物理干扰助磨技术及其电磁脉冲装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥是世界上最主要的建筑材料,我国已年产7亿吨以上。水泥生产大量消耗能源、资源,吨水泥耗电100kWh左右,其中60%用于粉磨工段。水泥粉磨过程能耗极高而效率又极低,仅0.6~1.0%用于新增表面能。由水泥粉体附着形成的“过粉磨”现象普遍存在,导致粉磨电耗居高不下。水泥新标准实施促进了我国水泥产品质量的提高,但也迫使水泥细度降低、比表面积升高,不采取相应技术措施则会造成磨内工况条件进一步恶化,粉磨电耗大幅攀升。若设法使粉磨电耗降低5%,则每年可节电21亿kWh,按每度电价0.5元计,每年可节约粉磨成本近10.5亿元,再加上电厂减少向环境排放大量的粉尘、SO_2、CO_2等,减轻环境负荷效益明显。因此,提高粉磨效率、降低粉磨电耗具有十分重要的意义。
     通过改进粉磨工艺或改变磨机结构,可降低粉磨电耗、提高粉磨系统产质量,但无法根除过粉磨现象。针对水泥粉磨过程中物料间受静电力、范德华力、表面张力等物理作用形成过粉磨现象,提出用具有相当反能量的物理场干扰恶化磨内工况条件的因素,打破由于过粉磨现象产生的恶性平衡,建立起一种有利于粉磨效率提高的新的动态平衡的物理干扰助磨技术概念。论文研究切入点是以物理电磁学基本理论研究水泥粉磨过程中细粉附着、集聚现象,旨在建立消除磨内“缓冲垫层”的干扰机制。
     水泥粉体静电带电机理和危害研究尚属空白。论文首先应用固体表面接触起电机理,理论推导了水泥粉体静电产生机理;续而应用物理电磁学基本定理设计了系列水泥粉体静电量、静电泄漏性能、静电电压和粉磨筒体静电泄漏电流的实验测试装置,探明了水泥粉磨过程中的静电发生规律。研究结果表明:粉磨作业过程中的粉体静电量增加是水泥粉体附着于磨机筒体边壁、研磨体的主要原因,由此导致粉磨过程中的“缓冲衬垫”效应,从而降低了粉磨效率。温度、水泥粉体比电阻、物料水分对水泥粉体静电量大小影响很大,在水泥物料粉磨过程中添加助磨剂可以明显降低水泥粉体的比电阻,加速粉体静电泄漏,从而降低粉体总体静电量,提高粉磨效率。
     论文应用静电感应原理对水泥粉体附着层进行理论诠释,证明了感应电荷层对粉体的吸引作用是粉体附着的主要原因,确立了水泥粉磨作业过程中过粉磨现象的形成机制,由此建立了带电水泥粉体的静电感应双电层附着模型。通过理论推理和对现阶段粉体静电消除装置的分析,确定对感应电荷层进行干扰和消除机
    
    南京工业大学博士学位论文
    摘要
    制应该是直接外加电场作用,进而运用电磁学高频电流趋肤效应理论建立了干扰
    粉体静电附着物理模型:由导体内迅变电场引起的涡旋电流产生电流趋肤效应,
    电流密度集中于磨机筒体内、外壁,可以有效地干扰或消除感应双电层;筒体内
    壁粉体附着层因干扰后可以增加研磨体与筒体的接触程度,通过冲击、摩擦接触
    作用达到间接干扰研磨体粉体附着效应,提高粉磨效率。
     干扰粉体静电附着物理模型的建立为以物理电磁法提高水泥粉磨效率提供
    可靠的物理理论模型和实际操作依据,这就要求后续研制的物理助磨技术电磁脉
    冲装置(physieal·grind一aiding一teehnique一即paratus in generating eleetronie transient
    pulse,以下简称PG声LTA)输出具有电流脉冲随时间变化大、输出脉冲次数多的
    特点以产生趋肤效应。而这种极短暂瞬间电压或电流大幅变化的脉冲型瞬变现象
    是电力电子设备稳定正常运行之大忌,强烈冲击电子器件,增大了研究设计的难
    度。实验装置的研制以电容储能、恒压充电为主要思想,设计了以大功率开关器
    件IGBT为主要元器件的脉冲电流发生装置。运用PsPice电子线路仿真软件对设
    计线路和主要关键电子元器件进行仿真实验,线路仿真中以IKV恒压充电可以得
    到每秒100次的近300A瞬间脉冲电流,其中由分布电感、电容及工GBT自身寄生
    电感引起的反冲振荡对电路设计和开关器件选取具有可行性指导意义。PGAI叭
    选用ZooA的IGBT可以得到950V、280A、脉宽为10娜的迅变脉冲,与仿真结果
    较为吻合。
     PGAI’A采用串联的双向可控硅和光电祸合器分段电压的设计,输出电压范
    围100一10O0v。放电回路采用桥式交叉电路,通过对驱动信号的软件控制实现了
    负载上放电脉冲的方向变化。根据充放电回路不同的要求对其驱动电路进行设计,
    充电回路中的IGBT采用EXB841,放电回路采用脉冲变压器驱动两路工GBT,提高
    了脉冲线路的稳定性。设计中由采样保持电路对电流脉冲峰值进行测量和实时显
    示,输出脉冲次数每秒1一100次,保证了在工业磨机上实际操作时合适的脉冲输
    出次数选取。PGATA采用单片机为控制器件,实现了液晶显示,键盘输入以及
    对系统实时数据的处理和显示等功能,可以实时显示PG户江人输出回路中的输出
    瞬变电流、磨机接触状态,从而对PGAI…A输出参数和回路电阻进行及时调整。
    采用C语言作为单片机的软件开发语言,优化了系统的软件设计。
     PGATA研制成功为物理助磨技术可行性研究提供了可操作工具。实验首先
    设计并建立合理的物理助磨实验磨机粉磨操作系统。分别将稳恒直流电源和
    PG户n人的不同输出功率能量作用于实验磨粉磨系统中,对比有无趋肤电场存在
    的
Cement is the most principal building material in the world. In China, its output has reached 700 million tons per year. Cement production process consumes large amount of energy and natural resources. At present, a ton of cement expends comprehensively about lOOkWh of electricity about 60% of which is used in grinding section, Cement grinding process consumes high energy on low efficiency, only 0.6 to 1.0 percent of which is being used in increasing surface. Owing to the universal existence of buffer bedding formatted by cement powder adherence, energy consumption is on a high level continuously. It is no doubt that the newly cement regulation put into effect will promote cement quality, on the contrary it forces the cement fineness down and surface area up. If no relevant technological innovation adapt, the consequences would be that mill's condition take a turn for the worse leading to the increasing on grinding electricity cost. Supposing that electricity cost of cement grinding be cut down for 5%, the c
    onsequence is that 2.1 billion kWh of electricity, equivalent to 1 billion yuan, could be saved. Further more, a great quantity of dust, SO2, CO2 from power plant to environment will be reduced, so as to lessen load of environment. Therefore, saving the electricity of cement grinding is of momentous significance.
    By way of better the grinding technique and the mill construction could cut down grinding electricity cost, enhance the quality and quantity of mill system, but the phenomenon of excessive grinding should not be eliminated. Aiming at the phenomenon of excessive grinding formatted from physical action of electrostatic force, Van de wall's force and surface stretching force among the ground stuff in cement grinding process, the dissertation put forward a conception of physical grind-aiding and interference technique. Based on the idea that the physical field matching with anti-energy should bring the action of interfering with the factors worsening working condition so as to break pernicious balance due to excessive grinding, a new kind of dynamic balance benefiting to up-grade grinding efficiency could be set up. The initial research on physical grind-aiding technology went through the fundamental theory of electromagnetism by which the phenomenon of powder particle adherence and gathering together in grindin
    g process could be studied, so the mechanism of interfering buffer bedding should be founded.
    
    
    
    Up to now, no study on the cement powder electrification and its harmfulness is pursued. First of all, the cement powder electrification mechanism was deduced from the theory of solid-surface-contacting-electrification. Next, electrification regulation of cement powder was verified by using the series of experimental system specially built for the electrostatic charge of cement powder, performance of its leakage, electrostatic voltage. The results show that cement powder particle adherence to inner wall of mill's thick and grinding bodies was reasoned from increasing of electrostatic charge of cement powder in grinding process. Therefore, the buffer bedding brought about from this led to decreasing on grinding efficiency. Temperature, cement risistivity, moisture content all are the effect factors on electrostatic charge of cement powder. The grinding-aids may obviously lower the cement risistivity, quicken leakage of cement electrostatic. As a result, electrostatic charge of cement powder reduced, and also grinding efficiency enhanced.
    The dissertation applied the principles of electrostatic induction for the theory explanatory of cement adherence layer, which proves attraction of the inductive electrostatic charge layer on the cement is one of the main reasons of cement adherence. The formation mechanism on the phenomenon of excessive grinding could formed and therefrom the cement adherence model of the inductive electrostatic double layer was built. By theory of electrostatic induction and analyzing the existing electrostatic-eliminated apparatus of powder, the direct additional electric field coul
引文
[1] 山本良一.环境材料[M].王天民译.北京:化学工业出版社,1997.8.3-5
    [2] 吴中伟,陶有生.中国水泥与混凝土工业的现状与问题.硅酸盐学报.1999,27(6):734~735
    [3] 中华人民共和国国家标准.水泥胶砂强度检验方法.GBl77-85,1985
    [4] 中华人民共和国国家标准.水泥胶砂强度检验方法(ISO法).GB/T17671-1999, 1999
    [5] 王文义.我国实施ISO强度方法后水泥企业面临的形势和任务.水泥技术.1999,4(4):12-15
    [6] 沈威,黄文熙,闵盘荣.水泥工艺学.武汉:武汉工业大学出版社,1990.175-202
    [7] H.F.W.Taylor. Cement Chemistry,2rd. London: Thorns Telford, 1997.113-186
    [8] 王文义.我国水泥新标准对水泥产品质量和生产工艺的影响(2).新世纪水泥导报.2000,2(2):16-19
    [9] 欧洲通用水泥标准ENV197-1-92,1992
    [10] 杨基奠.实施水泥新标准促进水泥生产技术进步.水泥技术.2001,(2):22-24
    [11] 赵介山.立窑水泥企业的技术进步.立窑水泥企业技术进步指南.徐州:中国矿业大学出版社,2002.143-152
    [12] 张大同.我国通用水泥产品标准实旌ISO强度方法后产生的影响分析.新世纪水泥导报.2002,5(5):3-5
    [13] 陈绍龙.执行水泥新标准对细度状况的试验研究.水泥技术.2001,1(1):18-21
    [14] 李晓光等.提高粉磨细度、改善颗粒级配是GB525号水泥实现ISO标准的重要技术手段.西安建筑科技大学学报.2001,33(1):67-70
    [15] 和立新等.不同粉磨程度对ISO强度影响的试验.水泥.2001,4(4):19-23
    [16] 卢家喜等.ISO法与GB法的对比实验研究(1).水泥工程.2001,2(2):48-50
    [17] 卢家喜等.ISO法与GB法的对比实验研究(2).水泥工程.2001,3(3):40-42
    [18] John Bensted. World Cement. Dr John Densted explains that these special cements are being used mare and mare for repair and grouting projects. 1992,12:45-47
    [19] Frigione,S.Marra. Relationship between particle size distribution and compressive strength in Portland cement, Cement and Concrete Research. 1976,Vol.6:113-128
    [20] T.Knudsen. The dispersion model for hydration of Portland cementl. Cement
    
    and Concrete Research. 1984,Vol. 14:622-630
    [21] 许仲梓.粒径分布对水泥水化速度的影响的理论探讨.第二届水泥学术会议论文集.北京:中国建筑工业出版社,1988.259-263
    [22] Frigione,S.Marra. Relationship between particle size distribution and compressive strength in Portland cement, Cement and Concrete Research. 1976,Vol.6:113-128
    [23] Wang aiqin,ZhangChengzhi,ZhangNingsheng. Study of the influence of the particle size distribution of the properties of cement. Cement and Concrete Research. 1997,Vol.27:685-695
    [24] JohnBensted.World Cement. Dr John Densted explains that these special cements are being used mare and mare for repair and grouting projects. 1992,12:45-47
    [25] 赵飞,冯修吉.颗粒大小对水泥水化和性能的影响.硅酸盐通报,1992,4(4):10-15
    [26] 李俭之.立窑水泥企业技术进步指南.徐州:中国矿业大学出版社,2002.209-215
    [27] 施娟英.熟料颗粒大小对水泥性能的影响——兼论水泥的最佳颗粒组成.第二届水泥学术会议论文集.北京:中国建筑工业出版社,1988.
    [28] 周棠森.不同颗粒组成对水泥性能的影响.水泥.1980 ,5:33-35
    [29] 罗帆,王炤.颗粒形状对水泥强度的影响初探.水泥.1989,3(3):29-33
    [30] 黄有丰,润澜,王家安等.水泥颗粒特性及粉磨工艺进展对水泥性能的影响.水泥技术.1999,2(2):8-11
    [31] 程伟.粉磨技术与能量经济.四川水泥.1996,1:19-24
    [32] 卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.126-127
    [33] 李保华,耿新民.我公司开流高细磨提产降耗的几项措施.新世纪水泥导报.2003,6(2):54-55
    [34] 段云刚等.φ3m×11m水泥磨适应ISO强度标准的技术措施.新世纪水泥导报.2003,6(2):53-54
    [35] 孙世龙.水泥生产粉磨系统增产节能的途径.山东建材.1995,5(5):20-23
    [36] 陈多环等.环沟-双曲面节能衬板和环沟应用.水泥技术.1997,6(6):23-25
    [37] 柴传东.利用斯坦钠曲线确定球磨机研磨体级配.山东建材.1997,5(5):36-37
    [38] 张少明,翟旭东,刘亚云.粉体工程.北京:中国建材工业出版社,1994.58-66
    [39] 江旭昌.管磨机.北京:中国建材工业出版社,1992.885-894
    
    
    [40] 姚鲁之.剖析球磨机能量利用率极低的原因.新世纪水泥导报,2002.1(2):37-40
    [41] 丁抗生.国外水泥助磨剂发展概况.北京:建材部技术情报研究所,1982.5-13
    [42] Rehbinder PA. Physicochemical Mechanics. Beijing: Beijing Unversity Press, 1987. 264-283
    [43] 陆厚根.粉体技术导论.上海:同济大学出版社,1998.155-158
    [44] 陶珍东,赵炜.掺入复合助磨剂提高粉磨效率改善水泥性能的研究.山东建材学院学报,1994.2:11-13
    [45] 卢迪芬,魏诗榴.木质素型复合水泥助磨剂的研究.第四届水泥学术会议论文集.北京:中国建材工业出版社,1992.44-49
    [46] 崔崇,谢运波,朱守东.少熟料水泥中大掺量矿渣激发条件的研究.水泥,2000.2:13-16
    [47] 孙世龙,孙秀发,辛艳等.AF水泥复合助磨剂的研究.水泥.1997,7:4-7
    [48] 江朝华,蔡安兰,严生等.硅酸盐类水泥助磨剂的实验研究.硅酸盐通报,2001.1:10-13
    [49] 赵旭光.助磨剂的助磨作用及对粉体流变性能的影响.耐火材料,1999.3:147-149
    [50] 胡小芳,盖国胜,马正先.物料流动性能与助磨剂的定量分析.水泥技术,2000.5:20-23
    [51] 程蓓,易普珍等.在助磨剂作用下粉煤灰颗粒表面形貌及其水化特性.粉煤灰,1999.3:21-23
    [52] LuDifen, WeiShiliu, MoQinghuanand Zeng Weiping. Effect of Grinding Aids on the Comminution of Cement Clinker Minerals.Proc.Beijinglnt.Symp.Cem.Concr., 3rd, volumel, 151-5
    [53] 苏光兰,张天石,徐彬等.复合工业助磨剂性能的研究.西南工学院学报,2000,15(1):23-26
    [54] ZinoviiBE. The multicomponent cements. Proceedings of the 10th international congress on the chemistry of cement. Gothenburg, Sweden,1997.Ii020
    [55] Ioudoviteh BE. Low water requirement binder as new generation cement. Proceedings of the 10th international congress on the chemistry of cement. Gothenburg, Sweden, 3iii021
    [56] 曾冬铭,莫红兵,周智华等.AS水泥助磨剂的研制.水泥,2001.5:8-10
    [57] 杨昆玉.我厂水泥助磨剂试验概况.水泥,1987.5:15-16
    
    
    [58] 樊树辉,卢健强,谭镜波.助磨剂在我厂水泥磨的试验情况和经济效益分析.助磨剂资料汇编.北京:中国建筑材料科学研究院技术情报中心,1989.42-51
    [59] 曾舜阶.助磨剂对不同水泥熟料助磨作用的探讨.水泥,1987.4:9-13
    [60] 郑少华,陶珍东,刘福田等.减水剂对水泥粉磨的助磨作用.水泥,1999.4:31-33
    [61] 卢迪芬,曾维平,魏诗榴.水泥工业中助磨剂的开发与应用.水泥,1990.5,29-31
    [62] 陈敏.建材工业节能技术实例选(150例).北京:中国建材工业出版社,1992.67-68
    [63] 尹青山,夏大全,赵从旭.水泥工业节能技术.北京:中国建材工业出版社,1993.46-49
    [64] 蔡安兰,江朝华,严生等.助磨剂对普通硅酸盐水泥性能的影响及作用机理.南京化工大学学报,2001,23(1):50-53
    [65] 朱宪伯,吕忠亚,张正锋.水泥助磨剂的作用机理——薄膜假说.第四届水泥学术会议论文集.北京:中国建筑工业出版社,1992.143-144
    [66] 丁抗生.国外水泥助磨剂发展概况.北京:建材部技术情报研究所,1982.5-13
    [67] 郑少华,王本语,赵旭光.助磨剂在水泥粉磨中的作用及对产品性能的影响.水泥,1994.7:1-4
    [68] 魏诗榴,韩志翔.节约能源的重要途径——综述国内外助磨剂的研究与使用.水泥助磨剂的研究与使用概况.北京:建材部技术情报研究所,1982.1-4
    [69] P.A.列宾捷尔著,物理化学力学(中译本),北京:中国工业出版社,1964
    [70] P.B.Rajendran and R.Paramasivam, An analysis of the breakagy process of calcite in media mill. Advanced Powder Teehnol., 1999,10(3)
    [71] P.B.Rajendran. Material characteristics and the breakage paramenters in a circular fluid energy mill. Advanced powder Technol., 1999,10(1)
    [72] Nair, P.B.Rajendran;Paramasivam,R. Analysis of the influence of grinding aids on the breakage process of calcite in media mill. Advanced powder Technol., 1999,10(3): 223-24
    [73] S. K. Moothedath and S. C. Ahluwalia. Mechanism of action of grinding aids in cornminution. Powder Technology, 1992,71: 229~237
    [74] S.Sohoni,R.Sridhar and G.Mandal. The effect of grinding aids on the fine grinding of limestone, quartz and Portland cement clinker. Powder Technology, 1991,67:277~286
    [75] 江朝华等.高性能水泥助磨剂的研究.硅酸盐学报.2001,29(6):507-511
    [76] 古·尼·弗德洛维奇等.中华人民共和国发明专利.C04B 7/52 CN1065843C专
    
    利号97110709.2一种水泥粉的获得方法
    [77] 罗宏昌,毕载俊,武学正.静电实用技术手册.上海:上海科学普及出版社,1990.83-179
    [78] 杨有启.静电安全技术.北京:化学工业出版社,1983.132-173
    [79] 王仲春.水泥工业粉磨工艺技术.北京:中国建材工业出版社.1998.69
    [80] 班红建.我厂水泥磨“包球”,“糊磨”的判析及解决措施.水泥工程,1997.4:56-57
    [81] 孙洁,董振江.椭圆球在水泥粉磨中的应用.水泥技术,2002.4:79-80
    [82] 孙可平,封根宝.气力输送管道内粉体空间电荷的测量方法.上海海运学院学报,1995.16[3]:61-65
    [83] K.舒格特.30μm以下细粒物料的静电分选.国外金属矿选矿,1995.3:35-39
    [84] 张宝铭,林文荻.静电防护技术手册.北京:电子工业出版社,2000.41-45
    [85] D.J.Montgomery.Solid State Physics,9,139(Edited by F. Seitz). Academic Press,New York and London,1959
    [86] 广重彻.物理学史[M].李霍民译.北京:教育出版社,1988,273-274
    [87] F.Helmholtz.Ann.Phys.7,337(1879)
    [88] A.Coehn. Ann.Phys,89,777(1909)
    [89] O.Knoblauch.Z.Phys.Chem.39,225(1902)
    [90] 马文蔚.物理学发展史上的里程碑.南京:江苏科技出版社,1992.306-311
    [91] J.Frenkel.Phil.Mag.,33,297(1917)
    [92] 顾秉林,王喜坤.固体物理学.北京:清华大学出版社,1989.78-180
    [93] P.S.H.Henry.Generation of static on solid insulators. J.Text.Inst. 1957.48:5-22
    [94] 陆承祖,王克起.静电原理与防灾.天津:天津大学出版社,1991.224
    [95] 张际春.静电危害与防护.北京:煤炭工业出版社,1994.1-6
    [96] 党君祥,李刚,邓熙帆.粉体静电起电的试验研究.中国粉体技术,2001.7(3):11-13
    [97] 李凤生等.气流粉碎过程中的静电问题.化工进展,1995.3:15-18
    [98] 陈权,鲍重光.粉体气力输运中的静电问题研究.中国安全科学学报,1996.6:170-174
    [99] 孙可平.粉体静电学国内外研究动态与进展.物理,2000.29(6):364-368
    [100] 姚鲁之.剖析球磨机能量利用率极低的原因.新世纪水泥导报,2002.1(2):37-40
    [101] 张少明,马振华.国内外超细粉磨技术的发展现状.江苏陶瓷,1992.1:34-37
    [102] 周锡忠.静电实验.北京:电子工业出版社,1984.28-36
    
    
    [103] 管义夫(日).静电手册.《静电手册》翻译组译.北京:科学出版社,1981.385-397
    [104] 陆承祖,王克起.静电原理与防灾.天津:天津大学出版社,1991.108-109
    [105] 徐玉仁.大型水泥磨磨内喷水系统的应用.水泥工程,1995.4:20-21
    [106] 赵凯华,陈熙谋.电磁学(上).北京:高等教育出版社,1985.3-6
    [107] 郭硕鸿.电动力学.北京:高等教育出版社,1989.5-10
    [108] 杨绪殿,冯学斌,陈继花.静电学典型问题的唯一性定理.山东师大学报,1994.9(1):124-128
    [109] 赵凯华,陈熙谋.电磁学(下).北京:高等教育出版社,1985.13-18
    [110] 张立.现代电力电子技术基础.北京:高等教育出版社,1999.3-5
    [111] 机械工程手册,电机工程手册编委会.电气工程师手册.北京:机械工业出版社,1987.12-20
    [112] 王英剑,常敏慧,何希才.新型开关电源实用技术.北京:电子工业出版社.1999.260-270
    [113] 刘胜利.现代高频开关电源实用技术.北京:电子工业出版社,2001.11-23
    [114] 张培仁.基于C语言编程MCS51单片机原理与应用.北京:清华大学出版社,2003.115-120
    [115] 常安碧等.600KV高压大电流脉冲变压器的研制.强激光与离子束,1998.10(3):462-466
    [116] 郭祥玉,李铁英,宁天夫.IGBT在大功率脉冲激光器中的应用.光电对抗与无源干扰,1996.1:5-12
    [117] 刘林茂,胡斯.臭气处理用窄脉冲高压电源.东北师范大学报,1994.1:26-34
    [118] A.R.Hefner, Jr., "INSTANT-IGBT Network Simulation and Transient Analysis Tool," National Institute of Standards and Technology Special Publication SP 400-88, June 1992.
    [119] A.R.Hefner, Jr., "An Investigation of the Drive Circuit Requirements for the Power Insulated Gate Bipolar Transistor ([GBT)," IEEE Transactions on Power Electronics, Vol. 6, No. 2, April 1991, pp.208-219.
    [120] A.R.Hefner, Jr., "Modeling Buffer Layer IGBT's for Circuit Simulation," IEEE Transactions on Power Electronics, Vol. 10, No. 2, March 1995, pp. 111-123
    [121] 郭胜强等.IGBT驱动脉冲变压器工作过程分析及参数选择.研究与设计电焊机,2001.31(8):26-28
    [122] 尹海等.IGBT驱动电路性能分析.电力电子技术,1998.3:86-89
    
    
    [123] 刘星平,李炎斌.IGBT驱动电路的研究.电气开关,2002,5:19-21
    [124] 李维,郭强.液晶显示器件应用技术.北京:北京邮电学院出版,1992.10:56-65
    [125] 西安新敏电子科技有限公司.内藏T6963C控制器图形液晶显示模块使用手册:2-10
    [126] 赖麒文.8051单片机C语言开发环境与设计.北京:科学出版社 2002.15-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700