土壤中黑炭的积累、分布特征及其稳定性的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于黑炭具有特殊的理化性质,使其具有影响全球碳循环、土壤性质和环境中污染物迁移能力等环境意义。研究黑炭在不同土壤中的积累分布规律及其稳定性,可为深入而全面的理解人为活动对黑炭积累分布的影响、土壤中黑炭的稳定性机理、土壤有机碳库对全球环境变化的作用及合理管理土壤提供科学依据。
     论文在全面评述黑炭在不同类型土壤中的积累分布特点、在土壤环境中的转化及其表面化学性质变化的基础上,采样分析了几种代表性土壤中黑炭的积累与分布规律;利用培养实验和化学氧化方法模拟黑炭进入土壤初期生物与非生物降解过程、不同强度非生物降解过程以及不同时间尺度下黑炭的降解过程,并运用物理、化学和仪器分析方法对降解后黑炭的形貌特征、化学结构、表面性质及其对有机污染物吸附规律的变化进行研究,获得如下主要结果:
     (1)从浙江省采集了受人类活动不同程度影响的表层土壤和剖面土壤,用化学分析的方法测定土壤中黑炭的含量。结果发现:林地土壤中普遍存在黑炭,枯枝落叶层、表土层(0-10cm)和亚表土层(10~20cm)黑炭数量分别为0.27-67.63,0.83~22.42和0.27~8.72g kg-1,各占有机碳总量的0.12%-13.14%,1.87%~21.40%和3.31%~27.13%。近40年内发生过火灾的样区枯枝落叶层和表土层黑炭质量分数明显高于近期没有发生过火灾的土壤,但近期是否发生火灾对亚表层黑炭积累无明显影响。地形位置对土壤中黑炭的积累也有一定的影响,积累量在山坡坡脚区域明显高于坡顶和上坡。
     代表性城市土壤黑炭在0~15.22g kg-1之间,平均为3.83g kg-1,变异系数达51.96%,主要集中分布在1~5g kg1之间。城市土壤黑炭平均含量由高至低依次为:工厂厂区土壤>城郊蔬菜地土壤>城市道路附近土壤>城市绿地土壤。黑炭占城市土壤有机碳的比例在0%-53.2%之间,平均为24.83%,该比例由高至低为工厂厂区土壤>城市道路附近土壤>城郊蔬菜地土壤>城市绿地土壤。另外,在水耕人为土壤中,黄斑田土壤有机碳库低于青紫泥田和烂青紫泥田,黑炭占有机碳总量的4.2%-24.6%,在黄斑田和青紫泥田中随深度降低,而在烂青紫泥田中剖面上下差异不大。研究还发现土壤中的黑炭颗粒较小,主要出现在“粘粒”粒级中,随剖面深度增加黑炭颗粒趋向减小。
     (2)采用直接从不同火灾发生历史记录并有明显黑炭积累的土壤中分离出黑炭样品,并对土壤中黑炭的表面化学性质及其变化进行了初步研究,发现随着黑炭进入土壤后保存时间的延长,黑炭的C含量在67.30%~88.3%之间,逐渐降低;O含量在7.2%~18.6%之间,H含量在1.2%~3.1%之间,有逐渐增加的趋势;同时,CEC在0.17~42.44cmol kg-1之间,逐渐增加;比表面积在48~132m2g1之间逐渐降低。碱性基团在2.65~18.93cmol kg-1之间,也随着形成时间增加趋向减少,而羧基、酸性基团及总基团数分别在16.59-63.24、38.66~124.17和50.80~1298.39cmol kg-1之间,随形成时间的增加而增加。对代表性样品的红外光谱鉴定也表明,随着黑炭进入土壤后保存时间的增加含氧官能团(羧基、羰基、羟基等)均有明显的增加。
     (3)为了比较生物与非生物降解过程对黑炭矿化速率及其表面性质的影响程度,采用实验室模拟的方法研究了黑炭进入环境初期生物与非生物降解过程对其矿化速率、比表面积、孔隙结构、表面官能团及其对有机污染物吸附能力的影响。结果表明,在30-C培养条件下,添加外源微生物能够促进黑炭的矿化,且累积释放的CO2的量比非生物降解条件下累积释放的CO2的量多;但经生物降解后黑炭表面含氧官能团、比表面积和孔径分布与经非生物降解后黑炭的相比无显著性差异。温度能够影响非生物降解过程中黑炭的矿化速率及其累积释放C02的量,黑炭在70℃非生物降解过程中的矿化速率和累积释放CO2的量均显著大于其在30℃非生物降解过程中的矿化速率和累积释放CO2的量。而且,经70-C非生物降解后黑炭的表面含氧官能团、比表面积、孔径分布和对硝基苯的吸附能力与经30-C生物降解后黑炭的相比均有显著性差异,说明高温条件下空气对黑炭的氧化过程对其表面性质的影响比30℃条件下外源微生物的降解过程对其的影响更加显著。
     (4)为了更深入的了解不同强度非生物降解过程对黑炭性质的影响,选取了70℃条件下热空气氧化(弱氧化)、双氧水氧化(强氧化)和浓硝酸氧化(极强氧化)等三种不同氧化强度的非生物氧化方法对黑炭性质的影响进行了研究。结果发现,经热空气氧化后黑炭的孔隙被堵塞导致其比表面积和总孔体积减小。而经双氧水和浓硝酸氧化后,黑炭的初始结构被破坏,形成碎片粒子,这些碎片粒子堆积可形成狭缝孔,从而增加了黑炭的比表面积和总孔体积。氧化强度最大的浓硝酸能够将黑炭的孔隙结构破坏的最彻底。而且,经浓硝酸氧化后黑炭的表面形成的含氧官能团的数量最多,元素组成的变化程度最大。
     (5)由于黑炭具有高度的稳定性,直接开展黑炭在环境中经不同时间尺度降解后其性质变化的研究极具挑战性,因此本研究利用培养试验(培养周期为1年,培养温度为30℃)和浓硝酸剧烈氧化的方法分别模拟黑炭在环境中发生的短期降解过程和黑炭进入环境中极长一段时间后的降解过程。研究结果表明,经短期环境降解后黑炭的比表面积、孔体积及其对有机污染物的吸附能力均有显著变化,但其表面含氧官能团及表面碳氧元素比无显著性变化;经长期的环境降解后黑炭的比表面积、孔体积、表面含氧官能团及其对污染物的吸附能力有显著性变化。在氧化过程中黑炭性质的变化与黑炭的种类(如制备黑炭的生物质及制备温度)和氧化条件有关。由氧化引起的黑炭性质的变化,会对富含黑炭的土壤的性质存在潜在性的影响。
Due to its special physical and chemical properties, black carbon can be used to enhance soil fertility, adsorb contaminants and sequester atmospheric C in terrestrial systems to offset C emissions and combat global climate change. Investigating the accumulation and stability of black carbon can provide a scientific basis to better understanding the effect of human activities on the accumulation of black carbon, the stability mechanism of black carbon, the contribution of black carbon on the global climate change and soil management.
     This dissertation, which is supported by the Natural Science Foundation of China (N0.40771090;4047164), aimed to understand the effect of human activity on the accumulation, the changes in chemical composition and surface chemical properties of black carbon in soils due to long-term natural oxidation, the contribution of biotic and abiotic oxidation on the degradation of black carbon, the effects of different intensity of abiotically oxidation conditions (hot air, hydrogen peroxide and nitric acid) on black carbon stability, and the impacts of short-and long-term degradation on the surface properties of black carbon and its potential implications on soil. The main conclusions are as follows:
     (1) The surface soil and profile soil samples have been influenced by human activities to varying degrees in Zhejiang Province, and deterimined by chemical analysis method. The resuts showed that the mean content of black carbon in litter, surface layer and subsurface layer in the forest soils were3.96,6.91, and3.39g kg-1in that order, accounting for0.96%,8.07%, and11.82%of the soil total organic carbon (TOC), respectively. From40sites experiencing fire events within the last40years, black carbon in the litter and0-10cm soils was significantly higher than soils without a record of fire (p<0.05), whereas in the10-20cm soils fire events had no major impact on black carbon content (p<0.05). In the hilly area, accumulation of black carbon in the soils was generally higher on the low part compared to the top and upper part. The contents of black carbon in urban soils ranged from0to15.22g kg-1, and averaged in3.83g kg-1. Mean contents of black carbon in urban soils for different land uses were in the order manufacture area> vegetable land in suburban area> road in urban area> green space in urban area. Proportion of black carbon in total organic carbon ranged from0%to53.2%with the mean of24.83%. The proportion decreased in the sequence of manufacture area> road in urban area> vegetable land in suburban area> urban green space. In fluvimarine plain, total organic carbon pool in1m soil profile was lower in silty-clayey yellow mottled paddy soil on fluvialmarine than those of blue clayey paddy soil and gleyed blue clayey paddy soil in typical stagnic anthrosols. Black carbon, accounted for4.2%-24.6%of the total soil organic carbon, decreased with increasing depth for silty-clayey yellow mottled paddy soil on fluvialmarine and blue clayey paddy soil, and was even for gleyed blue clayey paddy soil. However, black carbon tended to be richened in clay component. The size of black carbon decreased with increasing profile depth.
     (2) Black carbon samples were collected from several historical fire-impacted sites from Zhejiang Province and were investigated the changes in chemical composition and surface chemical properties. The results showed that compared with new formed black carbon, soil black carbon exhibited a much lower surface area and alkaline groups, which were in the range of48-132m2g-1and2.65-18.93cmol kg-1, respectively. In contrast, carboxyl, acid groups and total group increased, their contents were16.59~63.24,38.66~124.17and50.80-1298.39cmol kg-1, respectively. Additionally, infrared spectroscopy identification of representative samples also showed that O-containing functional groups increased distinctly with the increase of time. Therefore, above results suggest that soil environments, land use, and formation time of black carbon may all have an impact on soil carbon biogeochemical cycles and soil biological chemistry.
     (3) In order to compare the importance of biotic and abiotic degradation on the properties changes of black carbon, the laboratoty simulated studies were used. The results showed that the labile fractions and stability of black carbon depend on the type of black carbon. In the condition of incubation at30℃, additional microbe can promote the mineralization of black carbon caused more CO2is released than abiotic degradation. However, in this condition, there is no significant changes in the surface oxygen-containing functional groups, surface area, and pore distribution after biotic degradation compared to abiotic degradation. The amount and rate of released CO2of70℃abiotic oxidation is more than that of30℃biotic oxidation. Additionally, surface oxygen-containing functional groups, surface area, pore distribution, and adsorption properties changed significantly after70℃abiotic oxidation. These results indicated that the severe oxidation provide more contribution to the black carbon degradation than microbe oxidation.
     (4) We used chemical oxidation method to investigate the effects of oxidative intensity on the changes of black carbon properties. The results showed that the changes of black carbon properties significantly depended on oxidative intensity. Hot air oxidation could cause blockage in pores of the original black carbon, which may explain the decrease in surface area and total pore volumes. While these parameters increased dramatically after nitric acid and hydrogen peroxide oxidation, as the structure of the original black carbon was severely destroyed, and the smaller size particles formed the slit-like mesopores. The data of FTIR spectra and zeta potentials indicated that nitric acid fixed the most oxygen-containing functional groups. These oxidation led to changes in elemental composition of black carbon. The nitric acid oxidized black carbon was shown to have highest oxygen content. These findings suggest that the changes of properties of black carbon oxidized by abiotic processes may affect black carbon environmental behavior.
     (5) A simulated oxidation technique was used to examine the impacts of degradation on the surface properties of biochar and the potential implications of the changes in biochar properties were discussed. To simulate the short-and long-term environmental degradation, mild and harsh degradation were employed. Results showed that after mild degradation, the black carbon samples showed significant reductions in surface area and pore volumes. After harsh degradation, the black carbon samples revealed dramatic variations in their surface chemistry, surface area, pore volumes, morphology and adsorption properties. The results clearly indicate that changes of black carbon surface properties were affected by black carbon types and oxidative conditions. It is suggested that black carbon surface properties are likely to be gradually altered during environmental exposure. This implies that these changes have potential effects for altering the physicochemical properties of black carbon amended soils.
引文
Aiken, G.R., Mcknight, D.M., Wershaw, R.L.,1985. Humic substances in soils, sediment and water:Geochemistry, isolation and characterization. John Wiley& Sons, New York, pp:329-370.
    Akhter, M.S., Chughtai, A.R., Smith, D.M.,1984. Reaction of hexane soot with NO2/N2O4. The Journal of Physical Chemical 88,5334-5342.
    American Society for Testing and Materials (ASTM),2001. D 1762-84, Standard test method for chemical analysis of wood charcoal.
    Asadi, A., Moayedi, H., Huat, B.B.K., Boroujen, F.Z., Parsaie, A., Sojoudi, S.,2011. Prediction of zeta potential for tropical peat in the presence of different cations using artificial neural networks. International Journal of Electrochemical Science 6,1146-1158.
    Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., Horie, T,2009. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research 111,81-84.
    Ascough, P.L., Bird, M.I., Francis, S.M., Thornton, B., Midwood, A.J., Scott, A.C., Apperley, D.,2011. Variability in oxidative degradation of charcoal:influence of production conditions and environmental exposure. Geochimica et Cosmochimica Acta 75,2361-2378.
    Aygun, A., Yemosoy-Karakas, S., Duman, I.,2003. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous and Mesoporous Materials 66,189-1985.
    Baldock, J.A., Smernik, R.J.,2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood. Organic Geochemistry 33, 1093-1109.
    Baring, H., Bucheli, T.D., Broman, D., Gustafsson,O.,2002. Soot-water distribution coefficients for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polybrominated diphenylethers determined with the soot cosolvency-column method. Chemosphere 49,515-523.
    Barrett, B.E., Joyner, L.G., Halenda, P.P.,1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society 73,373-380.
    Beesley, L., Moreno-Jimenez, E., Jomez-Eyles, J.L.,2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminats in a multi-element polluted soil. Environmental Pollution 158(6),2282-2287.
    Biagini, E., Tognotti, L.,2003. Characterization of biomass chars, in Proceedings of the Seventh International Conference on Energy for Clean Environment,7-10 July 2003, Lisbon, Portugal.
    Bingemann, C.M., Varner, J.E., Martin, W.P.,1953. The effect of the addition of organic materials on the decomposition of organic soil. Soil Science of America Proceedings 17,34-38.
    Biniak, S., Szymanski, G., Siedlewski, J., Swiatkowski, A.,1997. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35, 1799-1810.
    Biscoe, J., Warren, B.E.,1942. An X-ray study of carbon black. Journal of Applied Physics 13,364.
    Boating, A.A.,2007. Characterization and thermal conversion of charcoal derived from fluidized-bed fast pyrolysis oil production of switchgrass. Industrial Engineering and Chemical Research 46,8857-8862.
    Boehm, H.P.,1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32,759-769.
    Bornemann, L., Welp, G, Brodowski, S., Rodionov, A., Amelung, W.,2008. Rapid assessment of black carbon in soil organic matter using mid-infrared spectroscopy. Organic Geochemistry 39,1537-1544.
    Bourke, J., Manley-Harris, M., Fushimi, C., Dowaki, K., Nunoura, T., Antal, M.J.Jr., 2007. Do all carbonized charcoals have the chemical structure? 2. A model of the chemical structure of carbonized charcoal. Industrial and Engineering Chemistry Research 46,5954-5967.
    Braida, W.J., Pigbatello, J.J., Lu, Y., Ravikovitch, P., Neimark, A.V., Xing, B.,2003. Sorption hysteresis of benzene in charcoal particles. Environmental Science & Technology 37,409-417.
    Brodowski, S., Amelung, W., Haumaier, L., Abetz, C., Wolfgang, Z.,2005b. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128,116-129.
    Brodowski, S., Rodionov, A., Haumaier, L., Glaser, B., Amelung, W.,2005a. Revised black carbon assessment using benzene polycarboxylic acids. Organic Geochemistry 36,1299-1310.
    Brodowski, S.B.,2004. Origin, Function, and Reactivity of Black Carbon in the Arable Soil Environment, PhD thesis, University of Bayreuth, Bayreuth, Germany.
    Brown, R.A., Kercher, A.K., Nguyen, T.H., Nagle, D.C., Ball, W.P.,2006. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Organic Geochemistry 37,321-333.
    Brunauer, S., Emmett, P.H., Teller, E.,1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60,309-319.
    Bucheli, T.D., Blum, F., Desaules, A., Gustafsson, O.,2004. Polycyclie aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56,1061-1076.
    Bucheli, T.D., Gustafsson, O.,2003. Soot sorption of non-ortho and ortho substituted PCBs. Chemosphere 53,515-522.
    Byrne, C.,1996. Polymer, Ceramic, and Carbon Composites Derived from Wood. PhD thesis, The Johns Hopkins University, US.
    Byrne, C.E., Nagle, D.C.,1997. Carbonized wood monoliths-characterization. Carbon 35,267-273.
    Cachier, H.P., Bremond, M.P., Buat-Menard, P.,1989a. Thermal separation of soot carbon. Aerosol Science and Technology 10,358-364.
    Cachier, H.P., Bremond, M.P., Buat-Menard, P.,1989b. Determination of atmospheric soot carbon by a simple thermal method. Tellus 41B,379-390.
    Cao, X.D., Ma, L., Gao, B., Harris, W.,2009. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology 43(9), 3285-3291.
    Carcaillet, C.,2001. Are Holocene wood-charcoal fragments stratified in alpine and subalpine soils? Evidence from the Alps based on AMS14C dates. Holocene 11, 231-252.
    Centin, E., Moghtaderi, B., Gupta, R., Wall, T.E.,2004. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83, 2139-2150.
    Chen, B.L., Zhou, D.D., Zhu, L.Z.,2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology 42, 5137-5143.
    Cheng, C.H., Lehmann, J.,2009. Ageing of black carbon along a temperature gradient. Chemosphere 75,1021-1027.
    Cheng, C.H., Lehmann, J., Engelhard, M.H.,2008. Natural oxidation of black carbon in soils:changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta 72,1598-1610.
    Cheng, C.H., Lehmann, J., Thies, J.E., Burton, S.D., Engelhard, M.H.,2006. Oxidation of black carbon by biotic and abiotic process. Organic Geochemistry 37,1477-1488.
    Chun, Y., Sheng, G., Chiou, C.T., Xing, B.,2004. Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology 38,4649-4655.
    Cohen-Ofri, I., Popovitz-Niro, R., Weiner, S.,2007. Structural characterization of modern and fossilized charcoal produced in natural fires as determined by using electron energy loss spectroscopy. Chemistry-A European Journal 13, 2306-2310.
    Cohen-Ofri, I., Weiner, L., Boaretto, E., Mintz, G., Weiner, S.,2006. Modern and fossil charcoal:aspects of structure and diagenesis. Journal of Archaeological Science.33,428-439.
    Cornelissen, G., Elmquist, M., Groth, I., Gustafsson, O.,2004. Effect of sorbate planarity on environmental black carbon sorption. Environmental Science & Technology 38,3574-3580.
    Cornelissen, G., Gustafsson, O., Bucheli, T.D., Michiel, T.O., Jonker, M.T.O., Koelmans, A.A., van Noort, P.C.M.,2005b. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science & Technology 39,6881-6895.
    Cornelissen, G., Haftka, J., Parsons, J., Gustafsson, O.,2005a. Sorption to black carbon of organic compounds with varying polarity and planarity. Environmental Science & Technology 39,3688-3694.
    Czimczik, C., Preston, C.M., Schmidt, M.W.I., Schulze, E.D.,2003. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal). Global Biogeochemical Cycles 17(1),1956-1977.
    Czimczik, C.I., Masiello, C.A.,2007. Controls on black carbon storage in soils. Global Biogeochemical Cycles 21,1029-1036.
    Czimczik, C.I., Preston, C.M., Schmidt, M.W.I., Schelze, E.D.,2003. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Soots, molecular structure, and conversion to black carbon (charcoal). Global Biogeochemical Cycles 17,1020.
    Decesari, S., Facchinia, M.C., Mattaa, E., Mirceaa, M., Fuzzia, S., Chughtaib, A.R., Smith, D.M.,2002. Water soluble organic compounds formed by oxidation of soot. Atmospheric Environment 36,1827-1832.
    Deluca, T.H., Aplet, G.H.,2008. Charcoal and carbon storage in forest soils of the Rocky mountain west. Frontiers in Ecology and The Environment 6,18-24.
    Derwent, R.G., Ryall, D.B., Jennings, S.G., Spain, T.G, Simmonds, P.G.,2001. Black carbon aerosol and carbon monoxide in European regionally polluted air masses at Mace Head, Ireland during 1995-1998. Atmospheric Environment 35(36), 6371-6378.
    Devonald, V.G.,1982. The effect of wood charcoal on the growth and nodulation of garden peas in pot culture. Plant and Soil 66,125-127.
    Dickens, A.F., Gelinas, Y., Masiello, C.A., Wakeham, S., Hedges, J.I.,2004. Reburial of fossil organic carbon in marine sediments. Nature 427,336-339.
    Downie, A., Crosky, A., Munroe, P.,2009. Physical properties of biochar. In: Lehmann, J., Joseph, S., (ed). Biochar for environmental management:Science and Technology.1. Londers:Earthscan,2009.
    Elmquist, M., Gustafsson, O., Andersson, P.,2004. Quantification of sedimentary black carbon using the chemothermal oxidation method:an evaluation of ex situ pretreatments and standard additions approaches. Limnology and Oceanography-Methods 2,417-427.
    Emmerich, F.G., Luengo, C.A.,1996. Babassu charcoal:A sulfurless renewable thermo-reducing feedstock for steelmaking. Biomass and Bioenergy 10,41-44.
    Emmerich, F.G., Sousa, J.C., Torriani, I.L., Luengo, C.A.,1987. Applications of a granular model and percolation theory to the electrical resistivity of heat treated endocarp of babassu nut. Carbon 25,417-424.
    Emmett, P.H.,1948. Adsorption and pore-size measurements on charcoal and whetlerites. Chemical Reciews 43,69-148.
    Flores-Cervantes, D.X., Plata, D.L., MacFarlane, J.K., Reddy, C.M., Fschwend, P.M., 2009. Black carbon in marine particulate organic carbon:Inputs and Cycling of highly recalcitrant organic carbon in the Gulf of Maine. Marine Chemistryll3, 172-181.
    Foley, N.J., Thomas, K.M., Forshaw, P.L., Stanton, D., Norman, P.R.,1997. Kinetics of water vapor adsorption on activated carbon. Langmuir 13,2083-2089.
    Forbes, M.S., Raison, R.J., Skjemstad, J.O.,2006. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystens. Science of Total Environmet 370,190-206.
    Forster, P., Ramaswamy, V, Artaxo, P., Berntsen, T., Berts, R., Fahey, D.W., Haywood, J., Lean, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G, Schulz, M., Van Dorland, R.,2007.'Changes in atmospheric constituents and in radiative forcing' in S. Solomon, D. Qin, M. Manning, Z. Chen, M., Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds) Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK.
    Fowles, M.,2007. Balck carbon sequestration as an alternative to bioenergy. Biomass and Bioenergy 31(6),426-432.
    Franklin, R.E.,1951. Crystallite growth in graphitizing and non-graphitizing carbons. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Science 209,196-218.
    Gavin, D.G., Brubasker, L.B., Lertzman, K.P.,2003. Holocene fire history of a coastal temperate rain forest based on soil charcoal radiocarbon dates. Ecology 184, 186-201.
    Gelinas, Y., Prentice, K.M., Baldock, J.A., Hedges, J.,2001. An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils. Environmental Science & Technology 35,3519-3525.
    Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G., Zech, W.,2000. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry 31,669-678.
    Glaser, B., Guggenberger, G, Zech, W.,2002a. Past anthropogenic influence on the present soil properties of anthropogenic dark earths (Terra Preta) in Amazonia (Brazil). Geoarcheology.
    Glaser, B., Guggenberger, G, Zech, W., Ruivo, M.L.,2003. Soil organic matter stability in Amazonian Dark Earth. P.141-158. In Lehmann et al. (ed.) Amazonian dark earths:Origin, properties, management. Kluwer Academic Publisher, Dordrecht, The Netherlands.
    Glaser, B., Haumaier, L., Guggenberger, G., Zech, W.,1998. Black carbon in soils:the use of benzenecarboxylic acids as specific markers. Organic Geochemistry 29, 811-819.
    Glaser, B., Haumaier, L., Guggenberger, G, Zech, W.,2001. The'Terra Preta' phenomenon:a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88,37-41.
    Glaser, B., Johannes, L., Wolfgang, Z.,2002b. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biology and Fertility of Soils 35,219-230.
    Glinas, Y., Prentice, K.M., Baldock, J.A., Hedges, J.I.,2001. An improved thermal oxidation method for the quantification of soot/graphitic black carbon in sediments and soils. Environmental Science & Technology 35,3519-3525.
    Goldberg, E.D.,1985. Black Carbon in the Environment:Properties and Distribution. John Wiley & Sons, New York.
    Guggenberger, G, Rodionov, A., Shibistova, O., Grabe, M., Kasansky, O., Fuchs, H., Mikheyeva, N,, Zrazhevskaya, G, Flessa, H.,2008. Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Global Change Biology 14,1367-1381.
    Guo, J., Lua, A.C.,1998. Characterization of chars pyrolyzed from oil palm stones for the preparation of activated carbons. Journal of Analytical and Applied Pyrolysis 46,113-125.
    Guo, L., Semiletov, L., Gustafsson,O., Ingri, J., Andersson, P., Dudarev, O., White, D., 2004. Characterization of Siberian Arctic coastal sediments:implications for terrestrial organic carbon export. Global Biogeochemical Cycles 18. GB1036, dio:10.1027/2003GB002087.
    Guo, Y, Bustin, R.M.,1998. FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods:implications for studies of inertinite in coals. International Journal of Coal Geology 37,29-53.
    Gustafsson,O., Haghseta, F., Chan, C., MacFarlane, J., Gschwend, P.M.,1996. Quantification of the dilute sedimentary soot phase:Implications for PAH speciation and bio availability. Environmental Science & Technology 31, 203-209.
    Haberstroh, P.R., Brandes, J.A., Gelinas, Y., Dickens, A.F., Wirick, S., Cody, G,2006. Chemical composition of the graphitic black carbon fraction in riverine and marine sediments at sub-micron scales using carbon x-ray spectromicroscopy. Geochimica et Cosmochimica Acta 70(6),1483-1494.
    Hamer, U., Marschner, B., Brodowski, S., Amelung, W.,2004. Interactive priming of black carbon and glucose mineralization. Organic Geochemistry 35,823-830.
    Hammes, K., Schmidt, M.W.I., Smernik, R.J., Currie, L.A., Ball, W.P., Nguyen, T.H., Louchouarn, P., Houel, S., Gustafsson, O., Elmquist, M., Cornelissen, G., Skjemstad, J.O., Masiello, C.A., Song, J.Z.,Peng, P.A., Mitea, S., Dunn, J.C., Hatcher, P.G., Hockaday, W.C., Smith, S.M., Hartkopf-FrOder, C., BOhmer, A., Luer, B., Huebert, B.J., Amelung, W., Brodowski, S., Huang, L., Zhang, W., Gschwend, P.M., Flores-Cervantes, D.X., Largeau, C., Guggenberger, G., Kaiser, K., Rodionov, A., Gozalez-Vila, F.J., Gonzalez-Perez, J.A., de la Rosa, J.M., Manning, D.A.C., Lopez-Capei, E., Ding, L.,2007. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochemical Cycles 21
    Hammes, K., Torn, M.S., Lapenas, A.G., Schmidt, M.W.I.,2008. Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences Discussion 5, 661-683.
    Harris, P.J.E.,2005. New perspectives on the structure of graphitic carbons. Critical Reviews in Solid State and Materials Sciences 30,235-253.
    Harris, P.J.E., Burian, A., Duber, S.,2000. High-resolution electron microscopy of a microporous carbon. Philosophical Magazine Ltters 80,381-386.
    Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., KOgel-Knabner, I., de Leeuw, J.W., Michaelis, W., RullkOtter, J., 2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry 31,945-958.
    Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., Kogel-Knabner, I., de Leeuw, J.W., Littke, R., Michaelis, W., RullKotter, J.,2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry 3,945-958.
    Hiller, E., Fargasova, A., Zemanoval, L., Bartal, M.,2007. Influence of wheat ash in the MCPA immobilization in agricultural soils. Bulletin of Environmental Contamination and Toxicology 78,345-348.
    Hilscher, A., Heister, K., Siewert, C., Knicker, H.,2009. Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Organic Geochemistry 40,332-342.
    Hockaday, W.,2006. The organic geochemistry of charcoal black carbon in soils of the university of Michigan Biological Station, PhD thesis, Ohio State University, Columbus, US.
    Hockaday, W.C., Grannas, A.M., Kim, S., Hatcher, P.G.,2007. The transformation and mobility of charcoal in a fire-impacted watershed. Geochimica et Cosmochimica Acta 71,3432-3446.
    Hofrichter, M., Ziegenhagen, D., Sorge, S., Ullrich, R., Bublitz, F., Fritsche, W.,1999. Degradation of lignite (low-rank coal) by lignolytic basidiomycetes and their peroxidase system. Applied Microbiology and Biotechnology 52,78-84.
    Hsieh, Y.P., Bugna, G.C.,2008. Analysis of black carbon in sediments and soils using multi-element scanning thermal analysis (MFSTA). Organic Geochemistry 39, 1562-1571.
    Hua, L., Wu, W., Liu, Y., McBride, M.B., Chen, Y.,2009. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environmental Science and Pollution Research 16,1-9.
    Huang, L., Boving, T.B., Xing, B.,2006. Sorption of PAHs by aspen wood fibers as affected by chemical alterations. Environmental Science & Technology 40, 3279-3284.
    Hunter, R.J.,1981. Zeta Potential in Colloid Science-Principles and Applications. Academic Press, London.
    IPCC.,2001. Third Assessment Report, Climate Change 2001:The Scientific Basis. New York:Cambridge University Press.
    Jankowska, H., Swiatkowaski, A., Choma, J.,1991. Active Carbon. Ellis Horwood, New York, NY.
    Ji, L.L., Wan, Y.Q., Zheng, S., Zhu, D.Q.,2011. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes:implication for the relative importance of black carbon to soil sorption. Environmental Science & Technology 45,5580-5586.
    Jia, G.D., Peng, P.A., Fang, D.Y.,2002. Burial of different types of organic carbon in core 17962 from South China Sea since the last glacial period. Quaternary Research 58,93-100.
    Jonker, M.T.O., Hoenderboom, A.M., Koelmans, A.A.,2004. Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls. Environmental Toxicology and Chmistry 23(11),2563-2570.
    Jonker, M.T.O., Koelmans, A.A.,2002. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment:Mechanistic consideration. Environmental Science & Technology 36,3725-3734.
    Kaal, J., Brodowski, S., Baldock, J.A., Nierop, K.G.J., Crotizas, A.M.,2008. Characterization of aged black carbon using pyrolysis-GC/MS, thermally assisted hydrolysis and methylation (THM), direct and cross-polarisation 13C nuclear magnetic resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method. Organic Geochemistry 39,1415-1426.
    Kamegawa, K., Nishikubo, K., Yoshida, H.,1998. Oxidative degradation of carbon blacks with nitric acid (I)-changes in pore and crystallographic structures. Carbon 36,433-441.
    Karhu, K., Mattila, T., BergstrOm, I., Regina, K.,2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study. Agriculture, Ecosystems and Environment 140, 309-313.
    Kawamoto, K., Ishimaru, K., Imamura, Y.J.,2005. Reactivity of wood charcoal with ozone. Journal of Wood Science 51,66-72.
    Kercher, A.K., Nagle, D.C.,2002. Evaluation of carbonized medium-density fiberboard for electrical applications. Carbon 40,1321-1330.
    Kishimoto, S., Sugiura, G.,1985. Charcoal as a soil conditioner. Future Achievement International 5,12-23.
    Koelmans, A.A., Jonker, M.T.O., Cornelissen, G., Bucheli, T.D., Van Noort, P.C.M., Gustafsson. O.,2006. Black carbon:The reverse of its dark side. Chemosphere 63,365-377.
    Kuhlbusch, T.A.J.,1998. Enhanced:black carbon and the carbon cycle. Science 280, 1903-1904.
    Kuhlbusch, T.A.J., Crutzen, P.J.,1995. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmosphere CO2 and a source of O2. Global Biogeochemical Cycles 9,491-501.
    Kuhlbusch, T.A.J., Crutzen, P.J.,1996. Black carbon, the global carbon cycle, and atmospheric carbon dioxide. J.S Levine (Ed.), Biomass Burning and Global Change, Remote Sensing, Modeling and Inventory Development, and Biomass Burning in Africa, MIT Press, Cambridge, MA,1,160-169.
    Kuhlbush, T.A.J.,1998. Black carbon and the carbon cycle. Science,280,1903-1904.
    Laine, J., Yunes, S.,1992. Effect of the preparation method on the pore size distribution of activated carbon from coconut shell. Carbon 30,601-604.
    Laird, D.A., Chappell, M.A., Martens, D.A., Wershaw, R.L., Thompson, M.,2008. Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 143,115-122.
    Lehamnn, J., Silva, J.P.da Jr., Rondon, M., Silva, C.M.da., Greenwood, J., Nehls, T., Steiner, C., Glaser, B.,2002. Slash-and-char-a feasible alternative for soil fertility management in the central Amazon? In:Soil Science:Confronting New Realities in the 21 st Century.7th Word Congress of Soil Science, Bangkok.
    Lehmann, D.J., Joseph, S.,2009. Biochar for environmental management:science and technology. Earthscan Books Ltd.
    Lehmann, J.,2007. Bio-energy in the black. Frontiers in Ecology and the Environment5,381-387.
    Lehmann, J., da Silva Jr, J.P., Steiner, C., Nehls, T., Zech, W., Glaser, B.,2003. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the Central Amazon basin:fertilizer, manure and charcoal amendments. Plant and Soil.249,343-357.
    Lehmann, J., Gaunt, J., Rondon, M.,2006. Bio-char sequestration in terrestrial ecosystems-a review. Mitigation and Adaptation Strategies for Global Change 11, 403-427.
    Lehmann, J., Skjemstad, J.O., Sohi, S., Carter, J., Barson, M., Falloon, P., Coleman, K., Woodbury, P., Krull. E.,2008. Australian climate-carbon cycle feedback reduced by soil black carbon. Nature Geoscience 1,832-835.
    Lewis, A.C.,2000. Production and Characterization of Structural Active Carbon from Wood Precursors, PhD thesis, Department of Materials Science and Engineering, The Johns Hopkins University, US.
    Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'Neill, B., Skjemstad, J.O., Thies, J., Luizao, F.J., Petersen, J., Neves, E.G.,2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal 70,1719-1730.
    Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J.E., Skjemstad, J.O., Luizao, F.J., Engelhard, M.H., Neves, E.G., Wirick, S.,2008. Stability of biomass-derived black carbon in soils. Geochimica et Cosmachimica Acta 72, 6078-6096.
    Lim, B., Cachier, H.,1996. Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays. Chemical Geology 131,143-154.
    Liousse, C., Cachier, H., Jennings, S.G.,1993. Optical and thermal measurements of black carbon aerosol content in different environments:Variation of the specific attenuation cross-section, sigma (σ). Atmospheric Environment 27,J203-1211.
    Lua, A.C., Yang, T., Guo, J.,2004. Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. Journal of Analytical and Applied Pyrolysis 72,279-287.
    Lynch, J.A., Clark, J.S., Stocks, B.J.,2004. Charcoal production, dispersal, and deposition from the Fort Providence experimental fire:interpreting fire regimes from charcoal records in boreal forests. Canadian J. Forest Res.34,.1642-1656.
    MacDonald, G.M., Larsen, C.P.S., Szeicz, J.M., Moser, K.A.,1991. The reconstruction of charcoal, pollen, sedimentological and geochemical indices. Quaternary Science Reviews 10,53-71.
    Marsh, H., Heintz, E.A., Rodriguez-Reinoso, F,1997. Introduction to Carbon Technologies, University of Alicante, Alicante, Spain.
    Masiello, C.A.,2004. New directions in black carbon organic geochemistry. Marine Chemistry 92,201-213.
    Masiello, C.A., Druffel, E.M., Currie, L.A.,2002. Radiocarbon measurements of black carbon in aerosols and ocean sediments. Geochimica et Codmochimica Acta 66,1025-1036.
    Masiello, C.A., Druffel, E.R.M.,1998. Black carbon in deep-sea sediments. Science 280,1911-1913.
    Masiello, C.A., Druffel, E.R.M.,2001. The isotope geochemidtry of the Santa Clara River. Global Biogeochemical Cycles 15(2),407-416.
    Masiello, C.A.,2004. New directions in black carbon organic geochemistry. Marine Chemistry 92,201-213.
    Mbagwu, J.S.C., Piccolo, A.,1997. Effects of humic substances from oxidized coal on soil chemical properties and maize yield. Drozd, J., Gonet, S.S., Senesi, N., Weber, J., (eds). The role of humic substance in the ecosystems and in environmental protection. Wroclaw, Poland:IHSS, Polish Society of Humic Substances,921-925.
    Menon, S., Hansen, J., Nazarenko, L., Luo, Y.,2002. Climate effects if black carbon aerosols in China and India. Science 27,2250-2253.
    Middelburg, J.J., Nieuwenhuiza, J., van Bruegel, P.,1999. Black carbon in marine sediments. Marine Chemistry 66,245-252.
    Ming, J., Xiao, C., Cachier, H., Qin, D., Qin, X., Li, Z., Pu, J.,2009. Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmospheric Research 92,114-123.
    Mitra, S.,2002. Sources of terrestrially-derived organic carbon in Lower Mississippi River sediments:implications for differential sedimentation and transport at the coastal margin. Marine Chemistry 77,211-223.
    Mitra, S., Biachi, T.S., Mckee, B.A., Sutula, M.,2002. Black carbon from the Mississippi river:Quantities, sources, and potential implications for the global carbon cycle. Environmental Science & Technology 36,2296-2302.
    Moreno-Castilla, C., Ferro-Garcia, M.A., Joly, J.P., Bautista-Toledo, I., Carrasco-Marin, F., Rivera-Utrilla, J.,1995. Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir 11,4386-4392.
    Moreno-castilla, C., Lopez-Ramon, M.V., Carrasco-Marin, F.,2000. Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38,1995-2001.
    Muri, G, Cermelj, B., Faganeli, J., Brancelj, A.,2002. Black carbon in Slovenian alpine lacustrine sediments. Chemosphere 46,1225-1234.
    Naeth, M.A., Bailey, A.W., Chanasyk, D.S., Pluth, D.J.,1991. Water holding capacity of litter and soil organic matter in mixed prairie and fescue grassland ecosystems of Alberta. Journal of Range Management 44,13-17.
    Neves, E.G, Petersen, J.B., Bartone, R.N., Silva, C.A.D.,2003. Historical and sociocultural origins of Amazonian Dark Earths, in Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I. (eds) Amazonian Dark Earths:Origin, Properties, Management, Kluwer Academic Publishers, Dordrecht, The Netherlands,29-60.
    Nguyen, B., Lehmann, J., Kinyangi, J., Smernik, R., Engelhard, M.H.,2008. Long-term black carbon dynamics in cultivated soil. Bio geochemistry 89, 295-308.
    Nguyen, B.T., Lehmann, J.,2009. Black carbon decomposition under varying water regimes. Organic Geochemistry 40,846-853.
    Nguyen, T.H., Brown, R.A., Ball, W.P.,2004. An evaluation of thermal resistence as a measure of black carbon content in diesel soot, wood char, and sediment. Organic Chemistry 36(3),217-234.
    Nguyen, T.H., Cho, H.H., Poster, D.L., Ball. W.P.,2007. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environmental Science & Technology 41,1212-1217.
    Novakov, T., Hansen, J.E.,2004. Black carbon emissions in the United Kingdom during the past four decades:An empirical analysis. Atmospheric Environment 38,4155-4163.
    Oberlin, A.,2002. Pyrocarbons-review. Carbon 40,7-27.
    Oguntunde, P.G., Abiodun, B.J., Ajayi, A.E., van de Giesen, N.,2008. Effects of charcoal production on soil physical properties in Ghana. Journal of Plant Nutrient and Soil Science 171,591-596.
    Oguntunde, P.G., Fosu, M., Ajayi, A.E., van de Giesen, N.,2004. Effects-of charcoal production on mazia yield, chemical properties and texture of soil. Biology and Fertility of Soils 39,295-299.
    Pan, M.J., van Standen, J.,1998. The use of charcoal in in vitro culture-a review. Plant Growth Regulation 26,155-163.
    Pandolfo, A.G., Amini-Amoli, M., Killingley, J.S.,1994. Activated carbons prepared from shells of different coconut varieties. Carbon 32,1015-1019.
    Paris, O., Zollfrank, C, Zickler, G.A.,2005. Decomposition and carbonization of wood biopolymers-a micro structural study of soft-wood pyro lysis, carbon 43, 53-66.
    Pastor-Villegas, J., Pastor-Valle, J.F., Meneses Rodriguez, J.M., Garcia, M.,2006. Study of commercial wood charcoals for the preparation of carbon adsorbents. Journal of Analytical and Applied Pyrolysis 76,103-108.
    Patterson, W.A., Edwards, K.J., Maguire, D.J.,1987. Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews 6,3-23.
    Penner, J.E., Eddleman, H., Novakov, T.,1993. Towards the development of a global inventory for black carbon emissions. Atmosphere Environment. Part A. General Topics 27,1277-1295.
    Pessenda, L.C.R., Gouveia, S.E.M., Ribeiro, A.S., Lamotte, M.,2001. Origin and dynamics of soil organic matter and vegetation changes during the Holocene in a forest-savanna transition zone, Brazilian Amazon region. Holocene 11,250-254.
    Pignatello, J.J., Kwon, S., Lu, Y,2006. Effect of natural organic substances on the surface adsorptive properties of environmental black carbon (char):Attenuation of surface activity by humic and fulvic acids. Environmental Science& Technology 40,7757-7763.
    Ponomarenko, E.V., Anderson, D.W.,2001. Importance of charred organic matter in black chernozem soils od Saskatchewan. Canadian Journal of Soil Science 81, 285-297.
    Preston, C.M., Schmidt, M.W.I.,2006. Black (pyrogenic) carbon in boreal forests:a synthesis of current knowledge and uncertainties. Biogeosciences Discussions 3, 211-271.
    Preston, C.M., Schmidt, M.W.I.,2006. Black (pyrogenic) carbon:A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3,397-420.
    Prssenda, L.C.R., Boulet, R., Aravena, R., Rosolen, V., Gouveia, S.E.M., Ribeiro, A.S., Lamotte, M.,2001. Origin and dynamics of soil organic matter and vegetation changes during the Holocence in a forest-savanna transition zone, Brazilian Amazon region. Holocene 11,250-254.
    Pyne, S.J., Andrews, P.L., Laven, R.D.,1996. Introduction to Wildland Fire. John Wiley & Sons, New York.
    Qadeer, R., Hanif, J., Saleem, M.A., Afzal, M.,1994. Characterization of activated charcoal. Journal of the Chemical Society of Pakistan 16,229-235.
    Qiu, Y, Cheng, H., Xu, C., Sheng, G.D.,2008. Surface characteristics of crop-residue-derived black carbon and lead (II) adsorption. Water Res.42, 567-574.
    Radovic, L.R., Moreno-Castilla, C., Rivera-Utrilla, J.,2001. Carbon materials as adsorbents in aqueous solutions. Chemistry and Physics of Carbon:A Series of Advances 27,227-405.
    Rau, J.A., Khalil, M.A.K.,1993. Anthropogenic contributions to the carbonaceous content of aerosols over the Pacific Ocean. Atmosphere Environment. Part A. General Topics 27,1297-1307.
    Reddy, M.S., Venkataraman, C.,2002a. Inventory of aerosol and sulphur dioxide emissions from indias:I-Fossil fuel combustion. Atmospheric Environment 36, 677-697.
    Reddy, M.S., Venkataraman, C.,2002b. Inventory of aerosol and sulphur dioxide emissions from India:Ⅱ-Biomass combustion. Atmospheric Environment 36, 699-712.
    Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-Garcia, M.A., Moreno-Castilla, C.,2001. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of Chemical Technology and Biotechnology 76,1209-1215.
    Rodriguez-Mirasol, J., Cordero, T., Rodriguez, J.J.,1993. Preparation and characterization of activated carbon from eucalyptus kraft lignin.Carbon 31, 87-95.
    Rodriguez-Reinoso, F,1997. Introduction to Carbon Technologies, Universidad de Alicante, Alicante, Spain.
    Rumpel, C., Alexis, M., Chabbi, A., Chaplot, V., Rasse, D.P., Valentin, C., Matiotti, A., 2006. Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma 130,35-46
    Rumpel, C., Chaplot, V., Planchon, O., Bemadou, J., Valentin, C., Mariotti, A.,2006. Preferential erosion of black carbon on steep slopes with slash and burn agriculture. Catena 65,30-40.
    Sander, M., Pignatello, J.J.,2005. Characterization of charcoal adsorption sites for aromatic compounds:Insights drawn from single-solute and bi-solute competitive experiments. Environmental Science & Technology 1606-1615.
    Sander, M., Pignatello, J.J.,2007. On the reversibility of sorption to black carbon: Distinguishing true hysteresis from artificial hysteresis caused by dilution of a competing adsorbate. Environmental Science & Technology 41,843-849.
    Schmidt, M.W.I., Knicker, H., Hatcher, P.G., Kogel-Knaber, I.,1996. Impact of brown coal dust on the organic matter in particle-size fractions of Mollisol. Organic Geochemistry 25,29-39.
    Schmidt, M.W.I., Noack, A.G.,2000. Black carbon in soils and sediments:Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles 14,777-793.
    Schmidt, M.W.I., Skjemastad, J.O., Gehrt, E., Kogel-Knaber, I.,1999. Charred organic carbon in German chernozemic soils. European Journal of Soil Science 50,351-365.
    Schmidt, M.W.I., Skjemstad, J.O., Czimczik, C.I., Glaser, B., Prentice, K.M., Gelinas, Y., Kuhlbusch, T.A.J.,2001. Comparative analysis of black carbon in soils. Global Biogeochemical Cycles 15.163-167.
    Schmidt, M.W.I., Skjemstad, J.O., Jager, C.,2002. Carbon isotope geochemistry and nannomorphology of soil black carbon:black chernozemic soils in central Europe originate from ancient biomass burning. Global Biogeochemical Cycles 16(4),1123-1131.
    Schmidt, M.W.I., Skjemstad, J.Q., Gehrt, E., KOgel-Knabner, I.,1999. Charred organic carbon in German chernozamic soils. European Journal of Soil Science 50,351-365.
    Setton, R., Bernier, P., Lefrant, S.,2002. Carbon Molecules and Materials, CRC Press, Boca Raton, FL.
    Shafizadeh, F.,1982. Introduction to pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis 3,283-305.
    Shafizadeh, F.,1984. The chemistry of pyrolysis and combustion, in The Chemistry of Solid Wood, edited by R.M. Rowell, pp.489-529. American Chemical Society, Washington, D.C.
    Sheng, G, Yang, Y, Huang, M., Yang, K.,2005. Influence of pH on pesticide sorption by soil containing wheat residue-derived char. Environmental Pollution 134, 457-463.
    Shneour, E.A.,1966. Oxidation of graphite carbon in certain soils. Science 151, 991-992.
    Simpson, M.J., Hatcher, P.G.,2004. Determination of black carbon in natural organic matter by chemical oxidation and solid-state 13C nuclear magnetic resonance spectroscopy. Organic Geochemistry 35,923-935.
    Sing, K.S.W., Everett, D.H., Haul, R.A.W0, Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.,1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 57,603-619.
    SjOstrOm, E.,1993. Wood Chemistry:Fundamentals and Applications, second edition, Academic Press, San Diego, US.
    Skjemastad, J.O., Clarke, P., Taylor, J.A., Oades, J.M., Mcclure, S.G.,1996. The chemistry and nature of protected carbon in soil. Aust. J. Soil Res.34,251-271.
    Skjemstad, J.O., Clarke, P., Taylor, J.A., Oades, J.M., Newman, R.H.,1994. The removal of magnetic materials from surface soils-a solid state 13C CP/MAS NMR study. Australian Journal of Soil Research 32,1215-1229.
    Skjemstad, J.O., Reicosky, D.C., Wilts, A.R., McGowan, J.A.,2002. Charcoal carbon in U.S. agricultural soils. Soil Science Society of America Journal 66, 1249-1255.
    Skjemstad, J.Q., Taylor, J.A., Smernik, R.J.,1999. Estimation of charcoal (char) in soils. Communication in Soil Science and Plant Analysis 30,2283-2298.
    Smith, D.W., Griffin, J.J., Goldberg, E.D.,1975. A spectroscopic method for the quantitative of elemental carbon. Analytical Chemistry 47,233-238.
    Song, J.Z., Peng, P.A., Huang, W.,2002. Black carbon and kerogen in soils and sediments.1. Quantification and characterization. Environmental Science & Technology 36,3960-3967.
    Spokas, K.A.,2010. Review of the stability of biochar in soils:predictability of O:C molar ratios. Carbon Management 1(2),289-303.
    Steiner, C, Teixeira, W.G., Lehmann, J., Nehls, T., De Macedo, J.L.V., Blum, W.E.H., Zech, W.,2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil 291,275-290.
    Streets, D. G., Gupta, S., Waldhoff, S.T., Wang, M.Q., Bond, T.C.,2001. Black carbon emissions in China. Atmospheric Environment 35,4281-4296.
    Streets, D.G., Bond, T.C., Carmichael, G.R., Fernandes, S.D., Fu, Q., He, D., Klimont, Z., Nelson, S.M., Tsai, N.Y., Wang, M.Q., Woo, J.H., Yarber, K.F.,2003. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Jorual of Geophysical Research 108,8809.
    Strelko Jr, V., Malik, D.J., Streat, M.,2002. Characterisation of the surface of oxidised carbon adsorbents. Carbon 95-104.
    Swiatkowski, A., Pakula, B., Biniak, S., Walczyk, M.,2004. Influence of the surface chemistry of modified activated carbon on its electrochemical behavior in the presence of lead (II) ions. Carbon 42,3057-3069.
    Toles, C, Marshall, W.E., Johns, M.M.,1999. Surface functional groups on acid-activated nutshell carbons. Carbon 37,1207-1214.
    Topoliantz, S., Ponge, J.F., Ballof, S.,2005. Manioc peel and charcoal:a potential organic amendment for sustainable soil fertility in the tropics. Biology and Fertility of Soils 41,15-21.
    Tryon, E.H.,1948. Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecological Monographs 18,81-115.
    Uchimiya, M., Lima, I.M., Klasson, K.T., Chang, S., Warte, L.H., Rodgers, J.E.,2010. Immobilization of heavy metal ions (CuⅡ, CdⅡ, NiⅡ, and PbⅡ) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry 58,5538-5544.
    Uchimiya, M., Lima, I.M., Klasson, K.T., Chang, S., Wartelle, L.H., Rodgers, J.E., 2010. Immobilization of heavy metal Ions (CuⅡ, CdⅡ, NiⅡ and PbⅡ) by broiler litter-drived biochars in water and soil. Journal of Agricultural and Food Chemistry 58(9),5538-5544.
    Uchimiya, M., Wartelle, L.H., Klasson, K.T., Fortier, C.A., Lima, I.M.,2011. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of agricultural and Food Chemistry 59(6), 2501-2510.
    Van Noort, P.C.M., Jonker, M.T.O., Koelmans, A.A.,2004. Modeling maximum adsorption capacities of soot and soot-like materials for PAHs and PCBs. Environmental Science & Technology 38,3305-3309.
    Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A, Rust, J., Joseph, S., Cowie, A.,2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327,235-246.
    Verado, D.J., Ruddiman, F.,1996. Late Pleistocene charcoal in tropical Atlantic deep-sea sediments:Climatic and geochemical significance. Geology 24, 855-857.
    Verardo, D.J.,1997. Charcoal analysis in marine sediments. Limnology and Oceanography 42,192-197.
    Wardle, D.A., Nilsson, M.C., Zackrisson, O.,2008. Fire-derived charcoal causes loss of forest humus. Science 320,629.
    Warren, B.E.,1941. X-ray diffraction in random layer lattices. Physical Review 59, 693-698.
    Wengel, M., Kothe, E., Schmidt, C.M., Heide, K., Gleixner, G,2006. Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase. Science of the Total Environment 367,383-393.
    Wildman, J., Derbyshire, F.,1991. Origins and functions of macroporosity in activated carbons form coal and wood precursors. Fuel 70,655-661.
    Willmann, G., Fakoussa, R.M.,1997. Extracellular oxidative enzymes of coal-attacking fungi. Fuel Processing Technology 52,27-41.
    Wolbach, W.S., Anders, E.,1989. Elemental carbon in sediments:determination and isotopic analysis in the presence of kerogen. Geochimicaet et Cosmochimica Acta 53,1637-1647.
    Wolff, E.W., Cachier, H.,1998. Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antactic station. Journal of Geophysical Research 11,33-41.
    Yanan, Y., Toyota, K., Okazaki, M.,2007. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition 53,181-188.
    Yang, Y.N., Sheng, G.Y.,2003. Enhanced pesticide sorption by soils containing particulate matter from crop residues burns. Environmental Science & Technology 37,3635-3639.
    Yu, X.Y., Ying, G.G., Kookana, R.S.,2006. Sorption and desorption behaviors of diuron in soils amended with charcoal. Journal of Agricultural and Food Chemistry 54,8545-8550.
    Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., Zhang, X.,2011. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil 351,263-275.
    Zhang, T., Walawender, W.P., Fan, L.T., Fan, M., Daugaard, D., Brown, R.C.,2004. Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chemical Engineering Journal 105,53-59.
    Zhu, D., Kwon, S., Pignatello, J.J.,2005. Adsorption of single-ring organic compounds to woos charcoals prepared under different thermochemical conditions. Environmental Science & Technology 39,3990-3998.
    Zhu, D., Pignatello, J.J.,2005. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environmental Science & Technology 39,2033-2041.
    Zimmerman, A.R.,2010. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environmental Science & Technology 44,1295-1301.
    陈红霞,杜章留,郭伟,张庆忠,2011.施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响.应用生态学报.22(11),2930-2934.
    郭大勇,范明生,张福锁.2012.农田土壤黑炭应用研究进展.植物营养与肥料学报.18(5),1252-1261.
    韩永明,曹军骥.2005.环境中的黑炭及其全球生物地球化学循环.海洋地质与第四纪地质.25(1)125-132.
    何跃,张甘霖.2006.城市土壤有机碳和黑炭的含量特征与来源分析.土壤学报.43(2),177-1 82.
    李力,刘娅,’陆宇超,梁中耀,张鹏,孙红文.2011.生物炭的环境效应及其应用的研究进展.环境化学.30(8),1411-1421.
    刘世杰,窦森.2009.黑炭对玉米生长和土壤养分吸收与淋失的影响.水土保持学报.23(1)
    邱敬,高人,杨玉盛,尹云峰,马红亮,李又芳.2009.土壤黑炭的研究进展.亚热带资源与环境.4(1),88-94.
    吴成,张晓丽,李关宾.2007.黑炭吸附汞砷铅镉离子的研究.农业科学学报.26(2),770-774.
    吴涧,符淙斌.2005.近五年来东亚春季黑炭气溶胶分布输送和辐射效应的模拟研究.大气科学.29(1),111-119.
    熊毅.1990.土壤胶体(第三册)[M]北京:科学技术出版社.394-399.
    徐黎,王亚强,陈振琳,罗勇,任万辉.2006.黑炭气溶胶研究进展I:排放、清除和浓度.地球科学进展.21(4),352-360.
    易卿,胡学玉,柯跃进,刘红伟,禹红红.2013.不同生物质黑炭对土壤中外源镉(Cd)有效性的影响.农业环境科学学报.32(1),88-94.
    袁金华,徐仁扣.2011.生物质炭的性质及其对土壤环境功能影响的研究进展.生态环境学报.20(4),779-785.
    张华,马井会,郑有飞.2008.黑炭气溶胶辐射强迫全球分布的模拟研究.大气科学.32,1147-1158.
    张立盛.1999.硫酸盐和烟尘气溶胶辐射强迫的模拟和估算.中国科学院大气物 理研究所博士学位论文.
    张履勤,章明奎.2006.土地利用方式对红壤和黄壤颗粒有机碳和黑炭积累的影响.土壤通报.37(4),662-665.
    中国科学院南京土壤研究所.1978.土壤理化分析.上海:上海科学技术出版社.
    周志红,李心清,邢英,房彬,张立科,彭艳.2011.生物炭对土壤氮素淋失的抑制作用.地球与环境.39(2).
    周尊隆.2008.多环芳烃在黑炭上吸附和解吸行为的研究.南开大学博士论文.62-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700