义[J].矿产保护与利用,2004,(6):16-18
    [119]韩世瑞,刘雪宁,胡南,杨治中.超声化学法制备高岭土/二甲亚砜插层复合物的研究[J].广州化学,2003,28(3):11-13.
    [120]阎琳琳,张存满,徐政.高岭石插层一超声法剥片可行性研究[J].非金属矿,2007,(1):1-5
    [121]孙嘉,徐政.微波对不同插层剂插入高岭石的作用与比较[J].硅酸盐学报,2005,33(5):593-595.
    [122]Obut,Abdullah,Girgin,Ismail,Yoeruekoglu,Abduelkerim.Microwave exfoliation of wermiculite and phlogopite.Clays Clay Miner.51(4)(2003 ) 452-456
    [123]Jinbo Fei,Xike Tian,Chao Yang,Dongyue Luo,Fang Pei,Hongyu Luo,Zhenbang Pi.Preparation of nano-kaolinite by microwave-assistedchemical reaction.YanshiKuangwuxue Zazhi 25(4)(2006) 335-337
    [124]杨晓庆,黄卡玛.微波与化学反应相互作用中的关键问题讨论[N],电波科学学报,2006.10.
    [125]陈代珠,等编.医用微波技术[M].北京:国防工业出版社,1987.
    [126]杨伯伦,贺佣军.微波加热在化学反应中的应用进展[N],现代化工,2001.4.
    [127]牟群英,李贤军.微波加热技术的应用与研究进展[N],物理学高新技术.2001.5
    [128]郝金玉,黄若华,王平修,等.精细石油化工[J],2001,2:47.
    [129]北京大学化学系分析化学教学组.基础分析化学实验[M].北京:北京大学出版社,1998,197
    [130]微波化学.化学世界[N],第三期.
    [131]KlailaW J.U S:4067683[P],1983.
    [132]Fang CS,Lai PMC,Chang BKL,et al.Environ Prog[J],1989,8(4):235.
    [133]张先如,樊东辉,徐政.微波诱导快速制备高岭石/二加亚砜插层复合物[J].同济大学学报,2005.33(12):1646-1650.
    [134]李学强,夏华.高岭土.乙酸钾夹层复合物制备[J].非金属矿,2002,25(4):22-23.
    [135]Jos'e Eduardo Gardolinski,Luiz Pereira Ramos.Intercalation of Benzamide into Kaolinite[J].Colloid Interf.Sci.,2000,221:284-290.
    [136]陈祖熊,颜卫,王坚,等.肼对高岭土插层的研究--肼溶液浓度对插层的影响.建筑材料学报[N],2000.6
    [137]Olejaik S,Aylmore AG,Porsner AM.Infrared spectra of kaolinite mineral-dimethyl sulfoxide complexes[J].The Journal of Physical Chemistry.1968,72(10):241-249.
    [138]Lagodzinskaya BV,Yunda NG,Manelis GB.NMR study of proton exchange,hydrogen bonding,and dissociation of water in hydrazine solutions[J].Bull Aced Sci USSR Div Chem.1980,(4):532-539
    [139]Lagodzinskaya BV,Yunda NG,Manelis GB.High-resolution NMR study of the sovaltion of thr proton in water and hydrazine[J].Bull Acad Sci USSR Div Chem,1980,(S):695-702.
    [140]Franco F,Perez-Maqueda LA,Perez-Rodr'lguez JL.The influence of ultrasound on the thermal behaviour of a well ordered kaolinite[J].Thermochimica Act,a,2003,404:71-79.
    [141]Ray L.Frost,Oliver B.Locos and Janos Kristof.Infrared spectroscopic study of potassium and cesium acetate-intercalated kaolinites[J].Vibrational spectroscopy,2001,26:33-42.
    [142]Franco F,Perez-Maqueda LA,Perez-Rodriguez JL.The effect of ultrasound of the particle size and structural disorder of a well ordered kaolinite[J].Colloid Interf.Sci.,2004,274:107-117.
    [143]F.Franco JA,Cecila,LA,Perez-Maqueda,Perez-Rodriguez J,Gomes CSF.Particle-size reduction of dickite by ultrasound treatments:Effect on the structure,shape and particle-size distribution[J].Applied Clay Science,2007,35:119-127.
    [144]法默VC著,矿物的红外光谱,应用浦等译.北京:科学出版社,1982,12.
    [145]Erzsebet Horvath,Ray L Frost.Thermal treatment of mechanochemically activated kaolinite[J].Thermochimica Acta,2003,404:227-234.
    [146]Frost RL,Mak6 Eva,Kristof Janos.Modification of Kaolinite Surfaces by Mechanochemical Treatment[J].Longmuir.2001.17:4731-4738.
    [147]施惠生,袁玲.高岭土应用研究的新进展[J].中国非金属矿工业导刊,2002,6:11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700