典型多相聚合物中微相结构、相互作用及动力学的固体NMR研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计和制备性能优异的多相聚合物材料是现代高分子科学研究的主要任务之一,其中多相聚合物体系的微相结构、相容性、分子间相互作用及动力学是直接影响材料性能的关键因素,也是高分子物理理论研究的基本问题。本文以苯乙烯-丁二烯嵌段共聚物、聚甲基丙烯酸甲酯/聚乙烯苯酚(PMMA/PVPh)共混物等多相聚合物为研究对象,综合利用多种固体NMR技术并发展新的检测方法,同时结合量子化学计算对多相聚合物体系的相容性、相区尺寸、界面厚度、链间弱相互作用及分子运动等问题开展了系统深入的研究。本文主要包含以下两部分内容:
     (一)采用偶极滤波-自旋扩散固体NMR技术研究了具有不同嵌段结构的苯乙烯-丁二烯嵌段共聚物(两嵌段共聚物SB和三嵌段共聚物SBS)的界面相厚度随温度的演化规律。研究发现在实验温度范围内(25-80℃),含有相同刚性相PS (32 wt%)、不同嵌段结构的苯乙烯-丁二烯的嵌段共聚物的界面厚度均随温度的增加而增加,该趋势与自洽平均场理论(SCFT)的计算结果相符;但二者的界面厚度不同,SBS界面厚度大于SB,表明刚性-柔性嵌段共聚物的界面厚度不仅与链段间的相互作用参数(χ)有关还与其分子结构有关,这与嵌段共聚物熔体界面相演化的经典SCFT理论预言不同,这一发现深化了关于嵌段共聚物微相分离的高分子物理理论的认识。
     (二)以PMMA/PVPh聚合物共混物为研究对象,基于多脉冲相位调制技术,发展了利用化学位移滤波(CSF)结合自旋扩散测定刚性/刚性共混物微相结构的固体高分辨NMR新技术。利用该技术结合自旋扩散方程数值模拟测定了体系的相区大小,并对共混体系的相容性进行了深入研究;通过高分辨二维1H-1H自旋交换谱和13C-1H异核相关谱(HETCOR)检测到该体系中的氢键相互作用位点;并首次结合13C化学位移各向异性(CSA)的量子化学计算及检测CSA的NMR技术(SUPER)研究了该体系中链间的氢键相互作用和分子结构的空间排布;采用检测13C-1H偶极相互作用的分离局域场NMR技术(PISEMA)还观测到该刚性-刚性体系中由于氢键相互作用导致的局域链段的协同运动。
     以上研究表明固体NMR技术是从分子水平研究多相聚合物界面相结构、相互作用及分子运动的有力工具,本研究对于多相聚合物结构检测技术的发展以及新型聚合物材料的研究和开发具有重要意义。
The design and preparation of multiphase polymer materials is one of the main targets in modern polymer science. The microstructure, miscibility, intermolecular interaction and molecular dynamics of the multiphase polymer system are responsible directly for the material properties. Therefore, they have been the basic problems and attracted significant attention in polymer physics. In this thesis, a variety of solid-state NMR methods and a new developed NMR technique by our group, in combination with the quantum chemical calculations were utilized to investigate the miscibility, domain size, interphase thickness, intermolecular interaction and molecular dynamics for two kinds of multiphase polymer systems. They are styrene-butadiene copolymers with the same volume percent and different molecular architectures, and poly (methyl methacrylate) (PMMA) and poly (4-vinyl phenol) (PVPh) hydrogen-bonded polymer blends prepared under different conditions.
     1H spin diffusion solid-state NMR, in combination with other techniques, was utilized to investigate the effect of molecular architecture and temperature on the interphase thickness and domain size in poly (styrene)-block-poly (butadiene) and poly (styrene)-block-poly (butadiene)-block-poly (styrene) copolymers (SB and SBS) over the temperature from 25℃to 80℃. These two block copolymers contain equal PS weight fraction of 32 wt%, and especially, polystyrene (PS) and polybutadiene (PB) blocks are in glass and melt state, respectively, within the experimental temperature range. It was found that with increasing temperature the domain sizes of the dispersed phase and interphase thicknesses in these two block copolymers increased. Surprisingly we found that the interphase thicknesses in these two block copolymers were obviously different, which was inconsistent with the theoretical predictions about the evolution of interphase in block copolymer melts by self-consistent mean-field theory (SCFT). This implies that the interphase thickness not only depends strongly on the binary thermodynamic interaction (χ) between the PS and PB blocks, but also is influenced by their molecular architectures in the experimental temperature range. These results provide new insights into the theory of polymer physics for the microphase separation of block polymers.
     In combination with quantum chemical calculations, a variety of advanced multi-scale solid-state NMR techniques were used to investigate the microstructure and dynamics in PMMA/PVPh polymer blends. First, a new chemical-shift filtered high-resolution NMR pulse sequence based on a recently developed continuous phase modulation technique was proposed to characterize the microphase structure and miscibility in rigid/rigid polymer blends. The miscibility and domain sizes of the samples with different treated conditions were well elucidated by this new NMR technique combined with spin-diffusion experiments and the numerical simulation for the spin-diffusion process. Second, the possible hydrogen-bonding interactions between the carbonyl group of PMMA and hydroxyl group of PVPh were successfully elucidated by two-dimensional 1H-1H spin-exchange and 13C-1H heteronuclear chemical-shift correlation (HETCOR) NMR experiments at different mixing time. Furthermore, the 13C 2D SUPER experiments were applied to determine chemical shift anisotropy-separation of undistorted powder patterns and quantum chemical calculations for the theoretical predictions of CSA parameters were utilized to investigate the intermolecular hydrogen-bonding interactions and molecular conformation of the blends. The chemical shift and conformation predicted by quantum chemical calculations were confirmed by solid-state NMR experiments. A possible interaction model of the blends was proposed. Finally,13C-1H polarization inversion and spin exchange at magic angle (PISEMA) experiments at different temperature were used to reveal the heterogeneous dynamics resulting from the cooperative motion associated with the hydrogen bonding interaction. It provides clear evidence that the motion of aromatic group in PVPh is affected by the rotating motions of methyl in PMMA for both the annealed powder blend at 120℃and cast film sample at room temperature. In addition, with increasing temperature the local mobility of the cast film sample increases.
引文
[1]高汉宾,张振芳.核磁共振原理与实验方法.武汉:武汉大学出版社,2007:598-641
    [2]薛奇.高分子结构研究中的光谱方法.北京:高等教育出版社,1993.263-276
    [3]Laws D D, Bitter H-M L, Jerschow A. Solid-State NMR spectroscopic methods in chemistry. Angew Chem Int Ed,2002,41:3096-3129
    [4]Brown S P, Spiess H W. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem Rev,2001, 101:4125-4155
    [5]Waugh J S, Huber L M, HaeberlenU. Approach to high-resolution NMR in solids. Phys Rev Lett,1968,20:180-182
    [6](a) Rhim W K, Elleman R D, Vaufhan R W. Enhanced resolution for solid state NMR.J Chem Phys,1973,59:3740-3749; (b) Barbara T M, Balrusis L. Phase-cycled-multiple-window-acquisition, multiple-pulse NMR.J Magn Reson.1994,106:182-187
    [7]Burum D P, Rhim W K. Proton NMR study of gypsum, CaSO4·2H2O. using an improved technique for homonuclear dipolar decoupling in solids.J Magn Reson,1979,34:241-246
    [8](a) Lesage A, Sakellariou D, Hediger S, et al. Experimental aspects of proton NMR spectroscopy in solids using phase-modulated homonyclear dipolar decpupling. J Magn Reson,2003,163:105-113; (b) Sakellariou D, Lesage A, Hodgkinson P,et al. Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation. Chem Phys Lett. 2000,319:253-260
    [9]vanRossum E J, Boender G J, deGroot H J M. High magnetic field for enhanced proton resolution in high-speed CP/MAS heteronuclear 1H-13C dipolar-correlation spectroscopy. J Magn Reson,1996,120:274-277
    [10]Schnell I, Brown S P, Low H Y, et al. An Investigation of hydrogen bonding in benzoxazine dimers by fast magic-angle spinning and double-quantum 1H NMR spectroscopy.J Am Chem Soc,1998,120:11784-11795
    [11]Schnell I, Lupulescu A, Hafner S, et al. Resolution enhancement in multiple-quantum MAS NMR spectroscopy. J Magn Reson,1998,133:61-69
    [12](a) Pines A, Gibby M G, Waugh J S. Proton-enhanced NMR of dilute spins in solids. J Chem Phys,1973,59:569-590; (b) Stejskal E O, Schaefer J, Waugh J S. Magic-angle spinning and polarization transfer in proton-enhanced NMR. J Magn Reson,1977,28:105-122; (c) Hartmann S R, Hahn E L. Nuclear double resonance in rotating frame. Phys Rev,1962, 128:2042-2045
    [13]薛奇.高分子材料科学与工程,固体核磁共振在高分子材料结构研究中的应用.1993,6:1-7
    [14]Duer M J. Essential techniques for spin-1/2 nuclei, in:Duer M J (Ed.), Solid-state NMR spectroscopy:Principles and applications, first ed., Blackwell Science, Oxford,2002, 73-110
    [15]Stejskal E O, Memory J D. High Resolution in the Solid State. Fundamentals of CP/MAS, Oxford University Press, New York,1994.
    [16](a) Dixon W T. Spinning-sideband-free NMR spectra. J Magn Reson,1981,44:220-223; (b) Dixon W T. Pulse sequence for spinning sideband suppression in spectra of quadrupolar nuclei. J Magn Reson,1985,64:332-333
    [17]Mao J D, Schmidt-Rohr K, Davies G, et al. Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance. Soil Sci Soc Am J,2000,64:873-884
    [18]Antzutkin O N. Sideband manipulation in magic-angle-spinning nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc,1999,35:203-266
    [19]Conte P, Spaccini R, Piccolo A. State of the art of CPMAS 13C-NMR spectroscopy applied to natural organic matter. Prog in Nucl Magn Res Spec.2004,44:215-223
    [20]Ibbett R N. NMR spectroscopy of polymers. (1st ed.) New Delhi:Thomson Press.1993
    [21]Lesage A, Duma L. Sakellariou D, et al. Improved resolution in proton NMR spectroscopy of powdered solids.J Am Chem Soc.2001.123:5747-5752
    [22]Clauss J. Schmidt-Rohr K. Spiess. H. Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polym.1993,44:1-17
    [23]Schaefer J. Stejskal E O. Nuclear magnetic-resonance of polymers spinning at magic angle. J Am Chem Soc,1976,98:1031-1032
    [24]Pines A. Gibby M G, Waugh J S. Proton-enhanced NMR of dilute spins in solids. J Chem Phys,1973,59:569-590
    [25]Dixon W T. Spinning-sideband-free and spinning-sideband-only NMR spectra in spinning samples. J Chem Phys,1982,77:1800-1809
    [26](a) Munowitz M, Mehring M, Pines A. Multiple-quantum dynamics in NMR:A directed walk through liouville space. J Chem Phys,1987,86:3172-3182; (b) Munowitz M, Pines A. Multiple-quantum nuclear magnetic resonance spectroscopy. Science,1986,233:525-531
    [27]Baum J, Pines A. Multiple-quantum NMR studies of clustering in solids. J Am Chem Soc, 1986,108:7447-7454
    [28]Wokarn A, Ernst R R. Selective detection of multiple qrantum transitions in NMR by two dimensional spectroscory. Chem Phys Lett,1977,52:407-412
    [29](a) Warren W S, Weitekamp D P, Pines A. Theory of selective excitation of multiple quantum transitions. J Chem Phys,1980,73:2084-2099; (b) Warren W S, Weitekamp D P, Pines A. Theory of selective excitation of multiple quantum transitions. J Chem Phys,1980,73: 2084-2099
    [30]Bidenhausen G, Kofler H, Ernst R R. Selection of coherence transfer path ways in NMR pulse expeiments. J Magn Reson,1984,58:370-388
    [31]Barker P, Freeman R. Pulsed field gradients in NMR:Analternative to phase cycling. J Magn Reson,1985,64:334-338
    [32]Caravatti P, Neuenschwander P, Ernt R R. Characterization of heterogeneous polymer blends by two-dimensional proton spin diffusion spectroscopy. Macromolecules,1985,18: 119-122
    [33]Bielecki A, Burum D P, Rice D M, et al. Solid-state two-dimensional carbon-13-proton correlation (HETCOR) NMR spectrum of amorphous poly (2,6-dimethyl-p-phenylene oxide) (PPO). Macromolecules,1991,24:4820-4822
    [34]Jia X, Wolak J, Wang X, et al. New strategies for the independent determination of'H spin-diffusion coefficients in amorphous polymers and their blends. Macromolecules,2003, 36:712-718
    [35]Liu S-F, Mao J-D, Schmidt-Rhor K. A robust Technique for two-dimensional separation of undistorted chemical-shift anisotropy powder patterns in magic-angle-spinning NMR. J Magn Rsson,2002,155:15-28
    [36]Tycko R, Dabbagh G, Mirau P A. Determination of chemical-shift-anisotropy lineshapes in a two-dimensional magic-angle-spinning NMR experiment. J Magn Reson,1989,85: 265-274
    [37]van Rossum. B-J, de Groot C P. Ladizhansky V, et al. J Am Chem Soc,2000.122: 3465-3472
    [38]Ramamoorthy A, Wei Y F. Lee D-K. PISEMA solid-state NMR spectroscopy. Chem Inform. 2005
    [39]Wu C H, Ramamoorthy A, Opella S J. High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J Magn Reson SerA,1994,109:270-272
    [40](a) Dvinskikh S V, Zimmermann H, Maliniak A, et al. Heteronuclear dipolar recoupling in liquid crystals and solids by PISEMA-type pulse sequences. J Magn Reson,2003,164: 165-170; (b) Brus J, Urbanova M. Selective measurement of heteronuclear 1H-13C dipolar couplings in motionally heterogeneous semicrystalline polymer systems. Phys Chem A, 2005,109:5050-5054; (c) Brus J, Urbanova M, Kelnar I, et al. A solid-state NMR study of structure and segmental dynamics of semicrystalline elastomer-toughened nanocomposites. Macromolecules,2006,39:5400-5409
    [41]Jiang M. Advances in polymer science,1999,146:121-196
    [42]保罗 D R,巴克纳尔C B.聚合物共混物:组成与性能.殷敬华等译.北京:科学出版社,2004
    [43]杨玉良,胡汉杰.高分子物理.北京:化学工业出版社,2001
    [44]殷敬华,莫志深.现代高分子物理学.北京:科学出版社,2001
    [45]薛奇.高分子结构研究中的光谱方法.北京:高等教育出版社,1995
    [46]Schmidt-Rohr K, Spiess H W, Multidimensional solid-state NMR and polymers.1st ed., Academic Press, London,1994
    [47]deDios A C, Oldfield E. Ab initio study of the effects of torsion angles on carbon-13 NMR chemical shielding in N-formyl-L-alanine amide, N-formyl-L-valine amide, and some simple model compounds:Applications to protein NMR spectroscopy.J Am Chem Phys, 1994,116:5307-5314
    [48]Hong M. Solid-state NMR determination of 13Cα chemical shift anisotropy for the identification of protein secondary structure. J Am Chem Soc,2000,122:3762-3770
    [49]Hu J Z, Solum M S, Taylor C M V, et al. Structural determination in carbonaceous solids using advanced solid state NMR techniques. Energy Fuels,2001,15:14-22
    [50]Hartzell C J, Whitfeld M, Oas T G, et al. Determination of the 15N and 13C chemical shift tensors of L-[13C] alanyl-L-[15N] alanine from the dipole-coupled powder patterns, J Am Chem Soc,1987,109:5966-5969
    [51]Havlin R H, Le H, Laws D D, et al. An ab initio quantum chemical investigation of carbon-13 NMR shielding tensors in glycine, alanine, valine, isoleucine, serine, and threonine:comparisons between helical and sheet tensors, and the effects of χ1 on shielding. J Am Chem Soc,1997,119:11951-11958
    [52]Zheng A M, Zhang H L, Lu X, et al. Theoretical predictions of 31P NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid ascid catalysts. J Phys Chem B, 2008,112:4496-4505
    [53]Uldry A-C, Griffin J M, Yates J R, et al. Quantifying weak hydrogen bonding in uracil and 4-Cyano-4-ethynylbiphenyl:a combined computational and experimental investigation of NMR chemical shifts in the solid state. J Am Chem Soc,2008,130:945-954
    [54](a) Wei Y F, Angle C de D, McDermott A E. Solid-state 15N NMR chemical shift anisotropy of histidines:experimental and theoretical studies of hydrogen bonding. J Am Chem Soc, 1999,121:10389-10394; (b) Gu Z. Zambrano R, McDermott A. Hydrogen bonding of carboxyl groups in solid-state amino acids and peptides:comparison of carbon chemical shielding, infrared frequencies, and structures. J Am Chem Soc,1994,116:6368-6372
    [55]Schaefer J, Sefcik M D, Stejskal E O, et al. Carbon-13 T1ρ experiments on solid polymers having tightly spin-coupled protons. Macromolecules,1984,17:1118-1124
    [56]Spiess H W. Molecular dynamics of solid polymers as revealed by deuteron NMR. Colloid & Polymer Sci. Polymer Science,1983,261:193-209
    [57]Schmidt-Rohr K, Class J, Spiess H W. Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules,1992,25:3273-3277
    [58]Parisa M, Bizota H, Emeryb J, et al. NMR local range investigations in amorphous starchy substrates:Ⅱ-dynamical heterogeneity probed by 1H/13C magnetization transfer and 2D WISE solid state NMR. Int J Biol Macromol,2001,29:137-142
    [59]Mulder F M, Jansen B J P, Lemstra P J, et al. Dynamics induced by blending morphology. Macromolecules,2000,33:457-460
    [60]Yan B, Stark R E. A WISE NMR approach to heterogeneous biopolymer mixtures:dynamics and domains in wounded potato tissues. Macromolecules,1998,31:2600-2605
    [61]Munowitz M, Aue W P, Griffin R G. Two-dimensional separation of dipolar and scaled isotropic chemical shift interactions in magic angle NMR spectra. J Chem Phys,1982,77: 1686-1689
    [62]van Rossum B J, de Groot C P, Ladizhansky V, et al. A method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR. J Am Chem Soc,2000,122:3465-3472
    [63]Hong M, Yao X, Jakes K, et al. Investigation of molecular motions by Lee-Goldburg cross-polarization NMR spectroscopy. J Phys Chem B,2002,106:7355-7364
    [64](a) Marassi F M, Ma C, Gesell J J, et al. Three-dimensional solid-state NMR spectroscopy is essential for resolution of resonances from in-plane residues in uniformly 15N-labeled helical membrane proteins in oriented lipid bilayers. J Magn Reson,2000,144:156-161; (b) Wang J, Kim S, Kovacs F, et al. Structure of the transmembrane region of the M2 protein H+ channel. Protein Sci,2001,10:2241-2250
    [65]Mehring M, Waugh J S. Magic-angle NMR experiments in solids. Phys Rev B,1972,5: 3459-3471
    [66]Dvinskich S V, Zimmermann H, Maliniak A, et al. Heteronuclear dipolar recoupling in liquid crystals and solids by PISEMA-type pulse sequences.J Magn Reson,2003,164: 165-170
    [67]Dvinskich S V, Zimmermann H, Maliniak A, et al. Heteronuclear dipolar recoupling in solid-state nuclear magnetic resonance by amplitude-, phase-. and frequency-modulated Lee-Goldburg cross-polarization.J Chem Phys,2005.122:044512-044513
    [1]Zumbulyadis N, Landry M R, Russell T P. Interphase mixing in symmetric diblock copolymers determined by proton-deuterium CP/MAS NMR. Macromolecules,1996,29: 2201-2204
    [2](a) Helfand E, Tagami Y J, Theory of the interface between immiscible polymers. Polym Sci Polym Lett,1971,9:741-746; (b) Helfand E, Tagami Y. Theory of the interface between immiscible polymers. Ⅱ. J Chem Phys,1972,56:3592-3601
    [3]Helfand E, Sapse A M. Theory of unsymmetric polymer-polymer interfaces. J Chem Phys, 1975,62:1327-1331
    [4](a) Paul D R, Bucknall C B. Polymer blends:formulation and performance; New York:John Wiley and Sons,2000; (b) Broseta D, Fredrickson G H, Helfand E, et al. Molecular weight and polydispersity effects at polymer-polymer interfaces. Macromolecules,1990,23: 132-139
    [5]Nedoma A J, Robertson M L, Wanakule N S, et al. Measurements of the composition and molecular weight dependence of the Flory-Huggins interaction parameter. Macromolecules, 2008,41:5773-5779
    [6](a) Matsen M W, Schick M. Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett,1994,72:2660-2663; (b) Matsen M W, Bates F S. Unifying weak- and strong-segregation block copolymer theories. Macromolecules,1996,29:1091-1098; (c) Matsen M W, Thompson R B. Equilibrium behavior of symmetric ABA triblock copolymer melts. J Chem Phys,1999,111:7139-7146
    [7](a) Koberstein J T, Morra B, Stein R S. The determination of diffuse-boundary thicknesses of polymers by small-angle X-ray scattering. J Appl Crystallogr,1980,13:34-45; (b) Ruland W. Small-angle scattering of the statistical structure of domain boundaries. Macromolecules, 1987,20:87-93; (c) Gemeinhardt G C, Moore R B. Characterization of ionomer-compatibilized blend morphology using synchrotuon small-angle X-ray scattering. Macromolecules,2005,38:2813-2819
    [8]Diamant J, Soong D, Williams M C. The mechanical properties of styrene-butadiene-styrene (SBS) triblock copolymer blends with polystyrene (PS) and styrene-butadiene copolymer (SBR). Polym Eng Sci,1982,22:673-683
    [9]Arinighofer F, Gronski W. Block copolymers with broad interphase. Determination of morphological parameters and interphase width by electron microscopy and small angle X-ray scattering. Makromol Chem,1984,185:2213-2231
    [10]Quan X, Bair H E, Johnson G E. Thermal characterization of block copolymer interfaces. Macromolecules,1989,22:4631-4635
    [11]Liu R Y F, Bernal-Lara T E, Hiltner A, et al. Interphase materials by forced assembly of glassy polymers. Macromolecules,2004,37:6972-6979
    [12]Higashida N, Kressler, J, Yukioka, S, et al. Ellipsometric measurements of positive η parameters between dissimilar polymers and their temperature dependence. Macromolecules,1992,25:5259-5262
    [13](a) Merfeld G D, Paul D R, In Polyer Blends, Paul, D R, Bucknall C B, Eds, Wiley:New York,2000,1:55-58; (b) Gobbi G C, Russell T P, Lyerla J R, Fleming W W, Nishi T J. Polym Sci, Poly Lett Ed,1987,25:61-65; (c) Zumbulyadis N, O'Reilly J M. Polarization transfer across interfaces.1.29Si cross-polarization dynamics at the poly (vinyl alcohol)-silica sol-gel interface. Macromolecules,1991,24:5294-5298; (d) Zumbulyadis N, O'Reilly JM.J Am Chem Soc.1993,115:4407-4408; (e) Zumbulyadis N, Landry C J T, Long T E. Determination of polymer miscibility by proton-deuterium CP/MAS NMR spectroscopy. Macromolecules,1993,26:2647-2648; (f) Afeworki M, McKay R A, Schaefer J. Dynamic nuclear polarization enhanced nuclear magnetic resonance of polymer-blend interfaces. Mater Sci Eng,1993, A162:221-228; (g) Tong G, Pan Y, Afeworki M, et al. Rotational-echo double-resonance NMR to observe the interfaces of heterogeneous polymer blends. Macromolecules,1995,28:1719-1720
    [14]Farinha J P S, Vorobyova O, Winnik M A. An energy transfer study of the interface thickness in blends of poly (butyl methacrylate) and poly (2-ethylhexyl methacrylate). Macromolecules,2000,33:5863-5873
    [15]Schmidt-Rohr K, Spiess H W. Multidimensional solid-state NMR and polymers. San Diego: Academic Press,1994
    [16](a) Kogler G, Mirau P A. Two-dimensional NMR studies of intermolecular interactions in poly (vinyl chloride)/poly (methyl methacrylate) mixtures. Macromolecules,1992,25: 598-604; (b) Kao H M, Chao S W, Chang P C. Multinuclear solid-state NMR, self-diffusion coefficients, differential scanning calorimetry, and ionic conductivity of solid organic-inorganic hybrid electrolytes based on PPG-PEG-PPG diamine, siloxane, and lithium perchlorate. Macromolecules,2006,39:1029-1040
    [17]Guo M. Solid-state high-resolution NMR studies on the miscibility of polymer blends. Trends in Polym Science,1996,4:238-244
    [18]VanderHart D L, Asano A, Gilman J W. Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites.1. Crystallinity, morphology, and the direct influence of Fe3+ on nuclear spins. Chem Mater,2001,13:3781-3795
    [19]Clauss J, Schmidt-Rohr K, Spiess H W. Determination of domain sizes in heterogeneous ^polymers by solid-state NMR. Acta Polym,1993,44:1-17
    [20](a) Cho G, Natansohn A. Spin diffusion in a triblock thermoplastic elastomer. Can J Chem, 1994,72:2255-2259 (b) Cho G, Natansohn A, Ho T, et al. Phase structure of poly (dimethylsiloxane-urea-urethane)-segmented copolymers as observed by solid-state nuclear magnetic resonance spectra. Macromolecules,1996,29:2563-2569
    [21]Landfester K, Boeffel C, Lambla M, et al. Characterization of interfaces in core-shell polymers by advanced solid-state NMR methods. Macromolecules,1996,29:5972-5980
    [22]Jack K S, Wang J H, Natansohn A, et al. Characterization of the microdomain structure in polystyrene-polyisoprene block copolymers by 1H spin diffusion and small-angle X-ray scattering methods. Macromolecules,1998,31:3282-3291
    [23]Cai W Z, Schmidt-Rohr K, Egger N, et al. A solid-state n.m.r study of microphase structure and segmental dynamics of poly (styrene-b-methylphenylsiloxane) diblock copolymers. Polymer,1993,34:267-276
    [24]Willett J L, Wool R P. Strength of incompatible amorphous polymer interfaces. Macromolecules,1993,26:5336-5349
    [25]Sun P C, Dang Q Q, Li B H, et al. Mobility, miscibility, and microdomain structure in nanostructured thermoset blends of epoxy resin and amphiphilic poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide) triblock copolymers characterized by solid-state NMR. Macromolecules,2005,38:5654-5667
    [26]Li X J, Fu W G, Wang Y N, et al. Solid-state NMR characterization of unsaturated polyester thermoset blends containing PEO-PPO-PEO block copolymers. Polymer,2008,49: 2886-2897
    [27]Mirau P A. A practical guide to understanding the NMR of polymers, Wiley-lnterscience publisher,2004
    [28]Mellinger F, Wilhelm M, Spiess H W. Calibration of 1H NMR spin diffusion coefficients for mobile polymers through transverse relaxation measurements. Macromolecules,1999,32: 686-4691
    [29]Mirau P A, Yang S. Solid-state proton NMR characterization of ethylene oxide and propylene oxide random and block copolymer composites with poly (methyl silsesquioxanes). Chem Mater,2002,14:249-255
    [30]Demco D E, Johanson A, Tegenfeldt J. Proton spin diffusion for spatial heterogeneity and morphology investigations of polymers. Solid State Nucl Magn Reson,1995,4:13-38; (b) Buda A, Demco D E, Bertmer M, et al. Domain sizes in heterogeneous polymers by spin diffusion using single-quantum and double-quantum dipolar filters. Sol State Nucl Magn Reson,2003,24:39-67; (c) Hedesiu C, Demco D E, Kleppinger R, et al. The effect of temperature and annealing on the phase composition, molecular mobility and the thickness of domains in high-density polyethylene. Polymer,2007,48:763-777
    [31]Nagapudi K, Leisen J, Beckham H W, et al. Gibson and N. M. R. Solid-state, investigations of poly[(acrylonitrile)-rotaxa-(60-crown-20)], Macromolecules,1999,32:3025-3033
    [32]Hedesiu C, Demco, D E, Kleppinger R, et al. The effect of temperature and annealing on the phase composition, molecular mobility and the thickness of domains in high-density polyethylene. Polymer,2007,48:763-777
    [33](a) Horng T J, Woo E M. Effects of network segment structure on the phase homogeneity of crosslinked poly(ethylene oxide)/epoxy networks. Polymer,1998,39:4115-4122; (b) Hu L D, Lu H, Zheng S X. Effect of crosslinking on intermolecular interactions in thermosetting blends of epoxy resin with poly(ethylene oxide). Polym Sci B:Polym Phys,2004,42: 2567-2575
    [34]Rubinstein M, Colby R H. Polymer Physics. New York:Oxford University Press,2003
    [35](a) Wang Z, Li B H, Jin Q H, et al. Self-assembly of cylinder-forming ABA triblock copolymers under cylindrical confinement. Macromol Theory Simul,2008,17:301-312; (b) Wang Z, Li B H, Jin Q H, et al. Simulated annealing study of self-assembly of symmetric ABA triblock copolymers confined in cylindrical nanopores. Macromol Theory Simul,2008, 17:86-102
    [36]Ba Y, Ripmesster J A. Multiple quantum filtering and spin exchange in solid state nuclear magnetic resonance. J Chem Phys,1998,108:8589-8594
    [37]Cherry B R, Fujimoto C H, Cornelius C J, et al. Investigation of domain size in polymer membranes using double-quantum-filtered spin diffusion magic angle spinning NMR. Macromolecules,2005,38:1201-1206
    [Al]Wang J. On the determination of domain sizes in polymers by spin diffusion. J Chem Phys, 1996,104:4850-4858.
    [A2]Buda A, Demco DE, Bertmer M, et al. General analytical description of spin-diffusion for a three domain morphology. Application to melt-spun nylon 6 fibers. J Phys Chem B,2003, 107:5357-5370
    [A3]Buda A, Demco D E, Bertmer M, et al. Domain sizes in heterogeneous polymers by spin diffusion using single-quantum and double-quantum dipolar filters. Solid State Nucl Magn Reson,2003,24:39-67
    [1]国家自然科学基金委员会化学科学部组编,董建华主编,《高分子科学前沿与进展》.北京:科学出版社,2006
    [2]Cowie J M. Encyclopedia of Polymer Science and Engineering-Supplement. Volume,2nd ed. p456. John Wiley & Sons, New York,1989
    [3]Eisenbach C D, Hofmann J, Godel A, et al. Miscibility of rigid-rod and random-coil macromolecules through acid-base interactions. Macromolecules,1999,32:1463-1470
    [4]Ferry J D. Viscoelastic properties of polymers,3rd ed.; John Wiley & Sons, Inc:New York, 1980
    [5]Morawetz H. Studies of synthetic polymers by nonradiative energy transfer. Science,1988, 240:172-176
    [6]Chu B, Hsiao B S. Small-angle X-ray scattering of polymers. Chem Rev,2001,101: 1727-1762
    [7](a) Anastasiadis S H, Russell T P, Satija S K, et al. Neutron reflectivity studies of the surface-induced ordering of diblock copolymer films. Phys Rev Lett.1989,62: 1852-1855; (b) Noro A, Okuda M, Odamaki F, et al. Chain localization and interfacial thickness in microphase-separated structures of block copolymers with variable composition distributions. Macromolecules,2006,39:7654-7661
    [8]Wagler T, Rinaldi P L, Han C D, et al. Phase behavior and segmental mobility in binary blends of polystyrene and poly (vinyl methyl ether). Macromolecules,2000,33: 1778-1789
    [9]Adriaensens P, Storme L, Carleer R, et al. Comparative morphological study of poly (dioxolane)/poly (methyl methacrylate) segmented networks and blends by 13C solid-state NMR and thermal Analysis. Macromolecules,2002,35:3965-3970
    [10]Henrichs P M, Tribone J, Massa D J, et al. Blend miscibility of bisphenol A polycarbonate and poly (ethylene terephthalate) as studied by solid-state high-resolution carbon-13 NMR spectroscopy. Macromolecules,1988,21:1282-1291
    [11]Schmidt-Rohr K, Spiess H W. Multidimensional solid-state NMR and polymers, London: Academic Press Ltd,1994
    [12]Kwei T, Nishi T, Roberts R. A study of compatible polymer mixtures. Macromolecules, 1974,7:667-674
    [13]White J L, Mirau P A. Probing miscibility and intermolecular interactions in solid polymer blends using the nuclear Overhauser effect. Macromolecules,1993,26: 3049-3054
    [14]Menestrel C L, Kenwright A M, Sergot P, et al. Carbon-13 NMR investigation of local dynamics in compatible polymer blends. Macromolecules,1992,25:3020-3026
    [15]Landfester K, Spiess H W. Characterization of interphases in core-shell latexes by solid-state NMR. Acta Polym,1998,49:451-464
    [16]Demco D E, Johanson A, Tegenfeldt J. Proton spin diffusion for spatial heterogeneity and morphology investigations of polymers. Solid State Nucl Magn Reson,1995,4:13-38
    [17]Miyoshi T, Takegoshi K, Terao T. Effects of Xe gas on segmental motion in a polymer blend as studied by 13C and 129Xe high-pressure MAS NMR. Macromolecules,2002,35: 151-154
    [18]Yang C L, Wen W Y, Jones A A, et al. A 129Xe NMR study on an ionomeric polymer blend system. Sol State Nucl Magn Reson,1998,12:153-164
    [19]Qiu X, Mirau P A. WIM/WISE NMR studies of chain dynamics in solid polymers and blends. J Magn Reson,2000,142:183-189
    [20]Lesage A, Bardet M, Emsley L. Through-bond carbon-carbon connectivities in disordered solids by NMR. J Am Chem Soc,1999,121:10987-10993
    [21]Lesage A, Sakellariou D, Steuernagel S, et al. Carbon-proton chemical shift correlation in solid-state NMR by through-bond multiple-quantum spectroscopy. J Am Chem Soc, 1998,120:13194-13201
    [22]Yu T Y, Guo M M. Recent developments in 13C solid state high-resolution NMR of polymers. Prog Polym Sci,1990,15:825-908
    [23]Guo M M. Zachmann H G. Structure and properties of naphthalene-containing polyesters. 2. Miscibility studies of poly (ethylene naphthalene-2,6-dicarboxylate) with poly (butylene terephthalate) by 13C CP/MAS NMR and DSC. Macromolecules,1997,30: 2746-2750
    [24]Goldman M, Shen L. Spin-spin relaxation in LaF3. Phys Rev,1996,144:321-331
    [25](a) Cai W Z, Schmidt-Rohr K, Egger N, et al. A solid-state n.m.r study of microphase structure and segmental dynamics of poly (styrene-b-methylphenylsiloxane) diblock copolymers. Polymer,1993,34:267-276; (b) Spiegel S, Landfester K, Lieser G, et al. Microheterogeneities of core shell latexes probed by 1H spin diffusion and transmission electron microscopy. Macromol Chem Phys,1995,196:985-993
    [26]Clauss J, Schmidt-Rohr K, Spiess H W. Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polym,1993,44:1-17
    [27]Campbell G C, VanderHart D. Optimization of chemical-shift-based polarization gradients in 1H NMR spin-diffusion experiments on polymer blends with chemically similar constituents. J Magn Reson,1992,96:69-93
    [28]VanderHart D L, John Manley R St, Barnes J D. Proton spin diffusion studies of polymer blends having modest monomer size.2. Blends of cellulose with either poly (acrylonitrile) or poly (4-vinylpyridine). Macromolecules,1994,27:2826-2836
    [29]VanderHart D L. Proton spin diffusion studies of polymer blends having modest monomer size:1. Polystyrene/poly (xylylene ether), a miscible blend. Macromolecules, 1994,27:2837-2845
    [30]Guo M. Solid-state high-resolution NMR studies on the miscibility of polymer blends. Trends Polym Sci,1996,4:238-244
    [31]Guo M, Zachmann H G. Intermolecular cross-polarization nuclear magnetic resonance studies of the miscibility of poly (ethylene naphthalene dicarboxylate)/poly (ethylene terephthalate) blends. Polymer,1993,34:2503-2507
    [32]Stejkal E O, Schaefer J, Sefcik M D, et al. Magic-angle carbon-13 nuclear magnetic resonance study of the compatibility of solid polymeric blends. Macromolecules,1981, 14:275-279
    [33]Schnell 1, Spiess H W.1H NMR spectroscopy in the solid state:very fast sample rotation and multiple-quantum coherences. J Magn Reson,2001,151:153-227
    [34]Hou S S, Chen Q, Schmidt-Rohr K. Two-dimensional 13C NMR with 1H spin diffusion for characterizing domain sizes in unlabeled polymers. Macromolecules,2004,37: 1999-2001
    [35]Caravatti P, Neuenschwander P, Ernst R. Characterization of heterogeneous polymer blends by two-dimensional proton spin diffusion spectroscopy. Macromolecules,1985, 18:119-122
    [36]Caravatti P, Neuenschwander P, Ernst R. Charcterization of polymer blends by selective proton spin-diffusion NMR measurements. Macromolecules,1986,19:1889-1995
    [37]Schimidt-Rohr K, Clauss J, Blumich B, et al. Miscibility of polymer blends investigated by 1H spin siffusion and 13C NMR detection. Magn Reson Chem,1990,28:S3
    [38]Campbell G C, VanderHart D. Optimization of chemical-shift-based polarization gradients in 1H NMR spin-diffusion experiments on polymer blends with chemically similar constituents.J Magn Reson,1992,96:69-93
    [39]Rhim W K, Elleman D D, Vaghan R W. Enhanced resolusion for solid state NMR, J Chem Phys,1973,59:3740-3749
    [40]Lesage A, Sakellariou D, Hediger S, et al. Experimenatl aspects of proton NMR spectroscopy in solids using phase-modulated homonuclear dipolar decoupling. J Magn Reson,2003,163:105-113
    [41]Sakellariou D, Lesage A, Hodgkinson P, et al. Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation. Chem Phys Lett,2000,319: 253-260
    [42]Coleman M M, Pehlert G J, Yang X, et al. Self-association versus interassociation in hydrogen bonded polymer blends:1. determination of equilibrium constants from miscible poly (2,6-dialkyl-4-vinyl phenol) blends. Polymer,1996,37:4753-4761
    [43]Wang J, Cheung M K, Mi Y. Miscibility of poly (ethyl oxazoline)/poly (4-vinylphenol) blends as investigated by the high-resolution solid-state 13C NMR. Polymer,2001,42: 2077-2083
    [44]Li X, Goh S H, Lai Y H, et al. Miscibility of carboxyl-containing polysiloxane/poly (vinylpyridine) blends. Polymer,2000,41:6563-6571
    [45]Sawateri C, Kondo T. Interchain hydrogen bonds in blend films of poly (vinyl alcohol) and its derivatives with polyethylene oxide). Macromolecules,1999,32:1949-1955
    [46]Cesteros L C, Isasi J R, Katime I. Hydrogen bonding in poly (4-vinylpyridine)/poly (vinyl acetate-co-vinyl alcohol) blends. An infrared study. Macromolecules,1993,26: 7256-7262
    [47]Ma C C M, Wu H D, Lee C T. Strength of hydrogen bonding in the novolak-type phenolic resin blends. J Polym Sci, part B,1998,36:1721-1729
    [48]Cassu S N, Felisberti M I. Poly (vinyl alcohol) and poly (vinylpyrrolidone) blends:2. Study of relaxations by dynamic mechanical analysis. Polymer,1999,40:4845-4851
    [49]Steiner T, The hydrogen bond in the solid state. Angew Chem Int Ed.2002,41:48-76
    [50](a) Fecko C J, Eaves J D, Loparo J J, et al. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water Science,2003,301:1698-1702; (b) Watson F P, Crick F H. Genetical implications of the structure of deoxyribonucleic acid. Nature,1953,171: 964-967
    [51]Coleman M M, Gref J F, Painter P C. Specific interactions and the miscibility of polymer blends. Lancaster PA:Technomic,1991
    [52]Goh S H, Lee S Y, Zhou X, et al. X-ray photoelectron spectroscopic studies of interactions between styrenic polymers and poly (2,6-dimethyl-1,4-phenylene oxide). Macromolecules,1999,32:942-944
    [53]Goh S H, Lee S Y, Zhou X, et al. X-ray photoelectron spectroscopic studies of interactions between poly (4-vinylpyridine) and poly (styrenesulfonate) salts. Macromolecules,1998,31:4260-4264
    [54]Jiao H, Goh S H, Valiyaveettil S. Mesomorphic interpolymer complexes and blends based on poly (4-vinylpyridine)-dodecylbenzenesulfonic acid complex and poly(acrylic acid) or poly(p-vinylphenol). Macromolecules,2001,34:7162-7165
    [55]Li L, Chan C M, Weng L T, et al. Specific interaction between poly (styrene-co-4-vinyl phenol) and poly (styrene-co-4-vinylpyridine) studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Macromolecules, 1998,31:7248-7255
    [56]Chan C M, Weng L T. Application of X-ray photoelectron spectroscopy and static secondary ion mass spectrometry in surface characterization of copolymers and polymer blends. Rev Chem Eng,2000:16:341-408
    [57]Zeng X M, Chan C M, Weng L T, et al. Surface characterization and quantitative study of poly (4-vinyl phenol) and poly (4-vinyl pyridine) blends by XPS and ToF-SIMS. Polymer,2000,41:8321-8329
    [58]Goh S H, Lee S Y, Yeo Y T, et al. Miscibility and specific interactions in polyacrylonitrile/poly(p-vinylphenol) blends. Macromol Rapid Commun,1999,20: 148-151
    [59]Yi J Z, Goh S H, Wee ATS. Miscibility and interactions in poly (N-acryloylthiomorpholine)/poly(p-vinylphenol) blends. Macromolecules,2001,34: 4662-4665
    [60]Goh S H, Lee S Y, Luo X F, et al. Specific interactions in miscible poly (p-vinylphenol)/ poly (N-methyl-3-piperidinemethyl methacrylate) blends. Macromol Chem Phys,2001, 202:31-35
    [61]Moskala E J, Howe S E, Painter P C, et al. On the role of intermolecular hydrogen bonding in miscible polymer blends. Macromolecules,1984,17:1671-1678
    [62]Coleman M M, Painter P C. Fourier-transform infrared spectroscopy blends:of multicompo-nent polymer blends. Appl Spectro Rev,1984,20:255-263
    [63]Moskala E J, Varnell D F, Coleman M M. Concerning the miscibility of poly (vinyl phenol) blends-FTIR study. Polymer,1985,26:228-234
    [64](a) Brunner E, Sternberg U. Solid state NMR investigations on the nature of hydrogen bonds. Prog Nucl Magn Reson Spectrosc,1998,32:21-57; (b) Pawsey S, McCormick M, Paul S D, et al.'H fast MAS NMR studies of hydrogen-bonding interactions in self-assembled monolayers. J Am Chem Soc,2003,125:4174-4184; (c) Brus J, Dybal J. Long-chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry. Macromolecules,2002,35: 10038-10048; (d) Green M M, White J L, Mirau P, et al. C-H to O hydrogen bonding: the attractive interaction in the blend between polystyrene and poly(vinyl methyl ether). Macromolecules,2006,39:5971-5973; (e) Brown S P, Zhu X X, Saalwachter K, et al. An investigation of the hydrogen-bonding structure in bilirubin by 1H double-quantum magic-angle spinning solid-state NMR spectroscopy. J Am Chem Soc,2001,123: 4275-4285; (f) Densmore C G, Rasmussen P G, Goward G R. Probing hydrogen bonding and proton mobility in dicyanoimidazole monomers and polymers. Macromolecules,2005,38:416-421
    [65]Witter R, Sternberg U, Hesse S, et al.13C chemical shift constrained crystal structure refinement of cellulose la and its verification by NMR anisotropy experiments. Macromolecules,2006,39:6125-6132
    [66]Kadla J F, Kubo S. Miscibility and hydrogen bonding in blends of poly (ethylene oxide) and kraft lignin. Macromolecules,2003,36:7803-7811
    [67]Xu J W, He C B, Toh KC, Lu X H. Intermolecular interaction in multicomponent supram-olecular complexes through hydrogen-bonding association. Macromolecules, 2002,35:8846-8851
    [68]Rachocki A., Tritt-Goc J. The molecular origin of the nuclear magnetic relaxation in the methyl cellulose and hydroxypropylmethyl cellulose. J Polym Res,2006,13:201-206
    [69]Kuo S W, Chang F C. Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone). Macromolecules,2001,34:5224-5228
    [70](a) Diez-Pena E, Quijada-Garrido I, Barrales-Rienda J M, et al. Advanced'H solid-state NMR spectroscopy on hydrogels. Macr Chem Phys,2004,205:430-437; (b) Traer J W, Goward G R. Solid-state NMR studies of hydrogen bonding networks and proton transport pathways based on anion and cation dynamics. Magn Reson Chem,2007,45: S135-S143
    [71]Kuo S W, Chang F C. Miscibility and hydrogen bonding in blends of poly (vinylphenol-co-methyl methacrylate) with poly (ethylene oxide). Macromolecules, 2001,34:4089-4097
    [72]Dybowski C, Bai S, Bramer S V. Solid-state nuclear magnetic resonance. Anal Chem, 2002,74:2713-2718
    [73]Lau C, Mi Y. A study of blending and complexation of poly(acrylic acid)/poly(vinyl pyrrolidone). Polymer,2001,43:823-829
    [74]Senake-Perera M C, Ishiaku U S, Ishak Mohd Z A. Characterisation of PVC/NBR and PVC/ENR50 binary blends and PVC/ENR50/NBR ternary blends by DMA and solid state NMR. Eur Polym J,2001,37:167-178
    [75]Kesling B, Hughes E, Gullion T. 13C-14N REAPDOR and 13C-2D θ-REDOR NMR on a blend of tri-p-tolylamine and bisphenol-A-polycarbonate. Solid State Nucl Magn Reson, 2000,16:1-7
    [76]Wu H D, Ma C C M, Chang F C. The solid state 13C NMR studies of intermolecular hydrogen bonding formation in a blend of phenolic resin and poly (hydroxyl ether) of bisphenol A. Macromol Chem Phys,2000,201:1121-1127
    [77]Torres M A P R, Oliveira C M F, Tavares M I B. Thermal and NMR Studies of Polystyrene Blends. lnt J Polym Mater,2000,46:695-700
    [78]Kuo S W, Tung P H, Chang F C. Syntheses and the study of strongly hydrogen-bonded poly(vinylphenol-b-vinylpyridine) diblock copolymer through anionic polymerization. Macromolecules,2006,39:9388-9395
    [79]Samoson A, Tuherm T, Gan Z. High-field high-speed MAS resolution enhancement in'H NMR spectroscopy of solids. Solid State Nucl Magn Reson,2001,20:130-136
    [80]Gerstein B C, Pembleton R G, Wilson R C, et al. High resolution NMR in randomly oriented solids with homonuclear dipolar broadening:Combined multiple pulse NMR and magic angle spinning. J Chem Phys,1977,66:361-362
    [81]Sakellatiou D, Lesage A, Hodgkinson P, et al. Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation. Chem Phys Lett,2000,319: 253-260
    [82]Elena B, de Paepe G, Emsley L. Direct spectral optimisation of proton-proton homonuclear dipolar decoupling in solid-state NMR. Chem Phys Lett,2004,398: 532-538
    [83]Li B H, Xu L, Wu Q, et al. Various types of hydrogen honds, their temperature fependence and water-polymer interaction in hydrated poly (acrylic acid) as revealed by 1H solid-state NMR dpectroscopy. Macromolecules,2007,40:5776-5786
    [84]Ward I M, Hadley D W. An Introduction to the Mechanical Properties of Solid Polymers, 2nd ed.; John Wiley and Sons:London,1993
    [85]Connor T M, Read B E, Willians G. The dielectric, dynamic mechanical, and nuclear resonance properties of poly (ethylene oxide) as a function of molecular weight. J Appl Chem,1964,14:74-81
    [86]Hu W-G, Schmidt-Rohr K. Polymer ultradrawability:The crucial role of a-relaxation chain mobility in the crystallites. Acta Polym,1999,50:271-285
    [87]Palmer A G, Williams J, McDermott A. Nuclear magnetic resonance studies of biopolymer dynamics. J Phys Chem,1996,100:13293-13310
    [88]McKenna G B. Dynamics and mechanics below the glass transition:The non-equilibrium state. Comput Mater Sci,1995,4:349-360
    [89]Uehara H, Yamanobe T, Komoto T. Size-selective diffusion in nanoporous but flexible membranes for glucose sensors. Macromolecules,2000,33:4861-4870
    [90]Yao Y F, Graf R, Spiess H W, et al. Resticted segmental mobility can facilitate medim-range chain diffusion:a NMR srudy of morphological influence on chain dynamics of polyethylene. Macromolecles,2008,41:2514-2510
    [91]Schmidt-Rohr K, Spiess H W. Multidimensional Solid-State NMR and Polymers. Academic Press Inc.:San Diego, CA,1994
    [92]Spiess H W, edited by Kausch H H, Zachmann H G. Springer, Berlin, in Adv Polym Sci, 1985,66:24-57
    [93]Jacob Schaefer, Sefcik M D, Stejskal E O, et al. Carbon-13 T1ρ experiments on solid polymers having tightly spin-coupled protons. Macromolecules,1984,17:1118-1124
    [94]Schaefer J, McKay R A, Stejskal E O, et al. Dipolar rotational spin-echo 13C NMR of polymers. J Magn Reson,1983,52:123-129
    [95]Schaefer J, Sefcik M D, Stejskal E O, et al. Molecular motion in glassy polystyrenes. Macromolecules,1984,17:1107-1118
    [96]Schmidt-Rohr K, Clauss J, Spiess H W. Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules,1992,25:3273-3277
    [97]Wu C H, Ramamoorthy A, Opella S J. High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J Magn Reson Ser A,1994,109:270-272
    [98]Hong M, Yao X L, Jakes K, et al. Investigation of molecular motions by Lee-Goldburg cross-polarization NMR spectroscopy. J Phys Chem B,2002,106:7355-7364
    [99]Spiess H W. Molecular dynamics of solid polymers as revealed by deuteron NMR. Colloid & Polymer Sci. Polymer Science,1983,261:193-209
    [100]Graf R, Demco D E, Hafner S. et al. Selective residual dipolar couplings in cross-linked elastomers by 1H double-quantum NMR spectroscopy. Solid State Nucl Magn Reson, 1998,12:139-152
    [101]Gasper L, Demco D E, Blumich B. Proton residual dipolar couplings by NMR spectral spin diffusion in cross-linked elastomers:determination and imaging. Solid State Nucl Magn Reson,1999,14:105-116
    [102]Reif B, Jaroniec C P, Rienstra C M, et al. H-1-H-1 MAS correlation spectroscopy and distance measurements in a deuterated peptide, J Magn Reson,2001,151:320-327
    [103]T Hiroki T, Masatsune K, Hideo A, et al.1H-detected 1H-1H correlation spectroscopy of a stereo-array isotope labeled amino acid under fast magic-angle spinning. J Magn Reson,2010,203:253-256
    [104]Schmidt-Rohr K, Spiess H W. Multidimensional Solid-State NMR and Polymers; Academic Press:London,1994
    [105]Huster D, Xiao L. Hong M. Solid-state NMR investigation of the dynamics of soluble and membrane-bound colicin la channel-forming domain. Biochemistry,2001,40: 7662-7674
    [106]Seidel K, Etzkorn M, Sonnenberg L, et al. Studying molecular 3D structure and dynamics by high-resolution solid-state NMR:application to 1-tyrosine-ethylester. J Phys Chem A,2005,109:2436-2442
    [107]deAzevedo E R, Hu W-G, Bonagamba T J, et al. Centerband-only detection of exchange:efficient analysis of dynamics in solids by NMR. J Am Chem Soc,1999,121: 8411-8412
    [108]deAzevedo E R, Hu W-G, Bonagamba T J, et al. Principles of centerband-only detection of exchange in solid-state nuclear magnetic resonance, and extension to four-time centerband-only detection of exchange. J Chem Phys,2000,112:8988-9001
    [109]White J L, Mirau P A. Heteronuclear correlation in solid polymers:identification of hydrogen bond donors and acceptors in miscible polymer blends. Macromolecules, 1994,27:1648-1650
    [110]Jiang M, Qiu X, Qin W, et al. Intermacromolecular complexation due to specific interactions.2. Nonradiative energy transfer fluorospectroscopy and nuclear magnetic resonance monitoring miscibility-complexation transition. Macromolecules,1995,28: 730-735
    [111]Zhang X Q, Takegoshi K, Hikichi K. Poly (vinylplienol)/Poly (nethul acrylate) and Poly (vinylphenol)/Poly (methul methacrylate) blends:Hydrogen bonding, Miscibilty, and blending effects on molecular motions as srudied by 13C CP/MAS NMR. Macromoleculaes,1991,24:5756-5762
    [112]Gu Z T, Zambrano R, McDermott A. Hydrogen bonding of carboxyl groups in solid-state amino acids and peptides:comparison of carbon chemical shielding, infrared frequencies, and structures. J Am Chem Soc,1994,116:6368-6372
    [113]Yuichi K. Synthesis of N-cyclohexyl-maleimide for heat-resistant transparent methacrylic resin. J Appl Polym Sci,1997,63:363-368
    [114]Li C, Nagarajan R M, Chiang C C, et al. Synthesis and characterization of radiation curable polyurethanes containing pendant acrylate groups. Polym Eng Sci,1986,26: 1442-1450;
    [115]Chiang W Y, Shu W J. Preparation and properties of UV-curable poly (dimethylsiloxane) urethane acrylate. Ⅱ. Property-structure/molecular weight relationships. J Appl Polym Sci,1988,36:1889-1907
    [116]Otsu T, Motsumoto T. Reactivity in radical polymerization of N-substituted maleimides and thermal stability of the resulting. Polym Bull,1990,23:43-50
    [117]Braun D, Czerwinski W K. Kinetische analyse der copolymerisationsgeschwindigkeit von N-vinyl-2-pyrrolidon mit styrol und methylmethacrylat. Makromol Chem,1987, 188:2389-2401
    [118]Goh S H, Siow K S. Miscibility of poly (p-vinyl phenol) with polymethacrylates. Polym Bull,1987,17:453-458
    [119]Serman C J, Painter P C, Coleman M M. Studies of the phase behaviour of poly (vinyl phenol)-poly (n-alkyl methacrylate) blends. Polymer,1991,32:1049-1068
    [120]Li D, Brisson J. Hydrogen bonds in poly (methyl methacrylate)-poly (4-vinyl phenol) blends,1. quantitative analysis using FTi.r. spectroscopy. Polymer,1997,39:793-800
    [121]Zhang X Q, Takegoshi K, Hikichi K. Nuclear Overhauser effect study in intermolecular interaction and miscibility of polymer blends in the solution states. Macromolecules, 1992,25:4871-4875
    [122]White J L, Mirau P. Probing miscibility and intermolecular interactions in solid polymer blends using the nuclear Overhauser effect. Macromolcules,1990,26: 3049-3054
    [123]Schmidt-Rohr K, Kulik A S, Beckham H W, et al. Molecular nature of the β relaxation in poly (methyl methacrylate) investigated by multidimensional NMR. Macromolecules, 1994,27:4733-4745
    [124]Schilling F C, Bovey F A, Bruch M D, et al. Observation of the stereochemical configuration of poly(methyl methacrylate) by proton two-eimensional J-correlated and NOE-correlated NMR spectroscopy. Macromolecules,1985,18:1418-1422
    [125]Ryan L M, Taylor R E, Paff A J, et al. An experimental study of resolution of proton chemical shifts in solids:Combined multiple pulse NMR and magic-angle spinning. J Chem Phys,1980,72:508-515
    [126]Andrew E R. The narrowing of NMR spectra of solids by high-speed specimen rotation and the resolution of chemical shift and spin multiplet structures for solids. Prog Nucl Magn Reson Spectrosc,1971,8:1-39
    [127]Waugh J S, Huber L M, Haeberlen U. Approach to high-resolution NMR in solids. Phys Rev Lett,1968,20:180-182
    [128]Rhim W-K, Elleman D D, Vaughan R W. Analysis of multiple pulse NMR in solids. J Chem Phys,1973,59:3740-3749
    [129]Sakellariou D, Lesage A, Hodgkinson P, et al. Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation. Chem Phys Lett,2000,319: 253-260
    [130]Carabatti P, Levitt M H, Ernst R R. Selective excitation in solid-state NMR in the presence of multiple-pulse line narrowing. J Magn Reson,1986,68:323-325
    [131]An NMR study of miscible blends in concentrated solution.1. Poly (vinyl methyl ether)/polystyrene. Macromolecules,1988,21:2924-2928
    [132]Mirau P A, Tanaka H, Bovey F A. Two-dimensional NMR studies of polymer mixtures. Macromolecules,1988,21:2929-2933
    [133]Mirau P A, Bovey F A. Two-dimensional NMR studies of molecular weight and concentration effects on polymer-polymer interactions. Macromolcules,1990,23: 4548-4552
    [134]Bronnimann C E, Ridenour C F, Kinney D R, and et al.2D 1H-13C Heteronuclear correlation spectra of fepresentative organic solids. J Magn Reson,1992,91:522-534
    [135]deDios A C, Oldfield E. Ab initio study of the effects of torsion angles on carbon-13 NMR chemical shielding in N-formyl-L-alanine amide, N-formyl-L-valine amide, and some simple model compounds:Applications to protein NMR spectroscopy. J Am Chem Phys,1994,116:5307-5314
    [136]Heller J, Laws D D, Tomaselli M, et al. Determination of dihedral angles in peptides through experimental and theoretical studies of a-carbon chemical shielding tensors. J Am Chem Soc,1997,119,7827-7831
    [137]Hong M. Solid-state NMRdetermination of 13Ca chemical shift anisotropy for the identification of protein secondary structure. J Am Chem Soc,2000,122:3762-3770
    [138]Hu J Z, Solum M S, Taylor C M V, et al. Structural determination in carbonaceous solids using advanced solid state NMR techniques. Energy Fuels,2001,15:14-22
    [139]Hartzell C J, Whitfeld M, Oas T G, et al. Determination of the 15N and 13C chemical shift tensors of L-[13C]alanyl-L-[15N]alanine from the dipole-coupled powder patterns, J Am Chem Soc,1987,109:5966-5969
    [140]Havlin R H, Le H, Laws D D, et al. An ab initio quantum chemical investigation of carbon-13 NMR shielding tensors in glycine, alanine, valine, isoleucine, serine, and threonine:Comparisons between helical and sheet tensors, and the effects of χ1 on shielding. J Am Chem Soc,1997,119:11951-11958
    [141]Duncan T M. A compilation of chemical shift anisotropies. Farragut, Chicago,1990
    [142]Marassi F M, Ma C, Gesell J J, et al. Three-dimensional solid-state NMR spectroscopy is essential for resolution of resonances from in-plane residues in uniformly 15N-labeled helical membrane proteins in oriented lipid bilayers. J Magn Reson,2000,144: 156-161
    [143]Wang J, Kim S, Kovacs F, et al. Structure of the transmembrane region of the M2 protein H+ channel. Protein Sci,2001,10:2241-2250
    [144]Mehring M, Waugh J S. Magic-angle NMR experiments in solids. Phys Rev B,1972,5: 3459-3471
    [145]Dvinskich S V, Zimmermann H, Maliniak A, et al. Heteronuclear dipolar recoupling in liquid crystals and solids by PISEMA-type pulse sequences. J Magn Reson,2003, 164:165-170
    [146]Dvinskich S V, Zimmermann H, Maliniak A, et al. Heteronuclear dipolar recoupling in solid-state nuclear magnetic resonance by amplitude-, phase-, and frequency-modulated Lee-Goldburg cross-polarization. J Chem Phys,2005,122:044512-044513
    [147]Serman C J, Painter P C, Coleman M M. Studies of the phase behaviour of poly (vinyl phenol)-poly (n-alkyl methacrylate) blends. Polymer,1991,32:1049-1058.
    [148]NOTE:Frisch M J et al. Gaussian 03, Revision C.02; Gaussian, Inc.:Pittsburgh P A, 2003.
    [149]Cho G, Natansohn A. Investigation of phase structure of blends of poly [(N-ethylcarbazol-3-yl) methyl methacrylate] and poly{2-[(3,5-Dinitrobenzoyl) oxy]-ethyl methacrylate} using 1H CRAMPS NMR. Chem Mate,1997,9:148-154
    [150]Wang J H. On the determination of domain sizes in polymers by spin diffusion. J Chem Phys,1996,104:485-4858
    [151]Yu H S, Natansohn A, Singh M A, et al. Solid-state NMR and small-angle X-ray scattering strdy of microphase structure of amorphous and semicrystalline poly (styrene-ethylene oxide) diblock copolymers. Macromolecules,2001,34:1258-1266
    [152]Cai W Z, Schimidt-Rrohr K, Egger B, et al. A solid-state n.m.r. study of microphase structure and segmental dynamics of poly (styrene-b-methylphenylsiloxane) diblock copolymers. Polymer,1993,34:267-276
    [153]Mason J. Conventions for the reporting of nuclear magnetic shielding (of shift) tensors suggested by participants in the NATO ARW on NMR Shielding Constants at the University of Maryland, College PArk, July 1992. Solid tate Nucl. Magn Reson,1993, 2:285-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700