结构性粘土的微观变形机理和弹粘塑损伤模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文调查了天然粘土中存在的结构性,应用大变形有限元法模拟了土颗粒
    骨架在内部分子吸力和电荷斥力以及外部荷载作用下的变形和蠕变机理,在此
    基础上建立了考虑天然粘土变形过程中结构性不断受损的弹粘塑损伤模型,并
    进行了室内和现场试验,论证了模型的有效性。
     天然沉积粘土都具有一定的结构性(组构和胶结)和结构强度。大多数天然
    粘土的沉积压缩曲线位于重塑土固有压缩曲线的上方,其位置取决于沉积条件
    和沉积后的作用。天然粘土的沉积压缩曲线、重塑土的压缩曲线可以用孔隙指
    数来归一化,它清晰地显示出结构性土和重塑土的内在差别。重塑土反映了土
    体与自然状态无关的“固有特性”,它提供了一个评估原位自然沉积粘土特性
    的参考构架。从固结仪压缩曲线更可反映土体受荷后结构性的渐进破坏过程。
     考虑小变形分析法在吹填土、软土地基和大位移问题上的局限性,从非线
    性连续介质力学出发,采用Jaumann应力率和Boit平面固结理论,推导了大变
    形本构方程。编制了大变形有限元分析程序,比较了大变形Lagrange法(TL和
    UL法)与小变形法的差异。结果表明:当应变小于7%时两者差异很小,只有
    在应变大于10%时才显示出愈来愈大的差异,这时用小变形法分析会大大高估
    地基的沉降值;大、小变形法的孔降水压力在应变较小时同步,在应变较大时
    并不同步,特别是TL法,故大小变形计算法的最终沉降比较应针对完全排水
    情况才有意义。大变形控制方程是高度非线性方程,经过线性化后,必须使用
    很小的时间步长,才能取得合理的计算精度和沉降结果。
     为了解决大变形条件下多个物体间任意接触、滑移和旋转的模拟问题,提
    出了点面接触单元。将其与更新的Lagrange大变形有限元法相结合,可以很好
    的模拟微观土颗粒接触面的胶结、滑动、脱开,新接触的形成和老接触的转向。
    然后,用大变形有限元这个工具,研究了土颗粒骨架在双电层的物理化学力
    
    
    外加荷载作用下的变形过程,揭示了结构性土体发生变形、破坏和蠕变的微观
    内在机理,为建立结构性土的本构模型提供微观基础。
     针对过去用重塑土试验建立的本构模型,没能考虑天然土体中存在的结构
    性,没有描述结构性土从天然原状到加荷破坏的这一过程,建立了一个描述结
    构性土的弹粘塑损伤模型和参数确定方法。通过对室内试验的数值模拟表明,
    提出的弹粘塑损伤本构模型能模拟结构性粘土的拟超固结现象,加荷过程中的
    变形和孔压,排水蠕变和不排水蠕变,计算结果与试验值符合较好,初步验证
    了模型的有效性。
     对长江下游河漫滩深厚软土地基进行了堆土预压试验。预压前在地基中埋
    设了沉降标、深层沉降管、测斜管、孔隙水压力计等土工观测仪器,堆土预压
    过程中对地基的变形和孔隙水压力进行全面观测,以及预压后长达3年的流变
    观测,为模型的工程验证提供了实测资料。堆土预压试验还表明,对26m厚淤
    泥质粘土用30m深的塑料排水板是可行的。
     编制了结构性粘土的弹粘塑损伤模型有限元程序,对深厚软土地基堆土预
    压工程进行了数值模拟验证。通过现场钻孔取土和室内外试验,确定了淤泥质
    粘土层的弹粘塑性损伤模型参数;计算结果与观测结果的一致性表明,建立的
    弹粘塑损伤模型能很好反映结构性粘上的加荷变形、固结变形和蠕变变形,可
    用于结构性粘土的工程设计、计算和流变预测。
     本项研究由国家自然科学基金资助(批准号:19772019)
Microdeformation Mechanism of Structural Clays
    
     and Elasto-viscoplastic Damage Model
    
     ABSTRACT
    
     On the basis of the investigation of the structure of natural sedimentation clays
     and the simulation of the deformation and rheology of soil particle skeleton under the
     internal molecule attractive force and electric charge repulsion and the exterior load, a
     elasto-viscOplastic damage model is constructed in which the soil structure is
     considered to be gradually damaged in the course of loading, and the effectiveness of
     the model is verified by the results of laboratory tests and field tests.
    
     The clays from natural sedimentation have always the structure (fabric and bond)
     and structure strength. Most sedimentation compression lines of natural clays are
     located above the intrinsic compression lines of reconstituted clays; theirs locations
     are dependent on the sedimentation condition and the action after sedimentation. The
     sedimentation compression lines, intrinsic compression lines can be normalized by a
     void index, then the difference of the structural clays and reconstituted clays are
     showed. The reconstituted clays represent the soil intrinsic properties independent of
     the natural state, and provide a reference frame being used to evaluating the
     properties of in-situ sedimentation clays. From the oedometer compression curves,
     the gradual damage course of soil structure is indicated apparently during loading.
    
     The large strain constitute equations are derived according to nonlinear
     continuum mechanics, the rate of Jaumann stress and the theory of Boit consolidation
     on account of the limitation of small strain theory in hydraulic fill, soft ground and
     large displacement projects. A large strain FEM program is compiled to compare the
     difference of large strain method and small strain method. The results show that the
     deformation and pore water pressure are almost the same to the total and updated
    
    
     Lagrange method and small strain method when the strain is less then 7%. The
     different is evidently increased when the strain is more than 10% and the final
     settlements of large strain method are smaller than that of small strain method. The
     pore pressures are not the same to large and small strain method, so the comparison of
     final settlement should be based on total stress method(complete drainage). Moreover,
     in order to achieve reasonable calculating precision and settlement values, the time
     step should be very small due to the linearization of the high non-linear equation of
     large strain.
    
     The point-surface contact element is put forward to solve the large strain
     simulation of contact, slide and rotation among multi-objects. Combining with
     updated Lagrange method, it can well simulate the cementation, slide, unhitch, the
     formation of new contact and turnaround of present contact. Then, the deformation of
     soil particle skeleton under the physical chemistry of electrical double ]ayer and
     exterior load are simulated, indicating the micro-mechanism of deformation, failure
     and creep for structural soil.
    
     Because conventional constitute models are constructed according to
     reconstituted clays, not considering the structure in natural clays and structure
     damage course during loading, a elasto-viscoplastic damage model and the parameter
     determining method are put forward. The calculating results of laboratory tests
     demonstrate that the model can simulate the yield pressure of structure soil, the
引文
1 胡瑞林,李向全等.粘性土微结构定量模型及其工程地质特征研究,北京:地质出版社,1995.3
    2 沈珠江,土体结构性的数学模型——21世纪土力学的核心问题,岩土工程学报.18(1),1996
    3 沈珠江,理论土力学,中国水利水电出版社,2000
    4 张诚厚,两种结构性粘土的土工特性,水利水运科学研究.1983(4)
    5 塔萨奇、波克,工程实用土力学,蒋彭年择,水利电力出版社,1960
    6 Collins, K. & Megown, A.(1974) The form and function of microfabric feature in variety of natural soils, Geotechnique. No.2
    7 Casagranda A (1932), The structure of clay and its importance in foundation engineering, J. Boston Soc. Civil Eng., Vol. 19
    8 Tan-Tjongkie(陈宗基), Structure mechanics of clays. Scientia Sinica, 8, p93~97, 1959
    9 Lambe, T W (1958). The structure of compacted clay, J. SMFD, ASCE Vol. 84, SM2.
    10 Lambe T. W. (1958). The engineering behavior of compacted clay, J. SMFD, ASCE, Vol. 84, SM2.
    11 Aylmore, L A G & Quirk, J P. Swelling of clay water systems, Nature, 1959
    13 Van Olphen, An introduction to clay colloid chemistry, 1963.
    12 Aylmore, LAG & Quirk, J P. The structural status of clay systems, 第九届国际粘土矿物会议文集。
    13 Van Olphen, An introduction to clay colloid chemistry, 1963.
    14 谭罗荣,土的微观结构研究概况和发展,岩土力学,1983,Vol.4(1):73-86
    15 Tovey, N.K., Quantitative analysis of electron micrographe Of structure, 国际土结构会议文集,1973,Gothenburg.
    16 Sankam, K.S. & Venkaleshwar, O.R.(1975) Quantitative estimation of particle orientation of montmorillonoid by optical and X-ray diffraction techniques, Indian Geotechnical Journal, Vol.5
    
    
    17 谭罗荣,粘土微观结构定向性的X-射线衍射研究,科学通报,1981(4):236-239
    18 夏蒙棼,韩闻生,柯孚久等,统计细观损伤力学和损伤演化诱致突变理论。力学进展,Vol.25 No.1,1995
    19 Matuso, S. & Kamon, M. Microscopic study on deformation and strength of clays, 第九届国际土力学和基础工程会议论文集。
    20 Krizek, R.J. Fabric effects on strength and deformation of Kaolin clay, 第九届国际土力学和基础工程会议论文集。
    21 孙斌,王宝军,宁文务,各向异性粘性土蠕变的微观力学模型。岩土工程学报,Vol.19(3),1997:7-13
    22 谢定义,齐吉琳,土结构性及其定量化参数研究的新途径,岩土工程学报,Vol.21(6),1999,651-656
    23 罗鸿禧,陈守义,湛江灰色粘土的工程地质特性,水文地质工程地质,1981(5)
    24 谭罗荣,张梅英,一种特殊土的微观结构特性的研究,岩土工程学报,1982(2)
    25 王永焱,滕志宏,中国黄土的微结构及其在时代上和区域上的变化,科学通报,1982(2)
    26 李生林、秦素娟、薄遵昭、吴兰州,广西宁明膨胀土组成成分、组织结构及工程地质特性的研究,水文地质工程地质,1980(3)
    27 高国瑞,膨胀土微结构特征的研究,工程勘察,1981(5)
    28 罗鸿禧,周芳琴,郧县胀缩土的矿物万分及微观结构的研究,工程勘察,1981(5)
    29 王幼麟,蒲圻第四纪红色粘土的物质万分和结构特性的关系,科技成果选编,1981(9),长江水电科学研究院。
    30 甘德福,孙永福,上海地区淤泥质粘土结构的初步研究,勘察技术,1979(6)
    31 Scott, R.F. & Craig, J.K(1980). Computer modeling of clay structure and mechanics, ASCE, Vol. 106(1), 17-34
    
    
    32 Cundall, P.A. & Strack, O.D.L.(1979). A discrete numerical model for granular assemblies, Geotechnique 29, No. 1, 47-65
    33 Anadarajah, A. And Lu, N(1991). Numerical study of the electrical double-layer repulsion between non-parallel clay particles of finite length, Int. J. Numerical and Analytical Methods in Geomechanics, Vol. 15, 683-703
    34 Chai, J.C., Miura, N & Aramaki, G(1998). Simulating 1-D compression of clay by discrete element method. Proc. of the Int. Sym. on Lowland Technology, Saga, Japan: 91-98
    35 Oda M. Initial fabrics and their relations to mechanical properties of granular materials. Soil and Foundations, 1972, 12(1): 17-36
    36 Oda M, Konishi J. Rotation of principal stresses in granular material during simple shear. Soils and Foundations, 1974, 14(4): 39-53
    37 Chang C S. Numerical and analytical modeling of granulates, Int. Conf. Computer Methods and Advances in Geomechanics, Wuhan, 1997, Ⅰ: 105-114
    38 Chen Y C, Ishibashi I. Dynamic shear modules and evaluation of fabric of granular materials, Soil and Foundations, 1990, 30(3): 1~10
    39 沈珠江,砂土本构理论的检讨与重建。第六届全国岩土力学数值分析与解析方法讨论会,中国,广州,1998年8月4-6.
    40 Rowe, P.W.(1962). The stress dilatancy relation for static equilibrium of an assembly if particles in contact. Proc. Royal Society, London, Series A: 500-527
    41 Matsuoka H.(1974). Stress-strain relationships of sands based on the mobilized plane, Soils and Foundations, 1114(2): 45-61
    42 Aubry, D. & Hujeux, J.C.(1982). A double memory model With multiple mechanisms for cyclic soil behaviour, In: Int. Syrup. On Numerical Models in Ggeomechanics, Zurich: 3-13
    43 Kabilamany, K. Ishihara, K.(1991). Cyclic behavior of sand by the multiple shear mechanism model, Soil Dynamics and Earthquake Engineering, 10(2): 24-83
    
    
    44 Pande, G.N. and Sharma K.G. Multilaminate model of clays——A numerical evaluation of the influence of rotation of principal stress axes, Int. J. for Num. Anal. Meth. in Geomech. 1983
    45 Iai, S. Matsunaga, Y. & Kameoka, T.(1992). Strain space plasticity model for cyclic mobility, Soils & Foundations, 32(2): 1-15
    46 沈珠江,章为民,损伤力学在土力学中的应用,第三届全国岩土力学数值分析及解析方法讨论会论文集Ⅲ,珠海,1988
    47 沈珠江,结构性粘土的弹塑性损伤模型,岩土工程学报,1993
    48 沈珠江,结构性粘土的非线性损伤力学模型,水利水运科学研究,1993(3):247-256
    49 沈珠江,土体变形特性的损伤力学模拟,第五届全国岩土力学数值分析与解析方法讨论会,重庆,1994。
    50 沈珠江,广义吸力和非饱和土的统一变形理论,岩土工程学报,Vol.18(2),1996,1-10
    51 沈珠江,应变软化材料的广义孔隙压力模型,岩土工程学报,Vol.19(3),1997,14-20
    52 沈珠江,A granular medium model for liquefaction analysis of sands. 岩土工程学报,1999,21(6):742-748
    53 沈珠江.结构性粘土的堆砌体模型.岩土力学,2000,21(1):1~4
    54 Davidson, J.L. 一种准前期固结粘土模型,地基与基础译文集(2),中国建筑工业出版社,1979,11
    55 Desai C S & Ma Y(1992), Modelling of joint and interfaces using the disturbed state concept. Int. J. Num. Analyt. Methods in Geomech, 16(9): 623-653
    56 Fusao Oka, Leroueil S. & F. Tavenas(1989), A constitutive model for natural soft clay with softening, Japanese society of soil Mechanics and Foundation Engineering, Vol.29, No.3, 54-66.
    
    
    57 郑永来,周澄,夏颂佑,岩土材料粘弹性连续损伤本构模型探讨。河海大学学报,Vol.25(2),1997
    58 施建勇,赵维炳,顾吉等,考虑损伤的软土地基变形分析。岩土工程学报,Vol.29(2),1998:1-5
    59 Yu, Y. Pu, J.L. & Ugai, K.Z.(1998), a damage model for soil-cement mixture, Soil and Foundation, Vol.38(3), 1-12
    60 孙红,赵锡宏,软土的弹塑性各向异性损伤分析,岩土力学,Vol.20(3),1999
    61 孙红,赵锡宏,结构性软土的损伤及其对地基沉降的影响,岩土力学,Vol.20(1),1999
    62 孙钧,岩土材料流变及其工程应用,中国建筑工业出版社,1999
    63 Walker, L.K(1969). Secondary compression in the shear of clays. ASCE, Vol.95, SM1, 167-188
    64 Vaid, Y.P. & Companella, M(1977). Time dependent behavior of undisturbed clay, J. ASCE, Vol. 103, GT7.693-709
    65 Toshihisa Adachi & Fusao Oka(1982), Constitutive equations for normally consolidated clay based on elasto-viscoelasticity. Soils and Foundations. Vol.22(4), 57-70
    66 钱家欢,殷宗泽,土工原理与计算(第2版),北京:水利电力出版社,1994
    67 Terzaghi(1943). Theoretical soil mechanics, New York, 1943
    68 Bolt M.A(1941). General theory of three-dimensional consolidation, J. Applied Physics, Vol. 12
    69 Taylor, D.W. & Merchant, W(1940). A theory of clay consolidation accounting for secondary compression. J. Mathematics and Physics. Vol. 19, 167-185
    70 Lo, K.Y.(1961). Secondary compression of clay, ASCE, JSMFD, Vol.87, SM4, 1961, 61-86
    71 Sekiguchi, H. & Toriihara, M.(1976). Theory of one-dimensional consolidation of clays with consideration of their rheological properties. Soils and Foundations,
    
    Vol.16(1) ,27-44
    72徐志英,考虑土骨架蠕变的三向固结理论,水利学报,1964,No.4
    73 Booker J.R. & Small, J.C.(1977) . Finite element analysis of primary and secondary consolidation, Int. J. Solids Structures. Vol.13
    74 Hardin B O and Draevich V P(1972) . Shear modulus and damping in soil. J. Soil Mech. Found. Div., ASCE, 198 (7) : 667-692
    75 Martin G R et al (1975) . Fundamentals of liquefaction under cyclic loading, J. Geot. Eng. Div., ASCE, 101 (5) : 423-438.
    76沈珠江,一个计算砂土液化变形的等价粘弹性模型,In:11 Int.Conf.SMFE, San Francisco,1985:659-662
    77 Perzyna, P(1966) . Fundamental problems in visco-plasticity, In: Recent Advances in Applied Mechanics, 9: 243-377
    78 Zienkiewicz O.C. and Hampheson C(1979) . Viscoplasticity--a generalized modei for description of soil behavior. Numerical Methods in Geot. Eng.,Chapter 3,116-147
    79 Adachi T and, Oka, F(1982) . Constitutive equation for normally Consolidated clay based on elasto-viscoplasticity, Soils and Foundations, 22(4) : 57-70
    80 Oka, F(1982) . Elasto-viscoplastic constitutive equation for overconsolidated clay. Int. Symposium on Num. Models. In Geomechanics. Zurich, 13-17
    81 Adachi, T. Oka, F. & Mimura(1987) , Mathematical structure of an overstress elasto-viscoplastic modei for clay. Soils and Foundations, Vol.27, No.3, 31-42
    82 Adachi, T. Oka, F. & Mimura(1987) , An elasto-viscoplastic theory for clay failure. Proc. 8th ARC on SMFE. Vol.1: 5-8
    83 Adachi, T. Oka, F. Zhang, F.(1998) . An elasto-viscoplastic constitutive modei with strain softening. Soils and Foundations, Vol.38,No.2,27-35
    84 Matsui, T. & Abe, N.(1985) , Elasto-viscoplastic constitutive equation of normally consolidation clays based on flow surface theory. 5th Int. Conf. Num. Meths. in
    
    Geomech. Nagoya, 407-413
    85 Bjerrum, L.(1967). Seventh Rankine Lecture, Engineering geology of normally-consolidated marine clays as related to settlements of buildings. Geotechnique 17(2): 82-118.
    86 沈珠江,土石料的流变模型及其应用,水利水运科学研究,1994(4):335-342
    87 Borja, R I & Kavazanjian E(1985). A constitutive model for the stress-strain-time behavior of "wet" clays, Geotechnique, 35(3): 283-298
    88 Morsy M M, Chan D H and Morgensten N R(1995). An effective stress model for creep of clay, Can. Geot. J., 32 (5): 819~834
    89 詹美礼,钱家欢,陈绪禄,软土流变试验和流变模型,岩土工程学报,1993,15(3):54-62
    90 谢宁,孙钧,土体非线性流变的有限元解析及其工程应用,岩土工程学报,1995,17(4):95-99
    91 Yin, J.H. & Graham, J.(1989). Viscous-elastic-plastic modeling of one-dimensional time-dependent behaviour of clays. Canadian Geotechnical Journal, 26, 199-209
    92 殷建华,Jack I. Clark,土体与时间相关的一维应力-应变性状、弹粘塑性模型和固结分析,岩土力学,Vol.15(3),1994,66-75
    93 Singh A and Mitchell J K(1968). General stress-strain-time function for soils, J. Soil Mech. Found. Div., ASCE, 94 (1): 21~46
    94 维亚列夫,C.C. 土力学的流变原理,科学出版社,1987
    95 Keedwell, M.J. Rheology and Soil Mechanics, London: Elsevier Applied Science Publishers, 1984.
    96 王盛源,粘弹性理论的推广及其在地基沉降设计计算方面的应用。华东水利学院研究生论文,1964
    97 赵维炳,广义Voiht模型模拟的饱水土体固结理论及其应用,河海大学博士论文,1987,10
    
    
    98 Zienkiewicz, O.C(1977). The Finite Element Method in Engineering Science, 3rd edition, 1977
    99 Owen D.R.J. & Hinton, E(1980). Finite Element Method in Plasticity,
    100 Mikasa, M.(1965). The consolidation of soft clay. Civil Engineering in Japan. JSCE, 21-26
    101 Gibson R E, England G L, etc.(1967). The Theory of one-dimensional consolidation of saturated clays Ⅰ, finite nonlinear consolidation of thin homogeneous layers. Geotechnique, 17(3)
    102 Gibson R E, Schiffman R L, etc(1981), The theory of one-dimensional consolidation of saturated clays Ⅱ, finite nonlinear consolidation of thick homogeneous layers. Canadian Geotechnical J, 18(2)
    103 Cater J P, Small, J.C. & Booker J R.(1977). A theory of finite elastic consolidation. Int. J solids Structures, 1977, 13: 467~478
    104 Prevost J H.(1982). Nonlinear transient phenomena in saturated porous media. Computer Methods in Applied Mechanics & Engineering, 20
    105 何君毅,林祥都,工程结构非线性问题的数值解法,国防工业出版社,1994,8
    106 McMeeking, R.M. & Rice, J.R.(1971) Finite element formulations for problems of large elastic-plastic deformation. Int. J. Solids and Structures. 11: 601-611
    107 山田嘉昭,非线性有限元法基础,钱仁根等译,北京:清华大学出版社,1988.9
    108 Argyris, J.H. Doltsinis, J. St.(1979) New developments in inelastic analysis of guasistatic and dynamic problems, Int. J. Num. Meth. Engrg. 14: 1813-1850
    109 Argyris, J.H. Doltsinis, J. St.(1980) Eulerian and Lagrangian techniques for elastic and inelastic large deformation process. In Computer Methods in Nonlinear Mechanics, North-Holland, Amsterdam
    110 方开泽、高新科,冲填土的一维非线性固结计算,人民黄河,1979(3)
    111 方开泽、高新科,水坠坝冲填土的二维非线性固结计算,人民黄河,1981(5)
    
    
    112 陈至达,有理力学——非线性连续介质力学,中国矿业大学出版社,1988
    113 谢和平,非线性大变形有限元分析及在地下工程中的应用,中国矿业学院硕士论文,1984
    114 秦忠,基于新的大变形理论的非线性有限元及其应用,中国矿业学院博士论文,1986
    115 谢新宇,朱向荣,谢康和,潘秋元,饱和土体一维大变形固结理论新进展,岩土工程学报,Vol.19(4),1997,30-37
    116 张汝清,詹先义,非线性有限元分析,重庆大学出版社,1990,1
    117 Framcavill, A. & Zienkiewicz, O.C.(1975), A note on computation of elastic contact problem, Int. J. Num. Meth. Engng. 9, 913-924
    118 Okamoto, N. & Nakazawa, M(1979), Finite element incre mental contact analysis with various frictional conditions, Int. J. Num. Meth. Engng. 14, 337-357
    119 Stadter, J.T. & Weiss, R.O(1979), Analysis of contact through finite element gaps. Computers & structures. Vol.10, 867-873
    120 Goodman, R.E. Yaylor, R.L. & Brekke, T.L.(1968). A model for the mechanics of jointed rock. J. Soil Mech. Div. ASCE, Vol.96, SM4,
    121 Hallquist J.O., Goudreau, Benson D.J.(1985). Sliding interfaces with contact-impact in large-scale lagrangian computations. Comp. Meth. Appl. Mech. Eng. 51: 107-137
    122 Schwer, L.E. Rosinsky, R., Day, J.(1988) A axisymmetric lagrangian technique for predicting earth penetration including penetrator response. Int. J. Num. Anal. Method. Geomech. 12: 235-260
    123 Mabsout, M.E., Tasoulas, J.L.(1994). A finite element model for the simulation of pile driving. Int. J. Num. Meth, Engrg. 37: 257-278
    124 雷晓燕,G.Swoboda,杜庆华,接触磨擦单元的理论和应用,岩土工程学报,16.23-32,1994
    125 张雄,陆万明,块体-夹层模型的弹塑性分析和接触分析方法,岩土工程学报,Vol.20(3),1-5,1998
    
    
    126 Shi, G.H. & Goodman, R.E.(1984). Discontinuous deformation analysis. Proc. 25th U.S. Symposium on Rock Mechanics, 269-277
    127 Barbosa, R, & Ghaboussi, J.D(1989), Discrete finite element method, 1st U.S. Conf. on Discrete Element Methods, CSM, Golden, Clorado, Oct. 17-19.
    128 王泳嘉和邢纪波,离散元法及其在岩土力学中的应用,东北工学院出版社,1991
    129 焦玉勇,三维离散元法及其应用,中科院武汉岩土力学研究所博士论文,1998
    130 Rendulic, L.(1937). Ein Grundgesetz der Tonmechanik und sein Experimentaller Beweis. Der Bauingeneur 18.
    131 Hvorslev, M.J.(1937). Uber die Festigkeitseigenschaften Gestorter Bindiger Boden. Danmarks Naturvidenskabelige Samfund. Ingeniorvidenskabelige Skrifter, A, No.45.
    132 Roscoe K.H. & Burland J.B.(1988), On the generalized stress-strain behavior of "wet clay", Engineering Plasticity, ed. Heyman J. And F.A., Cambridge Univ. Press, 1988.
    133 Terzaghi, K. (1941). Undisturbed clay samples and undisturbed clays. J. Boston Soc. Civ. Engrs 28, No.3, 565.
    134 Skempton, A, W. (1944). Notes on the compressibility of days. Q. J. Geot. Soc. 100, 119-135.
    135 Mitchell, J.K. (1976). Fundamentals of soil behavior. New York: Wiley.
    136 Leroueil, S., Tavenas, F., Brucy, F., La Rochelle, P. & Roy, M. (1979). Behavior of destructured natural clays. Proc. ASCE 105, Gt6, 759-778.
    137 Leroueil, S. & Vaughan, P.R. (1990). The important and congruent effects of structure in natural soils and weak rocks. Geotechnique 40, No.3.
    138 Hight, D.W., Jardine, R. J. & Gens, A. (1987). The behavior of soft clays. Chapter 2, Embankment on soft clays, pp.33-158. Athens: Public Works Research Center of Greece.
    
    
    139 Wood, D.M. (1990). Soil behavior and critical state soil mechanics. New York: Cambridge University Press.
    140 Skempton, A.W. (1970). The consolidation of clays by gravitational compaction. Q. J. Geol. Soc. 125, 373-411.
    141 Burland, J.B.(1990). On the compressibility and shear strength of natural clays. Geotechnique 40, No.3, 329-378
    142 Nagaraj, T.S. & Srinivasa Murthy, B.R. (1986). A critical reappraisal of compression index equations. Geotechnique 36, No.1, 27-32.
    143 魏汝龙,“沿海软粘土工程性质和数据库的开发研究”课题总结,南京水利科学研究院土工所,土9044,1990,10
    144 魏汝龙,王年香,孙斌,连云港淤泥工程性质数据库,南京水利科学研究院土工所,土9052,1990,11
    145 魏汝龙,孙斌,王年香,连云港淤泥的物理力学指标的统计分析,南京水利科学研究院土工所,土8833,1988,8
    146 魏汝龙,王年香,陈绪照,连云港淤泥取土质量的对比分析,南京水利科学研究院土工所,土8837,1988,9
    147 交通部第一航务工程设计院,青岛前湾港一期工程施工图勘察报告,1987,1
    148 交通部第二航务工程设计院,赤湾港突堤码头软土特性对比试验,1988,4
    149 交通部第一航务工程设计院,天津新港东突堤南侧土质试验报告,1985,10
    150 南京水利科学研究院,莆田北洋海堤试验段初步报告,1965
    151 Weber, W.G. Jr.(1969). Performance of embankments constructed over peat. J. Soil Mechanics and Foundation Div. ASCE, 65, SM1: 53-76
    152 Cargill K W. Prediction of consolidation of very soft soil. J of geotechnical engineering, ASCE, 1984, 110(6)
    153 沈珠江,软土地基固结变形的弹塑性分析,中国科学(A),1985,11
    
    
    154 沈珠江,土体弹塑性变形分析中的几个基本问题,江苏力学论文集,河海大学出版社,1994,1~10
    155 Schiffman R L, Cargill K W. Finite consolidation of sedimenting clay deposits. Proc of 10th Int. Conf. on Soil Mechanics & Foundation Engineering. 1981, 1
    156 周正明,饱和土体大变形固结有限元分析,水利水运科学研究,1992,1:106~110
    157 谢定义,21世纪土力学的思考,岩土工程学报,Vol.19(4),1997
    158 London, Z., Phys., Vol.63, p.245, 1930
    159 Hamaker, H.C.(1937). The London-van der Waals attraction between spherical particles, Physica 4, 1058-1072
    160 De Boer, J.H.(1936). The influence of van der Waals' forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins, Trans. Far. Soc., No.32, 10-38
    161 Anadarajah, A. And Chen, J.(1995), Single correction function for computing rearded van der Waals attraction, J. Colloid Interface Sci., Vol.176(2): 293-300
    162 Anadarajah, A. And Chen, J(1997). van der Waals attractive force between clay particles in water and contaminants, Soil and Foundations, Vol.37(2): 27-37
    163 Verwey E.J.W., and Overbeek, J.G. Theory of the stability of lyophobic colloids, Elsevier Publishing Company, Inc., New York, N.Y., 1948
    164 van Olphen(1977), H., An introduction to clay colloid chemistry. John Wiley & Sons, New York, N.Y.
    165 Lu N. and Anadarajah, A.(1992). Empirical estimation of double-layer repulsive force between two inclined clay particles of finite length, J. of Geotechnical Engineering, ASCE, Vol.118
    166 Owen D.R.J & Hinton E., Finite elements in plasticity theory and practice, 1980.
    167 Tavenas F. & Leroueil S.(1980), The behavior of embankment on clay foundations, Can. Geotechn. J., Vol. 17(2)
    
    
    168 Leroueil, S. & Vaughan, P.R.(1990). The general and congruent effects of structure in natural soil and weak rock, Geotechnique 40(3): 467-488
    169 Kabbaj, M. Tavenas, F. & Leroueil, S.(1988). In-situ and Laboratory stress-strain relations, Geotechnique 38(1): 83-100.
    170 Lapierre, C. Leroueil, S. & Locat, J.(1989). Mercury intrusion and permeability of Louisville Clay, Candian Geotechnical Conference, 23-25
    171 Burland J.B.(1989). Ninth Laurits Bjerrum Memory lecture "Small is beautiful"——the stiffmess of soils at small strains. Can. Geotech. J. 26, 499-516
    172 Nagaraj T S., Srinivasa Murthy, B.R. CaBala, A, and Joshi, R C(1990), Analysis of compressibility of sensitive soils, ASCE, Journal of Geotechnical Engineering, Vol. 116, No.1, 105-118
    173 Nagaraj, T S., Srinivasa Murthy B.R., and Vatsala A(1991). Prediction of soil behavior, Part Ⅲ——Cemented saturated soils, Indian Geotechnical Journal, Vol.21, No.2, 169-186
    174 Nanaraj T S., Pandian N S., and Narasimba Raju P.S.R.(1994). Stress-state-permeability-Relations for overconsolidated soils, Geotechnique, Vol.44, No.2, 349-352.
    175 张诚厚,结构性粘土对湛江一区码头变形的影响,水利水运科学研究,1985(3)
    176 张诚厚等,昆山软粘土的结构性及其对路基沉降的影响,南京水利科学研究院土工所.1993
    177 龚晓南,原状土的结构性及其对抗剪强度的影响,地基处理,Vol.10(1),1999,61-62
    178 Tavenas, F. & Leroueil, S.(1990). Laboratory and in situ stress-strain-time behavior of soft clays——state-of-the-art paper. Int. Symp. Geoteeh. Engng. soft Soils, Mexico City 2.
    179 Leroueil, S. Kabbaj, M. Tavenas, F et al(1985). Stress-strain-strain rate relation for the compressibility of sensitive natural clays. Geotechnique 35(2): 159-180
    
    
    180 沈珠江.岩土本构模型研究的进展.岩土力学,1990,10(2);3~12
    181 Perzyna, P(1966). Fundamental problems in visco-plasticity, In: Recent Advances in Applied Mechanics, 9: 243~377
    182 He K.S., Yuan W.M. Shen Z.J. Treatment of a thick soft ground under large oil tanks by preloading method. International Conference on Ground Improvement Techniques. Macau, 1997.5
    183 何开胜,戴济群.超深排水板堆土预压法.水利学报,2000(6)
    184 何开胜,袁文明等。南京炼油厂918~919#5万方油罐软基堆土预压期监测报告,土9815
    185 何开胜,袁文明等。南京炼油厂914~915#5万方油罐地基堆土预压监测报告,土9624
    186 地基处理手册.北京:中国建筑工业出版社,1988
    187 中堀和英等著,张文全译.软土地基处理.北京:人民交通出版社,1982
    188 Van Impe W.F.著,徐攸在等译.地基土的加固技术及其新进展.北京:中国建筑工业出版社,1992
    189 魏汝龙.软粘土的强度和变形.人民交通出版社,1987
    190 Clough T W, Woodward R J. Analysis of embankment stresses and deformations. JSMFD, ASCE, 1967, 93(SM4): 529-549
    191 钱家欢,殷宗泽,土工原理与计算(第2版)。北京:水利电力出版社,1994
    192 朱百里,沈珠江等,计算土力学,上海科学技术出版社,1990
    193 Oka, F. Adachi, T, Okano, Y. Two-dimensional consolidation analysis using an elasto-viscoplastic constitutive equation. International Journal for Numerical and Analysical Methods in Geomechanics, Vol., 10, 1-16, 1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700