机械活化淀粉糖化制备麦芽糖浆的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦芽糖浆甜度低、抗结晶性好、稳定性高,广泛应用于食品工业、化学工业、保健产品及医药行业中,是淀粉糖工业的重要产品之一。然而淀粉具有半结晶的颗粒结构,内部主要是非晶区域,外层主要为结晶区域且非常牢固,淀粉颗粒的结晶性结构对酶作用的抵抗力强,从而导致其反应效率低。因此,以淀粉为原料,生产麦芽糖浆时必须进行加热淀粉乳使淀粉颗粒吸水膨胀、糊化,以破坏其结晶结构,再进行水解糖化。
     本文采用自制搅拌球磨机对木薯、玉米淀粉进行机械活化,以不同活化时间的淀粉为原料,以真菌α-淀粉酶为糖化试剂,分别研究了机械活化淀粉直接糖化效果、糖化动力学及直接糖化生产麦芽糖浆工艺,实验结果表明:
     (1)在同样反应条件下,木薯原淀粉及其活化60 min淀粉糖化DE值分别是46.64%、64.41%;玉米原淀粉及其活化60 min淀粉糖化DE值分别是43.81%、61.33%。由此可见,淀粉经机械活化后由于其紧密的颗粒表面受到破坏,分子链发生断裂,粘度下降,流动性增强,淀粉酶的扩散阻力下降,淀粉的酶解反应活性明显提高。其它的反应条件如糊化温度、反应时间、底物浓度、淀粉酶用量等对淀粉的酶解反应也有较大的影响,但它们的影响规律受到活化时间的制约,活化时间越长,酶解反应对它们的依赖性越低。
     (2)动力学研究表明,真菌α-淀粉酶对活化木薯、玉米淀粉的作用与原淀粉同样遵循Michaelis-Menten方程,其中活化60 min木薯及玉米淀粉K_m分别为9.086 mg·mL~(-1),1.335 mg·mL~(-1),V_(max)分别为0.761 mg·mL~(-1)·min~(-1),0.171 mg·mL~(-1)·min~(-1);木薯及玉米原淀粉K_m分别为1.651 mg·mL~(-1),0.639mg·mL~(-1),V_(max)分别为0.145 mg·mL~(-1)·min~(-1),0.086 mg·mL~(-1)·min~(-1),可见活化淀粉的反应速率明显比原淀粉大。证明了机械活化预处理对淀粉结晶结构具有破坏作用,提高了淀粉的酶解能力,从而起到强化淀粉酶解的作用。
     (3)麦芽糖浆工艺研究表明,活化30 min的木薯淀粉和活化60 min玉米淀粉均不糊化,在制备条件为反应温度50℃,底物浓度30 mg·mL~(-1),酶用量4 U,pH值为5.5,反应15 h时,糖化产物中麦芽糖的含量分别为49.55%,47.77%;而在相同条件下,80℃糊化15min的木薯及玉米原淀粉糖化产物中麦芽糖的含量分别仅为37.34%,41.59%。由此可见,机械活化淀粉不经糊化直接糖化制备麦芽糖浆即可达到较好效果。
Maltose syrup has been widely applied in food industry, chemical industry, hygienical products and medical industry because of its low sweetness, good crystalline-resistance and high stability. It is one of the important products in starch sugar industry. However, starch particle possesses a semi-crystalline structure that consists of a loose amorphous region in the inner part and a firm crystalline region in the outer part. Enzymes could not easily enter into the inner regions of starch particles, resulting in a low reactive efficiency. Therefore, for the traditional producing technology of maltose syrup using starch as raw material, it is necessary to expand and gelatinize starch particles by heating starch milk and destroy crystalline structure of starch before hydrolyzation and saccharification.
     In this thesis, cassava and maize starch were mechanically activated with a customized stirring-type ball mill. The activated starches with different milling time were used as raw materials and fungal-a-amylase was used as the saccharification reagent. Then the effects of the mechanical activation on the saccharification, saccharifying kinetics and preparation technology of maltose syrups were investigated. The experiment results showed:
     (1) For cassava starch, the DE values of saccharification are 46.64% and 64.41% for non-activated starch and activated starch (with an activation time of 60 min), respectively. For maize starch, the DE values of saccharification are 43.81% and 61.33% for non-activated starch and activated starch (with an activation time of 60 min), respectively. It can be seen that the enzymolysis reactivity of starch was dramatically enhanced after the processing of mechanical activation. The reason is that the compact outer crystalline structure of starch particle was destroyed through the treatment of mechanical activation, which caused the breakage of starch molecular chain, the reduce of viscosity and finally the decrease of diffusion resistance of amylase. Other factors, such as gelatinization temperature, reaction time, substrate concentration and fungal-α-amylase amount, also have influences on the enzymolysis reaction. However, their effects are greatly related with the activation time. But the dependence weakens with the increase of activation time.
     (2) The kinetics study showed that action mechanism of fungal-α-amylase on both the saccharification of mechanically activated starch and the saccharification of non-activated starch follows the so-called Michaelis-Menten equation. For non-activated cassava starch, the K_m and V_(max) are 1.651 mg·mL~(-1) and 0.145 mg·mL~(-1)·min~(-1), respectively; while for the activated one, the K_m and V_(max) are 9.086 mg·mL~(-1) and 0.761 mg·mL~(-1)·min~(-1), respectively. For non-activated maize starch, the K_m and V_(max)are 0.639 mg-mL~(-1) and 0.086 mg·mL~(-1)·min~(-1), respectively; while for the activated one, they are 1.335 mg-mL~(-1) and 0.171 mg·mL~(-1)·min~(-1), respectively. It can be seen that the reaction rate of activated starch is larger than that of non-activated starch. The results indicated that the mechanical activation processing could destroy the crystal structure and enhance the enzymolysis reactivity of starch obviously.
     (3) The study on preparation technology of maltose syrup showed that when the reaction temperature was 50℃, substrate concentration was 30 mg-mL~(-1), fungal-a-amylase amount was 4U, pH was 5.5 and the reaction time was 15 hours, the content of maltose in the produced syrup are 49.55% and 47.77% in the case of raw material of activated cassava starch (with an activation time of 30 min) and activated maize starch (with an activation time 60min), respectively. Under the same reaction conditions, however, the content of maltose in the produced syrup are only 37.34% and 41.59% in the case of raw material of non-activated cassava starch and non-activated maize starch, respectively. The result clearly indicated that the mechanical activation processing could favor the preparation of maltose syrup from starch even without gelatinization.
引文
[1]张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2001.24-71,164-169.
    [2]邓宇.淀粉化学品及其应用[M].北京:化学工业出版社,2003.1-20,102-106.
    [3]温其标,陈玲,罗兴发,等.普鲁兰酶对木薯淀粉糖化的影响[J].粮食与饲料工业,1997,(12):33-34.
    [4]胡飞,陈玲,温其标.淀粉微细化国内外研究概况与展望[J].郑州工程学院学报,2001,22(2):74-77.
    [5]张力田.变性淀粉[M].广州:华南理工大学出版社,1999.1-19.
    [6]Xin Q,Richard F T,Colin E S,et al.Molecular basis of the gelatinisation and swelling characteristics of waxy barley starches grown in the same location during the same season.Part Ⅱ.Crystallinity and gelatinisation characteristics[J].Journal of Cereal Science,2004,39(1):57-66.
    [7]张镜吾.淀粉化学研究进展[J].精细化工,1987,4(6):65-73.
    [8]刘亚伟.玉米淀粉生产及转化技术[M].北京:化学工业出版社,2003.150-151.
    [9]Chen J,Jane J.Preparation of granular cold-water-soluble starches by alcoholic-alkaline treatment[J].Cereal Chemistry,1994,71(2):618-622.
    [10]Singh J,Singh N.Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches[J].Food Hydrocolloids,2003,17(1):63-72.
    [11]陆冬梅,杨连生.双酶协同水解微波改性木薯淀粉的动力学研究[J].精细化工,2004,21(10):768-771.
    [12]Liu H S,Yu L,Xie F W,et al.Gelatinization of cornstarch with different amylose/amylopectin content[J].Carbohydrate Polymers,2006,65(3):357-363.
    [13]潘松汉,王贞,黎国康,等.淀粉糊化对淀粉-丙烯酰胺接枝共聚的影响[J].精细化工,1993,10(4):56-60.
    [14]雷娜.超声波对淀粉超分子结构及反应性能的影响[D].广州:华南理工大学,2001.
    [15]Mason T J,Paniwnyk L,Lorimer J P.The uses of ultrasound in food technology[J].Ultrasonics Sonochemistry,1996,3(3):S253-S260.
    [16]丁原涛,吴晖.超声波技术在食品工业中的应用[J].粮油加工与食品机械,2004,(5): 67-69.
    [17]林建萍,黄强.超声波在淀粉变性上的应用[J].上海纺织科技,2002,30(4):22-23.
    [18]高大维,陈满香,梁竑,等.超声波催化糖化酶水解淀粉的初步研究[J].华南理工大学学报(自然科学版),1994,22(1):70-74.
    [19]Baldwin P M,Adier J,Davies M C,et al.Starch damage part 1:Characterization of granule damage in ball-milled potato starch study by SEM[J].Starch,1995,47:247-251.
    [20]Tamaki S,Hisamatsu M,Colin D M.Structural change of maize starch granules by ball-mill treatment[J].Starch,1998,50:342-348.
    [21]Wang Y J,Truong V D,Wang L F.Structures and rheological properties of corn starch as affected by acid hydrolysis[J].Carbohydrate Polymers,2003,52(3):327-333.
    [22]Lin J H,Lee S Y,Chang Y H.Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches[J].Carbohydrate Polymers,2003,53(4):475-482.
    [23]Singh V,Ali S Z.Acid degradation of starch.The effect of acid and starch type[J].Carbohydrate Polymers,2000,41(2):191-195.
    [24]梁勇,张本山,杨连生,等.非晶颗粒态木薯淀粉的结构及酶降解活性研究[J].食品工业科技,2004,25(9):49-51.
    [25]姜锡瑞,段钢.新编酶制剂实用技术手册[M].北京:中国轻工业出版社,2002.21-47.
    [26]Boldyrev V V.Mechanical activation of solid and its application to technology[J].Journal de Chimie Physique,1986,83(11-12):821-829.
    [27]杨南如.机械力化学过程及效应(Ⅱ)机械力化学过程及应用[J].建筑材料学报,2000,3(2):93-97.
    [28]黄祖强,童张法,胡华宇,等.机械活化对木薯淀粉冻融稳定性的影响[J].食品工业科技,2006,27(3):58-60.
    [29]Huang Z Q,Lu J P,Li X H,et al.Effect of mechanical activation on physico-chemical properties and structure of cassava starch[J].Carbohydrate Polymers,2007,68(1):128-135.
    [30]黄祖强,童张法,黎铉海,等.机械活化对木薯淀粉的溶解度及流变学特性的影响 [J].高校化学工程学报,2006,20(3):449-454.
    [31]Huang Z Q,Xie X L,Chen Y,et al.Ball-milling treatment effect on physicochemical properties and features for cassava and maize starches[J].Comptes Rendus Chimie,2008,11(1-2):73-79.
    [32]黄祖强,陈渊,钱维金,等.机械活化对玉米淀粉结晶结构与化学反应活性的影响[J].化工学报,2007,58(5):1307-1313.
    [33]黄祖强,胡华宇,童张法,等.机械活化法制备冷水可溶性玉米淀粉的工艺研究[J].食品与发酵工业,2005,31(12):1-3.
    [34]黄祖强,童张法,黎铉海,等.冷水可溶性机械活化淀粉制备工艺研究[J].兰州理工大学学报,2006,32(1):76-78.
    [35]黄祖强,胡华宇,童张法,等.玉米淀粉的机械活化及其流变特性研究[J].食品与机械,2006,22(1):50-52,65.
    [36]黄祖强,陈渊,钱维金,等.机械活化对木薯淀粉醋酸酯化反应的强化作用[J].过程工程,2007,7(3):501-505.
    [37]李志达,张蓉真.高麦芽糖浆的工艺研究[J].中国粮油学报,1995,10(1):27.
    [38]蒋裔.甘薯怡糖制造与质量控制[J].食品科学,1992,(8):43-44.
    [39]张力田.淀粉糖品的新发展和在食品工业中的应用[J].淀粉与淀粉糖,1980,(3):15-29.
    [40]Chang L T.The manufacture of sugar in ancient China[J].Sugar,1993,(11):34-36.
    [41]张力田.发展淀粉制糖[J].淀粉与淀粉糖,1997,(1):1-4,21.
    [42]Nebesny E.Combined enzymatic starch hydrolysis[J].Starch,1989,41(7):266-271.
    [43]Tegge G V,Richter G..Optimization of the production of cassava flour effect of temperature,substrate and enzyme concentrations[J].Starch,1986,38(2):61-67.
    [44]刘汉文,丁志香.酶法小麦粗淀粉生产高麦芽糖浆工艺研究[J].食品科技,1999,(1):34-35.
    [45]刘汉文.碎米直接生产高麦芽糖浆工艺研究[J].淀粉与淀粉糖,1994,(4):22-23.
    [46]朱明.玉米直接生产精制麦芽糖浆工艺研究[J].淀粉与淀粉糖,1995,(2):23-27.
    [47]Goto C E,Barbosa E P,Kistner L C L,et al.Production of amylase by Aspergillus fumigatus utilizing α-methyl-D-glycoside,a synthetic analogue of maltose,as substrate [J].FEMS Microbiology Letters.1998,167(2):139-143.
    [48]张正文,尹卓荣.利用真菌淀粉酶制备啤酒用麦芽糖浆的研究[J].酿酒科技,2005,(7):53-56.
    [49]王岁楼,张平之.全酶法同时制取超高麦芽糖及高蛋白米粉[J].无锡轻工大学学报,1998,17(2):29.
    [50]胡学智.功能性低聚糖的研究开发[J].中国食物与营养,2000,(1):39-41.
    [51]胡新平.异麦芽低聚糖的酶法制备及提纯研究[D].广州:华南理工大学,1997.
    [52]杨婕,周立峰,郭立燕,等.社区中老年人糖尿病患病及相关知识调查[J].中国公共卫生,2005,21(2):131-133.
    [53]胡新平,杨连生.麦芽糖醇及其在食品工业中的应用[J].淀粉与淀粉糖,1996,(2):1-3.
    [54]Chang L T.Maltose was first made in old China[J].Starch,1992,44(3):117.
    [55]周家华.超高和纯麦芽糖浆制造的理论和技术研究(D).广州:华南理工大学,1995.
    [56]毕金峰,魏宝东.玉米淀粉生产高麦芽糖浆研究[J].淀粉与淀粉糖,2005,(1):15-20.
    [57]王海明,丁长河.糖浆在啤酒行业中的应用[J].酿酒科技,2004,(3):58-60.
    [58]王璋.食品酶学[M].北京:轻工业出版社,1990.152-153.
    [59]吴周杰,周家华,吴水清.麦芽糖产率与淀粉液化程度关系的研究[J].食品科技,1995,(5):13-15.
    [60]张克旭.氨基酸工艺学[M].北京:中国轻工业出版社.1995(1版).13-50.
    [61]Konsula Z,Liakopoulou-Kyriakides M.Hydrolysis of starches by the action of an α-amylase from Bacillus subtilis[J].Process Biochemistry,2004,39(11):1745-1749.
    [62]陈世忠,祁德福,王续强.喷射液化在酒精生产中的应用[J].酿酒,2002,19(1):62-64.
    [63]白冬梅,赵学明,胡宗定.玉米生粉发酵生产L-乳酸的研究[J].化学工程,2002,30(3):50-54.
    [64]朱平.酒精生产中的连续喷射液化技术[J].酿酒科技,2001,(5):86-87.
    [65]高振鹏,岳田利,袁亚宏,等.果糖生产技术和应用研究进展[J].西北农林科技大学学报(自然科学版),2003,31(增刊):187-190.
    [66]Noda T,Furuta S,Suda I.Sweet potato β- amylase immobilized on chitosan beads and its application in the semi-continuous production of maltose[J].Carbohydrate polymers.2001,44(3):189-195.
    [67]Gaouar O,Zakhia N,Aymard C,et al.Production of maltose syrup by bioconversion of cassava starch in an ultrafiltration reactor[J].Industrial Crops and Products,1998,7(2-3):159-167.
    [68]Li M,Kim J W,Peeples T L.Amylase partitioning and extractive bioconversion of starch using thermoseparating aqueous two-phase systems[J].Journal of Biotechnology,2002,93(1):15-26.
    [69]汪芳.高纯麦芽糖研制的工艺简介[J].食品与发酵工业,2005,31(7):144.
    [70]金丰秋,金晔,金其荣.结晶麦芽糖生产工艺研究[J].山西食品工业,2004,(1):15-17.
    [71]姜锡瑞,段钢.提高麦芽糖生产水平[J].淀粉与淀粉糖,2003,(3):29-33,28.
    [72]张东,葛岩涛.酶制剂制备马铃薯高麦芽糖浆的研究[J].食品科技,2003,(2):7-9.
    [73]鲍九兴.如何提高麦芽糖浆质量[J].糖业食品科技.1994,(2):7-12.
    [74]Kunamneni A,Singh S.Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production[J].Biochemical Engineering Journal,2005,27(2):179-190.
    [75]Tomas R L,Oliveira J C,McCarthy K L.Influence of operating conditions on the extent of enzymatic conversion of rice starch in wet extrusion[J].Lebensmittel-Wissenschaft und-Technologie,1997,30(1):50-55.
    [76]Van der Veen M E,Veelaert S,Van der Goot A J,et al.Starch hydrolysis under low water conditions:A conceptual process design[J].Journal of Food Engineering,2006,75(2):178-186.
    [77]Soni S K,Kaur A,Gupta J K.A solid state fermentation based bacterial α-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch[J].Process Biochemistry,2003,39(2):185-192.
    [78]张力田.淀粉糖(修订版)[M].北京:中国轻工业出版社.1998.1-23,278-285.
    [79]胡学智.高麦芽糖浆生产及其有关的酶[J].山东食品发酵.1998,(2):33-34.
    [80]张云晓.高蛋白米粉的生产和营养学评价[J].杭州食品科技,1993,(2):1-4.
    [81]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1994.13-14.
    [82]梅乐和,姚善泾,林东强.生化生产工艺学[M].北京:科学出版社,2001.45-67.
    [83]李成涛,陈雪峰,田三德,等.酶法制取葡萄糖的工艺技术[J].食品研究与开发, 2005,26(1):97-99.
    [84]周彦斌,张小勇,王莹莹.以玉米淀粉为原料生产饴糖的工艺探讨及其应用[J].现代食品科技,2006,21(2):103-105.
    [85]张洪渊,万海清.生物化学(第二版)[M].北京:化学工业出版社,2006.99-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700