用户名: 密码: 验证码:
纳米高岭土的制备及其在PVC中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氯乙烯是最早实现工业化的塑料品种之一,但其韧性差,因此需要对PVC进行增强、增韧改性,以期得到高性能的PVC复合材料。高岭土作为一种无机填料,以资源丰富、价格便宜等优势广泛应用于聚合物的填充改性。
     本文采用插层-膨胀-爆炸法成功制得纳米高岭土。先将醋酸钾小分子插入高岭土层间,使高岭土层间距膨胀扩大,再在400℃下醋酸钾高温分解为CO2和水蒸气,以气体爆炸的形式实现片层剥离制得纳米高岭土。讨论了醋酸钾用量、插层时间、水用量对插层率的影响,优化出插层方案:醋酸钾与高岭土质量比为1:1、插层时间为24小时、水用量为10%时,插层率高达90%。通过XRD、FTIR、粒度分析、扫描电镜等表征了高岭土-醋酸钾复合物和纳米高岭土的微观结构、粒度分布和形貌特征。
     用偶联剂对纳米高岭土进行改性,表观现象观察、萃取实验、FTIR及改性前后吸油值的变化表明,偶联剂与高岭土表面发生了化学键接,偶联剂不仅改变了高岭土表面性能,也改变了颗粒内和颗粒间的空隙。
     根据配方将改性后的高岭土、PVC、其它助剂均匀混合,在开放式炼胶机上实现了PVC与高岭土的共混填充,制备了PVC/高岭土复合材料,并对复合材料的力学性能进行了测试。讨论了高岭土用量、偶联剂用量及种类、稳定剂用量和增塑剂用量对体系力学性能的影响。通过实验优化出最佳配方:高岭土含量8%、偶联剂用量2.0%、稳定剂用量2.0%、增塑剂用量10%。此时材料的拉伸强度达54 MPa,断裂伸长率为120%,无缺口冲击强度为43 kJ/m2。热重分析证明复合材料的热稳定性远优于PVC材料:材料起始失重温度由120℃提高到150℃。SEM表明复合材料断面的断裂形式发生了质的转变:由脆性断裂转变成韧性断裂。改性后的高岭土起到了增强、增韧的双重作用,达到了预期效果。
Polyvinyl-chloride is one of the earliest industrialization plastic varieties, but it is brittle. Therefore, it is necessary to carry on the studies of reinforcing and toughening modification to obtain PVC composite with high performances. As a kind of inorganic filler, Kaolin is applied to polymer modification widespread because of rich resource, cheap price and other advantages.
     Nano-Kaolin was prepared by intercalation layer-swelling-explosion method. Firstly inserting the potassium acetate small molecular to the Kaolin interlayer, which enlarged Kaolin layer-space by swelling, Secondly, pyrolyzing potassium acetate into CO2 and steam under 400℃, nano-Kaolin could be obtained by this gas explosion force. The effect of potassium acetate content, intercalation time, water content on intercalation ratio were discussed and the best conditions were optimized: When weight ratio of potassium acetate with Kaolin was 1, intercalation time was 24 hours, the water content was 10%, intercalation ratio was the best, reaching as high as 90%. The micro-structure, particle size distribution and morphology characteristic of Kaolin-potassium acetate intercalation compound and nano-Kaolin were characterized by X-ray Diffraction, Fourier Transform Infrared Spectra, Particle Size Analysis, Scanning Electron Microscope.
     Kaolin was treated by coupling agents. It was indicated by apparent phenomenon observation, extraction experiment, FTIR and oil adsorption value’s change that coupling agent and Kaolin surface occurred chemical invigorate connection, coupling agent not only changed the Kaolin surface performance, but also changed Kaolin’s particle inter-space among internal and inter.
     Mixing modified Kaolin with PVC and other additives according to formula uniformly, the blending and filling of PVC and Kaolin was realized on opened refine rubber machine. PVC/Kaolin composites were prepared and their mechanical properties were tested. The influence of Kaolin content, coupling agent content and type, the stabilizer content and the plasticizer content on mechanical properties were discussed and the best formula was optimized : When Kaolin content was 8%、coupling agent was 2.0%、the stabilizer was 2.0%、the plasticizer was 10%, mechanical performance of the composites was the best. The material tensile strength reached 54MPa, elongation at break reached 120%,unnotched impact strength reached 43kJ/m2. It was indicated that thermal stability of the compound was obviously superior to the pure PVC material by TG analysis: material initial weightlessness temperature improved from 120℃to 150℃. The break form of the material’s cross section happened qualitative transformation by SEM: from brittle fracture transformed into ductile fracture. Modified Kaolin had played dual function of reinforcing and toughening, the anticipant results were achieved.
引文
[1]崔小明.我国聚氯乙烯的生产消费现状及发展建议[J].中国氯碱,2008,11:1-2
    [2]王国全.聚合物改性[M].北京:中国轻工业出版社,2000,79-86
    [3]王贵斌.硬质聚氯乙烯制品及工艺[M].北京:化学工业出版社,2008,110-120
    [4] Crawford E, Lesser A J. Mechanics of rubber particle cavitations in toughened polyvinylchloride(PVC)[J].Polymer.2000,14(15):5865-5870
    [5]高凤芹等.PVC共混增韧改性研究进展[J].塑料工业,2006,34:65-67
    [6]何洋等.PVC的共混增韧改性[J].高分子材料科学与工程,2004,20(6):7-10
    [7] Lee J, Yee A F. Inorganic particle tougheningⅡ:toughening mechanisms of glass bead filled epoxies[J].Polymer.2001,42(2):589-597
    [8]陈汉周.高岭土/PET纳米复合材料的制备与表征[J].非金属矿,2008,3(31):42-44
    [9]刘小强.无机纳米粒子改性PVC研究进展[J].塑料科技,2005,1:53-5
    [10]徐国永.纳米技术增韧改性聚氯乙烯的研究进展[J].塑料科技,2004,5:48-52
    [11]曾晓飞,陈晓峰等.纳米CaCO3/PVC复合材料的结构形态与性能[J].高分子材料科学与工程,2003,19(6):146-148
    [12]王平华,宋功品等.PVC/蒙脱土复合材料的制备与结构研究[J].中国塑料,2003,17(1):35-38
    [13]周安宁,曲建林,郭蓉.改性高岭土填充PVC体系的性能研究[J].塑料科技,2004,5:21-24
    [14]刘志强,孙红.改性煅烧剥片高岭土对PVC塑料的改性作用[J].化学世界,2004,3:130-134
    [15]田满红,郭少云.纳米SiO2增强增韧聚氯乙烯复合材料研究[J].聚氯乙烯,2003(1):26-29
    [16]赵辉,罗云军,等.超支化聚(胺-酯)接枝改性纳米二氧化硅增韧增强PVC的研究[J].高分子材料与工程, 2005, 21(5): 258-261
    [17] Sun Shuisheng , Li Chunzhong, Zhang Ling, etal. Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface treatments. Polymer International,2006,55(2):158-164
    [18] Quan Ying, Yang Mingshan, Liang Tongxiang, etal. Effects of the reinforcement and toughening of acrylate resin/CaCO3 nano-particles on rigid poly(vinyl chloride).Journal of Applied PolymerScience,2006,103(6):3940-3949
    [19] Daril Y,Roberts N H. Chemical Coupling of Polypropylene Systems ContainingNonglass-illers[J].Journal of Vinyl&Addtives Technology,1999,5(4):231-234
    [20] Whittle A J, Burford R P, and Hoffman M J. Assessment of Strength and Toughness of Modified PVC Pipes. Plastics, Rubber and Composites, 2001, 30(9):434-439
    [21] Takaki A, Narisawa I, Kuriyama T. Izod impact strength of a product molded of poly (vinyl chloride) / impact modifier containing voids( void MOD)[J]. Polymer Eng Sci 2001,41: 575
    [22] Amit K,Naskar,AnilK.Melt-Processable Rubber:Chlorinated Waste Tire Rubber-Filled Polyvinyl Chloride[J].Journal of Applied Polymer Science,2002(84):622-631
    [23] Chen N, Wan C, Zhang Y, etal Effect of nano- CaCO3 on mechnical properties of PVC and PVC /belendex blend [J],Polym Test, 2004,23:169-174
    [24] Azman Hassan, Barry Haworth. Impact properties of acrylate Rubber-modified PVC: Influence of temperature [ J]. Journal of Materials Processing Technology, 2006, 172(3): 341-345
    [25] Frost R L, Kristof J, Schmidt J M, et al. Raman spectroscopy of potassium acetate-intercalated kaolinites at liquid nitrogen temperature[J]. Spectrochimica Acta Part A, 2001, 57:603-609
    [26]王万军.高岭石有机插层复合物的制备、表征及应用探讨[D].中国博士论文,2005,5
    [27]陈福.纳米高岭土的制备方法及应用展望[J].陶瓷,2007,5:9-13
    [28]张立德.纳米材料学[M].沈阳:辽宁科学技术出版社,1994
    [29]贾修伟.纳米阻燃材料[M].北京:化学工业出版社,2005
    [30]李凤生.超细粉体技术[M].北京:国防工业出版社,2000.13
    [31]刘志强.高岭土的插层与表面有机改性及对PVC塑料的改性作用[D].华东师范大学博士后研究工作报告, 2003.9
    [32]夏华.高岭石/有机插层复合物的制备、性能及应用研究[D].中国博士论文,2005.3
    [33]李宝智,徐星佩.煅烧高岭土表面改性[J].非金属矿,2002,25:48-50
    [34]叶舒展.高岭土表面改性研究进展[J].橡胶工业,2005,51:759-765
    [35]王志远等.偶联剂KH-550改性煅烧高岭土对NBR胶料性能的影响[J].橡胶工业. 2007, 228 -331
    [36]陆银平,刘钦甫等.硅烷偶联剂改性纳米高岭土的研究[J].非金属矿.2008, 31(5):9-11
    [37]陈丽昆等.硅烷偶联剂改性高岭土在复合材料中的应用[J].非金属矿.2005, 28:39-40
    [38]滕谋勇.硅烷交联PVC的制备及性能[J].塑料助剂,2008,6:34-37
    [39]余海峰等.钛酸酯偶联剂改性纳米CaCO3/PVC的结构和性能[J].华东理工大学学报.2005,31: 119-122
    [40]周莉,臧树良.钛酸酯偶联剂改性纳米ZnO制备MC尼龙6/ZnO复合材料[J].塑料科技. 2008, 36(6):50-52
    [41]庄涛等.钛酸酯偶联剂改性纳米氧化锌的研究[J].橡胶工业.2006, 12(53):734-737
    [42]魏明坤等.钛酸酯偶联剂在无机填料中的应用[J].化工新型材料.2003, 31(8):40-42
    [43]郁为民等.铝钛复合偶联剂及其在高聚物中的应用[J].合成橡胶工业.1998, 21(2):102-104
    [44]王四海.铝钛复合偶联剂及其在聚合物填充体系中的应用[J].塑料科技.1998, 2:39-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700