海藻酸钠包埋面包酵母不对称催化合成(S)-(+)-1-苯基-2-丙醇
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(S)-(+)-1-苯基-2-丙醇是合成光学活性盐酸安非他明、(R)-司来吉兰、组织蛋白酶K(cathepsin K)抑制剂和苯并二氮类化合物等的重要中间体,目前(S)-(+)-1-苯基-2-丙醇的合成主要采用化学催化、酶催化还原、酶催化拆分法和微生物活细胞催化还原等方法,但很少有关于固定化面包酵母催化还原的方法报道。本论文采用海藻酸钠固定面包酵母催化还原苯基丙酮合成(S)-(+)-1-苯基-2-丙醇,主要研究内容和结果如下:
     考察了面包酵母立体选择性催化苯基丙酮不对称还原反应的特性,建立了以气相色谱(GC)测定苯基丙酮转化率,IR和~1HMNR法对(S)-(+)-1-苯基-2-丙醇的结构进行表征以及(S)-(+)-1-苯基-2-丙醇的对映体过量值(e.e.)用比旋光度进行计算。
     首先,以苯基丙酮为底物,研究了游离面包酵母不对称还原情况,考察了苯基丙酮浓度、反应时间、反应温度、pH值和葡萄糖浓度等因素对还原反应的影响。其优化条件:苯基丙酮浓度3.28g/L、反应时间22h、反应温度25℃、pH值6.5和葡萄糖浓度15g/L。其苯基丙酮转化率为61.6%,(S)-(+)-1-苯基-2-丙醇的e.e.值为90.4%。
     其次,探讨了海藻酸钠固定化面包酵母的诸多条件,正交实验考察了海藻酸钠浓度、氯化钙浓度、固定化温度、酵母量和固定化时间对面包酵母固定化的影响,并且确定交联剂戊二醛浓度和交联时间。实验优化条件:海藻酸钠浓度3%、氯化钙浓度3%、酵母量20%、固定化时间4h、固定化温度30℃、戊二醛浓度1.5%和交联时间2h。
     最后,以苯基丙酮为底物,研究了固定化面包酵母不对称还原情况,考察了苯基丙酮浓度、酵母量、固定化颗粒直径、摇床转速、反应pH值、反应温度和反应时间等反应条件对反应的影响。其优化条件:苯基丙酮浓度5.74g/L、酵母量1.5g、固定化颗粒直径1.5mm~2.0mm、摇床转速200r/min、pH值7.5、反应温度30℃和反应时间24h。其苯基丙酮转化率为62.5%,(S)-(+)-1-苯基-2-丙醇的e.e.值为90.7%。相同反应条件下,游离面包酵母不对称催化合成得到的苯基丙酮转化率为55.9%,(S)-(+)-1-苯基-2-丙醇的e.e.值为89.7%。由实验结果可知,固定化面包酵母与游离面包酵母相比,其苯基丙酮转化率和(S)-(+)-1-苯基-2-丙醇的e.e.值均有提高;固定化面包酵母重复利用三次后,仍然能保持较高的催化性能。
     游离面包酵母和固定化面包酵母都能催化合成(S)-(+)-1-苯基-2-丙醇,但是固定化面包酵母催化合成得到的苯基丙酮转化率和产物的对映体过量值比游离面包酵母催化合成的稍高,且稳定性和耐底物浓度均有提高。
(S)-(+)-1-Phenyl-2-propanol can be used as building block for the synthesis of amphetamine hydrochloride,(R)-Selegiline,cathepsin K and Benzodiazepine.The reduction of phenylacetone or resolution of(R,S)-(+)-1-phenyl-2-propanol was catalyzed by chemical catalyst,enzyme and microorganism.But microbial reduction of phenylacetone by immobilized bake's yeast has been rarely mentioned in the literature.In this study,the asymmetric reduction of phenylacetone to(S)-(+)-Phenyl-2-propanol catalyzed by immobilized bake's yeast was studied.
     Determing their appearance in the bioreduction of phenylacetone by bake's yeast.The gas chromatogram(GC)was applied to detect the conversion of phenylacetone.(S)-(+)-Phenyl-2-propanol was characterized by IR and ~1HMNR.Enantiomeric excess(e.e.)was determined by specific optical rotation.
     At first,the asymmetric reduction of(S)-(+)-Phenyl-2-propanol by free bake's yeast was investigated when phenylacetone was chosen as the substrate.The effects of reaction conditions,such as substrate concentration,reaction time,reaction temperature,pH value and glucose concentration,on the reaction were investigated.The optimized reaction condition was as below:concentration of phenylacetone 3.28g/L,reaction time 22h,reaction temperature 25℃,pH 6.5 and glucose concentration 15g/L.The conversion of phenylacetone and e.e.of(S)-1-phenyl-2-propanol were 61.6%and 90.4%.
     The immobilization conditions about the best technological parameters were studied such as the concentration of sodium alginate and calcium chloride,immobilized temperature,concentration of cells and so on.The concentration of glutaraldehyde and cross-link time were also studied.The results showed that sodium alginate and calcium chloride had the same the concentration of 3%,concentration of cells 20%,immobilized time 4h,temp.at 30℃,concentration of glutaraldehyde 1.5%and cross-link time 2h.
     At last,the asymmetric reduction of(S)-(+)-Phenyl-2-propanol by immobilized bake's yeast was investigated when phenylacetone was chosen as the substrate.The effects of reaction conditions,such as substrate concentration,concentration of cells,bead diameter,shaker rotation,pH value,reaction temperature and reaction time,on the reaction were investigated.The optimized reaction condition was as below: concentration of phenylacetone 5.74g/L,concentration of cells 1.5g,bead diameter 1.5mm to 2.0mm,shaker rotation 200r/min,pH7.5,reaction temperature 30℃and reaction time 24h.The conversion of phenylacetone and e.e.of(S)-(+)-Phenyl-2-propanol were 62.5%and 90.7%.But the conversion of phenylacetone and e.e.of(S)-(+)- Phenyl -2-propanol were 55.9%and 89.7%by free bake's yeast.So immobilized bake's yeast had higher conversion of phenylacetone and e.e. of(S)-(+)-Phenyl-2-propanol than free bake's yeast.Immobilized bake's yeast maintains high catalysis after consecutive use 3 times.
     It showed that the asymmetric reduction of phenylacetone to (S)-(+)-Phenyl-2-propanol can be catalyzed by free bake's yeast and immobilized bake's yeast.However,the conversion of phenylacetone and e.e.of(S)-(+)-Phenyl-2-propanol were higher when phenylacetone was catalyzed by immobilized bake's yeast.Moreover,it had higher stability and can stand higher concentration of phenylacetone.
引文
[1]陈良,乐美卿.立体化学基础[M].北京:化学化工出版社,1992.1
    [2]蒋晓霞.酵母及重组大肠杆菌不对称合成(S)-4-氯-3-羟基丁酸乙酯[D].杭州:浙江大学,2005
    [3]孙万儒.手性化合物的生物合成与转化[J].化工科技市场,2003,26(6):5-7
    [4]刘厚醇,奇云.开创手性催化反应研究的新领域2001年诺贝尔化学奖评价[J].生物化学与生物物理进展,2001,28(5):778-780
    [5]王普善,王宇梅手性药物开发战略的再认识[J].精细与专用化学品,2004,12(10):4-8
    [6]王普善.手性药物的开发正当时机[J].精细与专用化学品,1998,15:1-2
    [7]王盛.酵母细胞不对称催化还原制备重要他汀类手性药物中间体的研究[D].杭州:浙江大学,2006
    [8]杜灿屏,林国强,施敏,等.手性与手性药物研究中的若干科学问题[J].学科进展与展望,2003,2:72-75
    [9]蒋光祖.对我国开发手性药物的思考[J].药学进展,1997,21(4):226-228
    [10]黄蓓,杨立荣,吴坚平.手性拆分技术的工业应用[J].化工进展,2002,21(6):375-379
    [11]欧志敏.微生物法还原羰基化合物制备手性药物中间体的研究[D].杭州:浙江大学,2003
    [12]石月丹.生物催化不对称合成(S)-1-苯砜-2-丙醇及动力学研究[D].延边市:延边大学,2004
    [13]乔小飞,许松林.手性药物的工业拆分[J].天津化工,2007,21(5):1-5
    [14]陈万锁,陈志荣.(3R,5R)-3,5-二羟基-6-取代已酸不对称合成研究进展[J].有机化学,2004,24(2):140-149
    [15]原方圆,邵红兵,张昌军.不对称合成在光学活性药物合成中的应用[J].天津化工,2007,21(1):14-16
    [16]马小魁.酵母菌不对称催化还原4-氯-乙酰乙酸乙酯的研究[D].西安:西北大学,2004
    [17]陈亿新,刘天穗.手性药物技术与展望[J].广州大学学报,2002,1(1):40-45
    [18]何奕波,陶满庆.手性药物的生物合成与转化[J].安徽农业科学,2007,35(33):10585-10586,10588
    [19]于平,岑沛霖,励建龙.手性化合物制备的方法[J].生物工程进展,2001,21(6):89-94
    [20]Xiao X S,Jian Z Y.Asymmetric syntheses of both enantiomers of amphetamine hydrochloride via bakers' yeast reduction of phenylacetone[J].Journal of chemical research,2004,10:681-683
    [21]林敏,周金梅,杨瑞锋,等.微波水相法合成外消旋1,1'-联-2-萘酚[J].厦门大学学报(自然科学版),2005.1:139-141
    [22]施秀芳,张明杰,李靖.1,1'-联二萘酚的合成及其在不对称合成中的应用[J].化学世界,2002,6:320-325
    [23]Siva K T,Arumugam S.An organo-catalytic approach to the enantioselective synthesis of(R)-selegiline[J].Tetrahedron,2007,63:9758-9763
    [24]Francis X T,David N D,Aaron B M,et al.Ketoheterocycle-based inhibitors of cathepsin K:A novel entry into the synthesis of peptidic ketoheteroeycles[J].Bioorganic & Medicinal Chemistry Letters,2005,15:3891-3895
    [25]Andreas L,Karsten S,Christian W.Industrial Biotransformations(Sencond Edition)[M].United States:ProQuest Information and Learning Company,2006,24
    [26]Balazs E A,Antal S,Gabor S.Stereoseleetive production of(S)-1-aralkyl- and 1-arylethanols by freshly harvested and lyophilized yeast cells[J].Tetrahedron:Asymmetry,2006,17:268-274
    [27]Dai Z Y,Sha M R,Hou X S,et al.Utilization of organogallium and organoindium compounds as alkylation reagents in organic synthesis:The addition of trialkylgallium and trialkylindium to aldehydes catalyzed by Lewis acids[J].Applied Organometallic Chemistry,2005,19(7),898-902
    [28]Musa M,Ziegelmann F,Karla I.Xerogel-encapsulated W110A secondary alcohol dehydrogenase fromthermoanaerobacter ethanolieus performs asymmetric reduction of hydrophobic ketones in organic solvents[J].Angewandte Chemic(International Edition),2007,46(17):3091-3094
    [29]Kerti G,Kurtan T,Illyes T Z,et al.Enantioseleetive synthesis of 3-methylisoehromans and determination of their absolute configurations by circular diehroism[J].European Journal of Organic Chemistry,2007,2:296-305
    [30]Violetta K A,Gabriella E A,Jozsef B.Kinetie and chemical resolution of different 1-phenyl-2-propanol derivatives[J].Tetrahedron:Asymmetry,2006,17:2220-2234
    [31]Kumaraswamy.G,Ramesh S.Soaked phaseolus aureus L:an efficient biocatalyst for asymmetric reduction of prochiral aromatic ketones[J].Green Chemistry,2003,5:306-308
    [32]Kuwano R,Sawamura M,Shirai J,et al.Asymmetric hydrosilylation of ketones using trans-chelating chiral peralkylbisphosphine ligands bearing primary alkyl substituents on phosphorus atoms[J].Bulletin of the Chemical Society of Japan,2000,73(2):485-496
    [33]Kashihara H.Preparation of optically active aminoboron compounds as catalysts for asymmetric reduction or asymmetric addition reaction of carbonyl compounds[J].Journal of Molecular Catalysis A:Chemical,1998,132(1):13-19
    [34]Nakamura K.Matsuda T.Asymmetric Reduction of Ketones by the Acetone Powder of Geotrichum candidum[J].Journal of Organic Chemistry,1998,63:8957-8964
    [35]Kaoru N,Mikio F,Yoshiteru I.Asymmetric reduction of ketones by Geotrichum candidum in the presence of Amberlite XAD,a solid organic solvent[J].Journal of the Chemical Society,Perkin Transactions 1,2000,19:3205-3211
    [36]Kaoru N,Rio Y,Tomoko M,et al.Recent developments in asymmetric reduction of ketones with biocatalysts[J].Tetrahedron:Asymmetry,2003,14:2659-2681
    [37]樊晓焕.面包酵母在选择性生物还原中的应用[D].天津:天津大学,2004
    [38]孙万儒.酵母菌[J].生物学通报,2007,42(11):5-10
    [39]Urol N.Brewer's/baker's yeast(Saccharomyces cerevisiae)and preventive medicine:Part Ⅱ[J].Medline Plus,2008,28(1):73-75
    [40]Alexander M A,Jeffries T W.Respiratory efficiency and metabolite partitioning as regulatory phenomena in yeasts[J].Enzyme and Microbial Technology,1990,12(1):2-19
    [41]Morohashi S,Adachi K,Nomura S.Release Process of Enzymes from Baker's Yeast Accompanied with Inactivation by Disruption in Agitating Bead Mill[J].Journal of the Society of Powder Technology,2002,39(4):247-254
    [42]Nurminen T,Oura E,Suomalainen H.The enzymic composition of the isolated cell wall and plasma membrane of baker's yeast[J].Biochemical Journal,1970,116(1):61-69
    [43]Cazzulo J.J,Stoppani A.Effects of adenosine phosphates and nicotinamide nucleotides on pyruvate carboxylase from baker's yeast[J].Biochemical Journal,1969,112(5):755-762.
    [44]欧志敏,吴坚平,杨立荣,等.微生物法还原羰基化合物生产手性醇的研究-生物法合成手性药物的重要手段[J].山东农业大学学报(自然科学版),2003,34(3):459-462
    [45]杨忠华,邹少兰,梅乐和,等.面包酵母在催化不对称合成中的应用[J].化学通报,2004,6:425-432
    [46]Jhillu S Y,Garudammagari S K,Reddy G S,et al.Daucus carota and baker's yeast mediated bio-reduction of prochiral ketones[J].Tetrahedron:Asymmetry,2007,18:717-723
    [47]Kanda T,Miyata N,Fukui T,et al.Doubly entrapped baker's yeast survives during the long-term stereoselective reduction of ethyl 3-oxobutanoate in an organic solvent[J].Applied Microbiology and Biotechnology,1998,49:377-381.
    [48]韩小茜,祝馨怡,张伟强,等.高效液相色谱法测定手性四面体金属簇合物对映体过量值[J].分析化学,2003,31(5):598-600
    [49]Nakamura K,Kawasaki M,Ohno A.Lipase-Catalyzed Transesterification of Aryl-SubstitutedAlkanolsinanOrganieSolvent[J].Bulletin of the Chemical Society of Japan,1996,69:1079-1085
    [50]单剑峰.固定化细胞生物合成胞苷三磷酸[D].杭州:浙江工业大学,2004
    [51]刘永红.左旋肉碱的合成方法研究[D].杨凌市:西北农林科技大学,2005
    [52]王新,李培军,巩宗强,等.固定化细胞技术的研究与进展[J].农业环境保护,2001,20(2):120-122
    [53]方艳,闵小波,唐宁,等.含锌废水处理技术的研究进展[J].工业安全与环保,2006,32(7):5-8
    [54]肖美燕,徐尔尼,陈志文.包埋法固定化细胞技术的研究进展[J].食品科学,2003,24:158-161
    [55]牛红星.与啤酒酵母细胞糖酵解ATP再生体系偶联的胞苷二磷酸胆碱生物合成的研究[D].上海:华东理工大学,2002
    [56]Smidsrod O,Skjak-Braek G.Alginate as immobilization matrix forcells[J].Trends in Biotechnology,1990,8:71-78.
    [57]Hannoun B,Stephanopoulos G.Diffusion coefficients of glucoseand ethanol in cell-flee and cell-occupied calcium alginate membranes[J].Biotechnology and Bioengineering,1986,28:829-835
    [58]Poncelet D,Lencki R,Beaulieu C,et al.Production of alginate beads by emulsification/internal gelation[J].Applied Microbiology and Biotechnology,1992,38:39-45
    [59]Martinsen A,Storrφ I,Skjak-Braek G.Alginate as immobilizationmaterial.Part Ⅲ.Diffusional properties[J].Biotechnology and Bioengineering,1992,39:186-194
    [60]Hulst A C,Tramper J,Van't R K,et al.A new technique for the production of immobilized biocatalyst in large quantities[J].Biotechnology and Bioengineering,1985,27:870-876
    [61]张惟杰.糖复合物生化研究技术(第二版)[M].北京:高等教育出版社,1989.13-14
    [62]牛红星,邱蔚然,丁庆钧.用固定化啤酒酵母细胞合成胞嘧啶核苷二磷酸胆碱[J].华东理工大学学报,2002,28(4):372-375
    [63]李娜,李树立,郭忠鹏.固定化酵母细胞发酵啤酒的初步研究[J].中国酿造,2007,9:18-21
    [64]曹永梅.海藻酸钙固定化细胞及其在食品工业中的应用[J].中国乳品工业,2001,(6):34-36
    [65]张淑惠.酒用酵母固定化后强化技术的研究[J].食品与发酵工业,1985,3:1-4
    [66]Santoyo A B,Rodriguez J B,Carrasco J L,et al.Immobilizationof Pseudomonas sp.BA2 by entrapment in calecium alginate and its application for the produetion of L-alanine[J].Enzyme and Microbial Technology.1996,18:176-180
    [67]谭锋,易欣欣.酵母细胞固定化研究[J].北京农学院学报,1996,11:45-47
    [68]韩墨菲,杨景亮.高含盐有机废水生物处理技术现状及进展[J].河北化工2007,30(11):59-62
    [69]胡纯铿.固定化黄曲霉生产L-苹果酸的研究[J].华侨大学学报(自然科学版),1999,20(3):240-245
    [70]古练权,马林.生物有机化学[M].北京:高等教育出版社,1998.190-195
    [71]张志华.酶法制备手性2-辛醇的实验研究[D].南京:南京工业大学,2004
    [72]李超敏,韩梅,张良,等.细胞固定化技术-海藻酸钠包埋法的研究进展[J].安徽农业科学,2006,34(7):1281-1282,1284
    [73]胡忠策,郑晓冬.固定化细胞在有机相中的催化反应[J].生物技术,1999,9(3):39-41
    [74]Salter G J,Kell D B.Solvent selection for whole cell biotransformation in organic media[J].Critical Reviews in Biotechnology,1995,15(2):139-177
    [75]宋正孝,李晓敏,王诤.固定化米曲霉菌体细胞光学拆分DL-丙氨酸[J].生物工程学报,1997,13(1):168-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700