用户名: 密码: 验证码:
亚临界H_2O-CO_2体系中纤维素降解制备乙酰丙酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在煤炭、石油、天然气等化石资源日趋枯竭的今天,纤维素作为一种主要的生物质资源,越来越受到人们的重视。乙酰丙酸用途广泛,被誉为“绿色平台化合物”。
     本课题以亚临界H_2O-CO_2体系为反应介质,考察了纤维素降解制备乙酰丙酸的工艺条件,建立了乙酰丙酸的高效液相色谱(HPLC)定量分析方法,研究了反应速率与产物收率的关系,并结合纤维素热裂解反应,探讨了亚临界H_2O-CO_2体系中纤维素制备乙酰丙酸的反应机理。
     本研究以纤维素降解制备乙酰丙酸的质量收率为目标,确定了亚临界H_2O-CO_2体系中纤维素降解制备乙酰丙酸的适宜工艺条件:纤维素与水投料的质量比为1:0.0135,反应温度为290℃,CO_2加入量为7.5%,反应压力17.2MPa,反应时间为15min,乙酰丙酸的质量收率为34.99%,达到理论质量收率的49%。
     研究中用N_2代替CO_2考察了反应压力对实验的影响。实验结果表明:增大反应压力有助于乙酰丙酸收率的提高;亚临界水中加入CO_2一方面增大了反应压力,另一方面也提高了体系的酸性,从而促进了纤维素的降解,提高了乙酰丙酸的收率。
     通过对纤维素热裂解产物与水热降解产物的GC-MS定性分析得出:纤维素的水热降解是一个包括水解、热裂解和脱水等多种反应的复杂过程。反应可以分为以下几个阶段:纤维素→1,6-脱水-β-D-吡喃葡萄糖→5-羟甲基糠醛→乙酰丙酸。对乙酰丙酸生成过程的反应机理进行分析后,得出了亚临界H_2O-CO_2体系中纤维素降解的反应网络图。
     反应速率的研究结果表明:在温度250℃~310℃、CO_2加入量7.5%、压力17.2MPa的实验条件下,反应可以认为是一级反应,表观活化能Ea为141.52kJ/mol,指前因子A为3.73×10~(11)min~(-1),反应速率与产物收率关联式为:
Nowadays, the fossil resource is severely exhausted. The biomass is a kind of renewable resource, and is being studied by more and more people. The decomposition of cellulose, which is the largest kind of biomass, to levulinic acid which is called“green platform chemical”is going to be studied in this paper.
     In this study, subcritical H_2O-CO_2 system was used as the reaction media. The technologcial conditions for preparation of levulinic acid were studied. The quantitative analysis method of levulinic acid by HPLC was established. The relationship between reaction rate and product yield was studied. Combined with the pyrolysis of cellulose, the mechanism of cellulose hydrothermal decomposition was discussed.
     The mass yield of levulinic acid was used as the research target. The optimum technologcial conditions were determined: mass feed ratio of water and cellulose 1:0.0135, temperature 290℃, CO_2 molar fraction 7.5%, pressure 17.2MPa and time 15min. Under above conditions, the mass yield of levulinic acid was up to 34.99%, and accounted for 49% of theory mass yield (71.4%).
     Another experiment was set by substituting N_2 for CO_2. And the results showed that high pressure was helpful for the improvement of mass yield of levulinic acid. The addition of CO_2 to subcritical water could increase the pressure; on the other hand, it could enhance the acidity of the system. This promoted the decomposition of cellulose, and improved the mass yield of levulinic acid.
     Through the qualitative analysis of products in cellulose pyrolysis and hydrothermal decomposition by GC-MS, it could be concluded that the hydrothermal decomposition of cellulose was a complex process which included hydrolysis, pyrolysis, dehydration, and so on. The reaction contains several stages: cellulose→levoglucosan→5-hydroxymethyl-furaldehyde→levulinic acid. After the mechanism for the preparation of levulinic acid was analyzed, the networks for the decomposition of cellulose under subcritical H_2O-CO_2 conditions werre obtained.
     The research of reaction rate showed that the system was a first-order reaction under the conditions which were 250℃~310℃, 7.5%CO_2, and 17.2MPa. The apparent activation energy of the reaction (E_a) is 141.52kJ/mol. The relationship between reaction rate and product yield is as follows:
引文
[1] 朱清时,阎立峰,郭庆祥.生物质洁净能源.北京:化学工业出版社.2002:1~5
    [2] 徐寿昌.有机化学.北京:高等教育出版社.1993:447~448
    [3] 刘仁庆.纤维素化学基础.北京:科学出版社.1985:75~83
    [4] 王宗德,胡庆国.微晶体纤维素的特性及其应用.江西林业科技.2000, (1):26~28
    [5] 潘松汉,汤烈贵,王贞等.微晶纤维素的微细结构研究.纤维素科学与技术.1994, 2(1), 1~7
    [6] 张洪勋,李林.纤维素类生物质热解技术研究进展.北京联合大学学报(自然科学版).2004, 18(1):16~19
    [7] 廖艳芬.纤维素热裂解机理试验研究:[博士学位论文].浙江大学.2003
    [8] 郑成.植物纤维素的水解利用研究进展.中国物资再生.1997, (4):12~13
    [9] 夏黎明.可再生纤维素资源酶法降解的研究进展.林产化工通讯.1999, 33(1):23~28
    [10] 郝小红,郭烈锦.超临界水中湿生物质催化气化制氢研究评述.化工学报.2002, 53(3):221~228
    [11] Calzavara Y, Joussot-Dubien C, Boissonnet G, et al. Evaluation of biomass gasi.cation in supercritical water process for hydrogen production. Energy convers. Manage. 2005, 46:615~631
    [12] Kabyemela B M, Adschiri T, Malaluan R M, et al. Kinetics of Glucose Epimerization and Decomposition in Subcritical and Supercritical Water. Ind. Eng. Chem. Res. 1997, 36:1552~1558
    [13] Kabyemela B M, Adschiri T, Malaluan R M, et al. Rapid and Selective Conversion of Glucose to Erythrose in Supercritical Water. Ind. Eng. Chem. Res. 1997, 36:5063~5067
    [14] Kabyemela B M, Adschiri T, Malaluan R M, et al. Mechanism and Kinetics of Cellobiose Decomposition in Sub- and Supercritical Water. Ind. Eng. Chem. Res. 1998, 37:357~361
    [15] Kabyemela B M, Adschiri T, Malaluan R M, et al. Glucose and Fructose Decomposition in Subcritical and Supercritical Water: Detailed Reaction Pathway, Mechanisms, and Kinetics. Ind. Eng. Chem. Res. 1999, 38:2888~2895
    [16] Sasaki M, Furukawa M, Minami K, et al. Kinetics and Mechanism of Cellobiose Hydrolysis and Retro-Aldol Condensation in Subcritical and Supercritical Water. Ind. Eng. Chem. Res. 2002, 41:6642~6649
    [17] Kabyemela B M, Adschiri T, Malaluan R M, et al. Degradation Kinetics of Dihydroxyacetone and Glyceraldehyde in Subcritical and Supercritical Water. Ind. Eng. Chem. Res. 1997, 36:2025~2030
    [18] Sasaki M, Kabyemela B M, Malaluan R. Cellulose hydrolysis in subcritical and supercritical water. J. Supercrit. Fluids.. 1998, 13:261~268
    [19] Sakaki T, Shibata M, Hirosue T, et al. Reaction model of cellulose decomposition in near-critical water and fermentation of products. Bioresour. Technol.. 1996, 58:197~202
    [20] Sakaki T, Shibata M, Miki T, et al. Decomposition of Cellulose in Near-Critical Water and Fermentability of the Products. Energy & Fuels. 1996, 10:684~688
    [21] Ando H, Sakaki T, Kokusho T, et al. Decomposition Behavior of Plant Biomass in Hot-Compressed Water. Ind. Eng. Chem. Res. 2000, 39:3688~3693
    [22] Nagamori M, Funazukuri T. Glucose production by hydrolysis of starch under hydrothermal conditions. J. Chem. Technol. Biotechnol. 2004(online), 79:229~233
    [23] Khajavi S H, Kimura Y, Oomori T, et al. Kinetics on sucrose decomposition in subcritical water. LWT. 2005, 38:297~302
    [24] Ehara K, Saka S. A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water. Cellulose. 2002, 9:301~311
    [25] 吕秀阳,迫田章义,铃木基之.纤维素在近临界水中的分解动力学和产物分布.化工学报.2001,52(6):556~559
    [26] 吕 秀 阳 等 . 氧 浓 度 对 近 临 界 水 中 纤 维 素 分 解 的 影 响 . 太 阳 能 学报.2002,23(4):467~471
    [27] Kruse, Gawlik A. Biomass conversion in water at 330-410 °C and 30-50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind. Eng. Chem. Res. 2003, 42:267~279
    [28] Bühler W, Dinjus E, Ederer H J, et al. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water. J. Supercrit. Fluids.. 2002, 22:37~53
    [29] Sakaki M, Adschiri T, Arai K. Production of cellulose II from native cellulose by near- and supercritical water solubilization. J. Agric. Food Chem. 2003, 51:5376-5381
    [30] Sakaki M, Adschiri T, Arai K. Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water. AIChE Journal. 2004, 50(1):192~202
    [31] 孙健,陈砺,王红林.纤维素原料生产燃料酒精的技术现状.可再生能源.2003.6:5~9
    [32] 蔡磊,吕秀阳,何龙等.新平台化合物乙酰丙酸制备方法研究进展.现代化工.2003,23(4):14~16
    [33] 李锦春,新的乙酰丙酸合成法.四川化工.1997,(4):37~39
    [34] 杜小英,祖桂荣.乙酰丙酸的制备.天津化工.1996,(3):32~35
    [35] 慎炼,梅蕾.糠醇法合成乙酰丙酸的研究.浙江化工.1999,30(3):23~24
    [36] 张 来 新 , 杨 琼 . 木 糖 生 产 残 液 制 取 乙 酰 丙 酸 及 活 性 炭 . 现 代 化工.2000,20(2):32~34
    [37] 张来新.用棉籽壳制乙酰丙酸及活性炭.化工环保.2001,21(3):161~163
    [38] 郭学阳,温占平.植物废渣制备乙酰丙酸的生产技术.甘肃化工,1991,(3):1~3
    [39] 陈战国,罗文谦,刘谦光.从葡萄糖母液中制取乙酰丙酸的工艺研究.陕西师范大学学报(自然科学版).1997,25(2):111~112
    [40] 刘前.葡萄糖母液生产乙酰丙酸.淀粉与淀粉糖.1991(2):21~22
    [41] 何 柱 生 . 从 造 纸 黑 液 中 提 取 乙 酰 丙 酸 的 研 究 . 化 学 工 业 与 工程,2001,19(2):163~165
    [42] Cha J Y, Hanna M A. Levulinic acid production based on extrusion and pressurized batch reaction. Ind. Crops & Products. 2002, 16:109~118
    [43] Fang Q, Hanna M. Experimental studies for levulinic acid production from whole kernel grain sorghum. Bio Tech.. 2002, 81:187~192
    [44] Biofine Incorporated. Production of levulinic acid from carbohydrate-containing materials. 美国专利. US5608105. 1997
    [45] 岑沛霖,穆江华,赵春晖等.从可再生资源获得新型绿色“平台化合物”乙酰丙酸的研究与开发.生物加工过程.2003,1(1):17~22
    [46] 常春,马晓建,方书起等.可再生资源制备平台化合物乙酰丙酸的研究进展.化工新型材料.2005,33(8):69~77
    [47] 危 春 玲 , 陈 丰 秋 , 张 欢 欢 等 . 铌 酸 催 化 水 解 葡 萄 糖 的 研 究 . 工 业 催化.2004,12(12):46~49
    [48] Seri K, Sakaki T, Shibata M, et al. Lanthanum(Ⅲ)-catalyzed degradation of cellulose at 250℃. Bio. Tech.. 2002, 81:257-260
    [49] 蔡磊 , 吕秀阳 , 何龙等 . 新平台化合物乙酰丙酸化学与应用 . 化工时刊.2004,18(7):1~4
    [50] Bozell J J, Moens L, Elliott D C, et al. Production of levulinic acid and use as a platform chemical for derived products. Res., Conser. & Recy.. 2000, 28:227–239
    [51] 郭 清 泉 , 陈 焕 钦 . 乙 酰 丙 酸 及 其 衍 生 物 的 研 究 进 展 . 精 细 石 油 化工.2003,(3):45~48
    [52] 孟守,吴爱东,韦绪伦等.α-当归内酯合成工艺研究及在卷烟中的应用.山东食品发酵.2004:62~64
    [53] 韩布兴等.超临界流体科学与技术.北京:中国石化出版社.2005:85~88
    [54] 张丽莉,田宜灵.超临界水的特性及应用.化学工业与工程.2003,20(1):33~54
    [55] Akiya N, Savage P E. Roles of water for chemical reactions in High-Temperature Water. Chem. Rev. 2002, 102:2725~2750
    [56] dos Santos V M L, Moreira F G B, Longo R L. Topology of the hydrogen bond networks in liquid water at room and supercritical conditions: a small-world structure. Chem. Phys. Lett.. 2004, 390:157–161
    [57] 杨馗 , 徐明仙 , 林春绵 . 超临界水的物理化学性质 . 浙江工业大学学报.2001,29(4):386~390
    [58] Takenouchi S, Kennedy G C. The binary system H2O-CO2 at high temperatures and pressures. American Journal of Science. 1964, 262:1055~1074
    [59] T?dheide K, Franck E U. Das zweiphasengebiet und die kritische kurve im system kohlendioxid-wasser bis zu drücken von 3500 bar. (The two-phase region and the critical curve in the system carbon dioxide-water at pressure up to 3500 bar). Z. Phys. Chem. (Munich). 1963, 37:387~401
    [60] Bignold G J, Brewer A D, Hearn B. Specific conductivity and ionic product of water between 50 and 271℃. Trans. Faraday. Soc. 1971, 67:2419~2430
    [61] 杨正璟,陈育如,欧阳平凯.植物纤维素水解渣综合利用生产乙酰丙酸及木质活性炭.化工进展.1996(1):41~42
    [62] 马池忠.酱油鉴别检验.中国标准化.2002,(3):18
    [63] 李琴.酿造酱油、配制酱油及酿造食醋、配制食醋的鉴别.化学分析计量.2003,12(3):45~46
    [64] 夏恒连.焦糖色中的乙酰丙酸检测法.上海调味品.1994,(1):31~32
    [65] 刘 稼 骏 . 顶 空 进 样 气 相 色 谱 法 测 定 酱 油 中 乙 酰 丙 酸 . 中 国 调 味品.2002,(6):42~44
    [66] 鲍忠定等.毛细管气相色谱内标法测定酱油中的乙酰丙酸.食品工业科技.2003, 24(11):83~84
    [67] 贺才珍,傅一敏,胡艾莉.高效液相色谱法测定酱油乙酰丙酸含量.上海师范大学学报(自然科学版).2004, 33(3):106~108
    [68] 段文仲,郭春海.高效液相色谱法测定乙酰丙酸的含量.河北化工.1998(3):56
    [69] 江勇,倪永年,朱惠芳.液相色谱法测定酱油中的乙酰丙酸.南昌大学学报(理科版),2006, 30(1):40~42
    [70] Antal M J, Mok W, Richards G N. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose, Carbohydr. Res, 1990, 199: 91~109
    [71] 汪利平.纤维素水热降解制备 5-羟甲基糠醛的实验研究:[硕士学位论文].天津大学.2006
    [72] 汪利平,吕惠生,张敏华.纤维素超临界水解反应的研究进展.林产化学与工业.2006,26(4):117~120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700