迎面扰动作用下爆燃波与爆轰波传播特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文工作是研究在迎面扰动作用下,爆轰波与爆燃波的传播特性及其演变过程和机理。迎面扰动的产生采用两种方法,一是在光滑的直爆轰管道中设置一道扰动尺度小而均匀的孔栅,阻碍爆轰波的传播并使其前导激波与火焰面解耦而蜕化为爆燃波;二是产生一道与爆轰波相向运动的激波与之碰撞,使得爆轰波的前导激波波后获得进一步强化的高温高压流场。这二者的共同特点是,在近乎瞬间破坏原有爆轰波的稳定自持条件,为考察其后续发展过程乃至于形成或达到新的稳定自持爆轰产生特有的有重要研究价值的现象,而这正是本文关注的要点。
     研究采用实验、数值模拟和理论分析相结合的方法。实验方面,爆轰波与孔栅作用实验在一内径65mm,长4.5m,距起爆端2.5m处安置孔栅的爆轰管中进行;爆轰波与激波迎面作用实验中,激波的产生由上述爆轰管的另一端加接一高压驱动段产生,通过同步控制爆轰的起爆以确保激波与爆轰波在实验段相遇;试验气体为化学当量比的乙炔和氧气,以及80%氩气稀释的乙炔氧气混合气体。测量方面,基于两次通过纹影系统,采用转鼓高速摄影机记录爆轰波与迎面扰动作用及其发展过程的x-t纹影图;以分布于下游直管上的传感器跟踪爆燃波的后继发展历史;采用烟迹板记录爆轰胞格结构。为了提高数值计算效率,本文构建了一种适用上述预混气体燃烧过程的4组元、3步总体反应模型。该模型不仅能够体现真实基元反应诱导时间、主释热反应速率、产物平衡速率等各种重要尺度特征,也能很好地预测各种状况下的反应热和化学平衡状态,还可以大大降低非定常化学反应流数值计算的资源耗费。
     在爆轰波透射孔栅的研究中,对比了两种不同可燃气体中爆燃波结构和传播特性的差异,一种是爆轰较为不规则的当量比乙炔/氧气混合气体(M1气体),另一种是爆轰较为规则的80%氩气稀释的乙炔/氧气混合气体(M2气体)。研究发现:随着初始压强的提高,M1气体中的爆燃波经历一个由层流结构到湍流结构的转变,一旦初始爆燃形成湍流结构,爆燃向爆轰的转变即可以在下游发生,转变前的爆燃波可传播十几倍管径的距离;M2气体当初压高于一定压强后,也可以发生爆燃向爆轰的转变,但这种转变的发生仅限于孔棚下游3倍管径距离以内,而且转变前爆燃波结构随初压的提高未见明显变化。在两种不同的孔栅扰动尺度下,M1发生爆轰转变的临界压强基本一致;而M2则表现出对孔栅扰动尺度的响应,较大尺度的扰动有利于爆燃向爆轰的转变。上述发现表明,M1气体中的爆燃流场一旦形成湍流燃烧,则可在传播过程中不断得到加强进而向爆轰转变;而M2气体中,这种转变则更多地依赖于初始的扰动。
     利用孔栅对爆轰扰动形成爆燃波的独特优势,实验结果清晰地展示了爆燃向爆轰转变的临界状况对应于一种波速为50%-60%CJ爆速的临界爆燃,光滑直管中难以存在高于这一爆燃速度而低于爆轰速度的准稳态传播的高速爆燃波。就其机理问题,研究分析表明:准稳态传播的临界爆燃是燃烧加速与透射Taylor稀疏波相互竞争的结果,M1高速爆燃波中的湍流燃烧提供了能够抗衡稀疏波作用的燃烧加速机制,因而它能维持一定速度传播很长距离;而M2高速爆燃波难以形成湍流燃烧,因此不能抵制稀疏波作用,若起始扰动不能使之转化为爆轰,它将持续走向衰弱。
     本文首次从实验x-t纹影图片中发现,爆轰波与正激波迎面相互作用后透射爆轰波后总是紧随一道稀疏波区,该结果表明两波碰撞后的透射爆轰波对应于一维理论分析的中CJ爆轰解。此外,研究还发现:(1)两波碰撞后透射爆轰波面特征尺度变小,波面更为稳定平缓;这在胞格图案上显示为更小和更为规则的胞格尺度;同时,受激波诱导来流作用,胞格长宽比也会下降。(2)两波碰撞过程存在一个有限的非平衡转变阶段。透射爆轰首先发生解耦,波速衰减,接着迅速进发为过驱爆轰,然后再逐渐平衡为CJ爆轰;对于真实胞格爆轰这一转变过程在空间上并非均衡发展。实验、数值模拟和理论分析的有效结合在本项研究中得到了很好的体现。
An investigation was carried out for the behaviors of detonation and deflagration propagation after the interaction of head-on disturbances. Two kinds of so called "head-on" disturbances were chosen in the work, one is the disturbance generated by a perforated plate located on the way of detonation propagation, suffering from which the detonation will be decayed into a deflagration. The other is the head-on collision of a detonation with an opposite propagating shock wave, after which the combustion field behind the leading shock of the detonation will be enhanced by the incoming shock wave. Both of the disturbances play a similar role, that is, to destroy the condition of self-sustained detonation propagation almost instantaneously, so that the flow field will be forced to undergo an unstable process, which is the main interest of present work.
     The experiments were conducted in a detonation tube, whose diameter is 65mm and 4.5m in length. During the tests of detonation-perforated plate interaction, a perforated plate of 5mm thick separated the tube into two parts 2.5 m away from the ignition end. On the other hand, the head-on collision of detonation and shock wave was generated with an additional driver of shock tube connected to the other end of the detonation tube, in which the ignition of the detonation was triggered by the incoming shock wave, in order to guarantee the detonation and the shock wave to meet at the windows. A stoichiometric acetylene-oxygen mixture (M1), as well as 80% Ar diluted acetylene-oxygen mixture (M2), were tested during the operations. Right downstream the perforated plate, there were a pair of 300 mm long 2 mm wide slice windows for streak schlieren photography. The averaged structure and its evolution of the initially transmitted deflagration waves thus could be recorded in the film as an x-t diagram. Meanwhile, pressure transducers and ion probes mounted on the downstream tube traced the further development of the flame and wave front. A global reaction model of 4 reactant species and 3 reaction steps was proposed for a fast numerical calculation, in which the characteristic scales of induction time, heat release, as well as products were reasonably included.
     For the interaction of detonation with perforated plate, the main interest was focused on deflagration-detonation transition. It was found that, with the increase of initial pressure in Ml gas mixture, the deflagration wave varies from a laminar structure to a turbulent one, after which the transition to detonation will occur within a dozen of diameter length. The deflagration can also be switched into detonation when the initial pressure is high enough in M2 gas mixture, where transition takes place within a couple of diameter length with no obvious turbulence occurrence, which implies that the initial disturbance plays an important role for the transition.
     Thanks to the advantage of nearly 1 -D disturbance generated by the perforated plate, it was possible to demonstrate clearly that there is a critical state of deflagration with up to 50-60% of CJ detonation speed before the transition. And the deflagration can hardly exist with a speed in between the above state and the CJ detonation speed. The analysis of present work showed that, the deflagrations with laminar structure usually can not stand the attenuation of background Taylor rarefaction and keeps on slowing down, whereas the turbulent one is capable of accelerating and running up to a detonation wave. Therefore, it might be explained that for Ml gas mixture, the deflagration who is capable of propagating for a relatively long distance with 50-60% CJ detonation speed could be attributed to the competition between the turbulence enhancement and the Taylor rarefaction attenuation.
     From the streak schlieren visualization results, it was clearly observed for the first time that, after head-on collision of planar shock with detonation, the transmitted detonation wave in shock-compressed flow is always followed by a fan of rarefaction wave, which implies the transmitted equilibrium detonation wave to be in CJ state. It was also revealed that, (1) The cell size of the detonation decreases obviously and distributes more regularly after the collision, and furthermore, the length scale along the flow direction is compressed even shorter by the incoming shock wave; and (2) There exists an unstable process during the collision, the detonation wave decouples at the initial stage of the collision, followed by a quick switch into overdriven detonation wave which then approach gradually to the steady CJ state, and this process develops non-uniformly for real cellular detonation. The combination of experiment, numerical simulation and theoretical analysis was well performed in this part of the work.
引文
1. Berthelot M. and.Vielle P., On the Velocity of Propagation of Explosive Processes in Gases, C. R. Hebd. Sceances Acad. Sci. 93:18-21., 1881
    2. Berthelot M. and.Vielle P., On Explosive Waves, C. R. Hebd. Sceances Acad. Sci. 94:149-152, 94:882., 1882
    3. Campbell C. and Woodhead D.W., The ignition of gases by a explosion wave. Part t. Carbon monoxide and hydrogen mixtures. J. Chem. Soc. 1927:1572-1578
    4. Chapman D.L, On the rate of explosion in gases. Philos. Mag. pp.91-104
    5. Jouguet E, On the propagation of chemical reaction in gases. J. de Mathematiques Pures et Appliquees, Vol 1 ,pp.347-425. continued in Vol.2,pp.5-85,1905
    6. Bone W.A., Fraser R.P. and Wheeler W.H., A Photographic Investigation of Flame Movements in Gaseous Explosions, Part 7, Phil. Trans. Roy. Soc. A, Vol. 235, pp 29-68, 1936
    7. Zeldovich YaB. To the Question of Energy Use of Detonation Combustion, Journal of Experimental and Theoretical Physics v. 10, no. 5, 1940.
    8. Zeldovich YaB. On the theory of the propagation of detonation in gaseous systems. Journal of Experimental and Theoretical Physics 1940;10(5):543-68.
    9. Von Neumann, Theory of detonation wave. John Von Neumann Collected Works, Vol.6,1942.
    10. Schelkin K.I. Combustion and detonation in gases. Moscow: Voenizdat; 1944.
    11. Schelkin KI. Occurance of detonation in gases in rough-walled tubes. Soviet J. Tech. Phys. 17(5), 613(1947)
    12. Denisov YuN. And Troshin YaK., Pulsating and spinning detonation of gaseous mixtures in tubes, Dokl. Akad. Nauk SSSR (Phys-Chem.Sec.) 125:110-113
    13. Brinkley, S.R. and Lewis, B., On the Transition from Deflagration to Detonation," 7th Symp. (Int.) on Combustion, 1959, pp. 807-811.
    14. Soloukhin R, Deflagration to detonation transition in gases. Appl. Mech. Techn. Phys. (4), 128 (1961)
    15. Donald R. White, Turbulent structure in gaseous detonations. Phys. Fluids 4, 465-480( 1961)
    16. Oppenheim A.K., Manson, N., and Wagner, H.G., Recent Progress in Detonation Research, A1AA Journal, Vol. 1,No. 10, 1963, pp. 2243-2252.
    17. Soloukhin R, Multiheaded structure of gaseous detonation. Combust. Flame 9, 51-58(1965)
    18. Urtiew, P.A. and Oppenheim, A.K., Experimental Observation of the Transition to Detonation in an Explosion Gas, Proc. Royal Society of London. Series A 295, 1966, pp. 13-28.
    19. Lee J.H.S., Initiation of Gaseous Detonation, Annu. Rev. Phys. Chem. 1977.28:75-104.
    20. Fickett, W. & Davis, W. C. Detonation, Dover Publications, 1979.
    21. Lee J.H.S., Dynamic Parameters of Gaseous Detonations, Annual Review of Fluid Mechanics, Vol. 16, 1984, pp. 311-336.
    22. Lee, J.H., Knystautas, R., Chan, C.K.: Turbulent flame propagation in obstacle-filled tubes. In: Proceedings of the 20th Symposium (International) on Combustion, pp. 1663-1672. The Combustion Institute, Pittsburgh, PA (1984)
    23. Lee J.H.S., On the Transition from Deflagration to Detonation, of Progress in Astronautics and Aeronautics series, 1986, Vol.106,pp.644
    24. Benedick W., Guirao, C., Knystautas, R., and Lee, J.H.S., Critical Charge for Direct Initiation of Detonation in Gaseous Fuel/Air Mixtures, Dynamics of Explosions, Edited by Bowen, J.R. and Leyer, J.C., Vol. 106, Progress in Astronautics and Aeronautics, AIAA, New York, 1986, pp. 181-202.
    25. Peraldi O., Knystautas R., Lee J.H.; Criteria for transition to detonation in tubes. In: Proceedings of the 21st Symposium (International) on Combustion, pp. 1629-1637. The Combustion Institute, Pittsburgh (1986)
    26. Miller J.A. and Kee R.J., Westbrook C.K. Chemical Kinetics and Combustion Modeling, Annu. Rev. Phys. Chem. 1990.41:345-387
    27. Shepherd J.E. and Lee J.H.S., On the Transition from Deflagration to Detonation, Book: Major Research Topics in Combustion, Hampton : Springer-verlag, 1992, pp.439-471
    28. Manson N, Dabora EK. In: Dynamic aspects of detonations. Kuhl AL, Leyer J-C,Borisov AA, Sirignano WA, editors. Progress in astronautics and aeronautics series 153. 1993. p.3-42.
    29. Kaneshige M. and Shepherd J.E., Detonation Database, Explosion Dynamics Laboratory Report FM97-8, July 30, 1997
    30. Schultz E. and Shepherd J., Validation of Detailed Reaction Mechanisms for Detonation Simulation, Explosion Dynamics Laboratory Report FM99-5, February 8,2000
    31. Lee J.H.S., Detonation waves in Gaseous Explosives, Book: Handbook of Shock Waves, Chapter 17, Volume 3, New York: Academic Press, 2001, pp.309-413
    32. Lee, J.H.S. and Higgins, A.J., Comments on Criteria for Direct Initiation of Detonation, Philosophical Transactions of the Royal Society of London A, Vol. 357, No. 1764, 1999, pp. 3503-3521.
    33. Higgins, A.J., Radulescu, M.I., and Lee, J.H.S., Initiation of Cylindrical Detonation by Rapid Energy Deposition along a Line, Proceedings of the Combustion Institute, Vol. 27, 1999, pp. 2215-2223.
    34. Shepherd J.E., Pintgen, F., Austin, J.M., and Eckett, C.A., The Structure of the Detonation Front in Gases, AIAA Paper 2002-0773, January 2002.
    35. Jones DA, Oran ES, Sichel M, Reignition of detonation by reflected shocks. Shock Waves, 1995, Vol.5, pp. 47-57.
    36. Pantow EG, Fischer M, Kratzel Th, Decoupling and recoupling of detonation waves associated with sudden expansion. Shock Waves, 1996, Vol.6, pp.131-137.
    37. Williams DN, Bauwens L, Oran ES, Detailed structure and propagation of three-dimensional detonations. In: Proc of the 26th Int Symp on Combustion, The Combustion Institute, Pittsburgh, PA, 1996, pp.2991-2998.
    38. Thomas GO, Williams R L, Detonation interaction with wedges and bends. Shock Waves, 2002, Vol.11,pp.481-492.
    39. Sinibaldi J.O., Brophy, C.M., and Robinson, L.J.P., "Ignition Effects on Deflagration-to-Detonation Transition Distance in Gaseous Mixtures," AIAA Paper 2000-3590, July 2000.
    40. Ng H.D. , The effect of chemical reaction kinetics on the structure of gaseous detonations, PhD thesis of Department of Mechanical Engineering, McGill University, Ca, 2005
    41. Austin J. M., Pintgen F. , and Shepherd J. E. . Reaction zones in highly unstable detonations. In Proceedings of the Combustion Institute, volume 30, pages 1849-1857, 2005.
    42. Dorofeev S.B., Kuznetsov M.S., Alekseev V.I., Efimenko A.A., Breitung W.: Evaluation of limits for effective flame acceleration in hydrogen mixtures. J. Loss Prev. Process. Ind. 14, 583-589 (2001)
    43. Veser A., Breitung W., Dorofeev, S.B.Run-up distances to supersonic flames in obstacle-laden tubes. J. Phys. IV Fr. 12, 333-340 (2002)
    44. Baumann, W., Urtiew, P.A., Oppenheim, A.K.: On the influence of tube diameter on the development of gaseous detonation. Zeitschrift fur Elektrochemie 65, 898-902 (1961)
    45. Pawel, D., Vasatko, H., Wagner, H.Gg.: Observations on the initiation of detonation. Astronautic Acta 14,509-511 (1969)
    46. Li C, and Kailasanath, K., "Detonation transmission and transition in channels of different sizes. Proceedings of the combustion institute,2000, Voi.28, pp.603-609.
    47. Li J., Lai W.H. and Chung K. .Uncertainty Analysis of Deflagration-to-Detonation Run-up Distance,44th AIAA Aerospace Sciences Meeting and Exhibit, 9-12 January 2006, Reno, Nevada
    48. Li J., Lai W.H. and Chung K., Tube diameter effect on deflagration-to-detonation transition of propane-oxygen mixtures, Shock Waves (2006) 16:109-117
    49. Sinibaldi, J.O., Brophy, C.M., and Robinson, L.J.P., Ignition Effects on Deflagration to Detonation Transition Distance in Gaseous Mixtures. 36th Joint Propulsion Conference, AIAA Paper 2000-3590, 2000.
    50. Zel'dovich Ya.B., Librovich V.B., Makhviladze G.M., Sivashinsky G.I. On the development of detonation in a non-uniformly preheated gas. Astronautica Acta 15, 313-321 (1970)
    51. Zel'dovich YaB, Gelfand BE, Tsyganov SA, et al. (1988) Concentration and temperature nonuniformities (CTN) of combustible mixtures as a reason of pressure waves generation., AIAA Progress in Astronautics and Aeronautics 114: 99-123
    52. Short M, Dold JW (1993) Corrections to Zel'dovich's spon-taneous flame and onset of explosion via nonuniform preheating, AIAA Progress in Astronautics and Aeronautics 154: pp 59-74
    53. Lee J.H.S., Knystautas R., Yoshikawa N. Photochemical initiation and gaseous detonations. Acta Astronautica 5, 971-972 (1978)
    54. Bartenev A.M. and Gelfand B.E., Spontaneous initiation of detonations, Progress in Energy and Combustion Science 26 (2000) 29-55
    55. Lee J.J., Dupre G., Knystautas R., Lee J.H., Doppler interferometry study of unstable detonations, Shock Waves 5 (1995) 175-181.
    56. Edwards DH, Hooper G, Morgans JM, and Thomas GO, The quasi-steady regime in critically initiated detonation waves, J. Phys. D: Appl. Phys., Vol. 11,1978
    57. Teodorczyk A, Lee JH, Knystautas R (1988) Propagation mechanism of quasi-detonations. The 22nd Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, pp 1723-1731
    58. Teodorczyk A, Lee JHS, Knystautas R (1990) Photographic study of the structure and propagation mechanisms of quasi-detonations in rough tubes, AIAA Progress in Astroanautics and Aeronautics, 133: pp 233-240
    59. Sidorov VP and Dorofeev SB (1998) Influence of initial temperature, dilution, and scale on DDT conditions in hydrogen-air mixtures. Arhivum Combustionis 18: 87-103
    60. Dorofeev S.B., Sidorov V.P., Kuznetsov M.S., Matsukov I.D., Alekseev V.I., Effect of scale on the onset of detonations, Shock Waves (2000) 10: 137-149
    61. Ciccarelli G, Fowler C.J., Bardon M., Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube, Shock Waves (2005) 14(3): 161-166
    62. Dupre G, Peraldi O., Lee J.H.S., et al. Propagation of Detonation Waves in an Acoustic Absorbing Walled Tube, Progress in Astronautics and Aeronautics, 1988, Vol.114, pp.248-263
    63. Teodorcyzk A., and Lee J.H.S., Detonation Attenuation by Foams and Wire Meshes Lining the Walls, Shock Waves (1995), Vol.4, pp.225-236
    64. Radulescu M.I. and Lee J.H.S., The Failure Mechanism of Gaseous Detonations: Experiments in Porous Wall Tubes, Combustion and FIame,2002,131:29-46
    65. 郭长铭, 李剑, 爆轰波在阻尼管道中声吸收的实验研究, 爆炸与冲击(2000.10),第 20 卷, 第 4 期, 290-295
    66.Guo C.,Thomas G.,Li.I.and Zhang D.,et al,Experimental Study of Gaseous Detonation Propagation over Acoustically Absorbing Walls,Shock Waves(2002),11:353-359
    67.Chue R.S.,Lee J.H.,Scarinci T.,et al.Transition from Fast Deflagration to Detonation Under the lnfluence of Wall Obstacles,Progress in Astronautics and Aeronautics,1992,Vol,153
    68.Gamezo V.N.,Khokhlov A.M.,et al.The Influence of Shock Bifurcations on Shock-Flame Interactions and DDT,Combustion and flame(2001),126:1810-1826
    69.Khokhlov A.M.,Oran E.S.and Wheeler J.C.,A Theory of Deflagration-to-Detonation Transition in Unconfined Flames,Combustion and Flame 108:503-517(1997)
    70.Khokhlov A.M.,Oran E.S.,Thomas G.O.,Numerical simulation of deflagration to detonation transition:The role of shock-flame interactions in turbulent flames.Combust Flame,1999,117:323
    71.Khokhlov A.M.,Oran,E.S.,Thomas G.O.:Numerical simulation of detonation initiation in a flame brush:the role of hot spots.Combust.Flame 119,400-416(1999)
    72.Khokhlov,A.M.,Gameso,V.N.,Oran,E.S.:Effects of boundary layers on shock-flame interactions and DDT.In:Proceedings of the 18th International Colloquium on the Dynamics of Explosions and Reactive Systems,July,2001,University of Washington
    73.Thomas G.O.,Jones A.,Some Observations of the Jet Initiation of Detonation,Combustion and Flame,120:392-398(2000)
    74.Thomas G.O.and Bambrey R.J.2000 Initial studies of non-ideal ignition behind reflected shock waves Proc.Int.Workshop on Hypersonic Flows and Shock Waves(Shock Wave Research Centre,Sendai)
    75.Thomas G.O.,Bambrey R.J.,and Brawn C,Experimental observations of flame acceleration an transition to detonation following shock-flame interaction.Combust.Theory Modelling,5(2001)573-594
    76.Thomas G.O.and Bambrey R.J.,Observation of the Emergence of Detonation From a Turbulent Flame Brush,Preceeding of 29th International Symposium on Combustion,July 2002
    77.Thomas G.O.and Bambrey R.J.,Some observations of the controlled generation and onset of detonation,Shock Waves(2002)12:13-21
    78.Gamezo V N,Khokhlov A M and Oran E S 2001 Effects of spontaneous boundary layers on shock-flame interactions and DDT Combust.Flame at press
    79.周凯元.李宗芬,周自金等,阻爆器扩张腔中心缓冲隔离板对气相爆轰波的衰减作用.爆炸与冲击(2001.7)第21卷,第3期,180-183
    80.年伟民,周凯元.夏昌敬等,气相爆轰通过声学吸收壁时强度衰减过程的实验研究,火灾科学(2003A)第12卷,第2期,84-89
    81.年伟民,周凯元,王汉良等.气体爆轰波在声学吸收壁下游的再加强过程,实验力学(2005.3) 第20卷,第1期,37-43
    82.Vasil'ev A.A.,Gavrilenko T.P.,and Topchian M.E.,On the Chapman-Jouguet surface in multi-headed gaseous detonations,Astronaut.Acta,17,499-502,1972
    83.Edwards DH,Jones AT,Phillips DE(1976)The location of the Chapman-Jouguet surface in a multiheaded detonation wave.J.Phys.D:Appl.Phys.9:1331-1342
    84.Weber M.and Olivier H.,The thickness of detonation waves visualized by slight obstacles,Shock Waves,13,No.5,351-365,2004
    85.Lee J.H.S.,Radulescu M.I.,On the Hydrodynamic Thickness of Cellular Detonation,Combustion Explosion and Shock Waves,Vol.41,No.6,pp.745-765,2005
    86.Ng H.D.,Botros B.B.,Chao J.,Yang J.M.,Nikiforakis N.,Lee J.H.S.,Head-on collision of a detonation with a planar shock wave,.Proceeding of 24th ISSW,Vol.2,pp.745-750,2004
    87.韩桂来.姜宗林.张德良,激波与爆轰波对撞的热力学状态和爆轰波动力学长度,第十二届全国激波与激波管学术会议论文集,p234-237,2005
    88.Robert J.Kee,Fran M.Rupley et al,Chemkin-Ⅲ:a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,UC-405,SAND96-8216,Unlimited Release,Printed May 1996
    89.Fickett W,Wood WW(1966)Flow calculations for pulsating one-dimensional detonations.Phys.Fluids 9:903-916
    90.Fickert,W.,Jacobson,J.D.& Schott,G.L.1972 Calculated pulsating one-dimensional detonations with induction-zone kinetics.AIAA J.10,514-516.
    91.Abouseif,G.& Toong,T.Y.1982 Theory of unstable one-dimensional detonations.Combust.Flame 45,64-94.
    92.Buckmaster,J.D.& Ludford,G.S.S.1986 The effect of structure on the stability of detonations Ⅰ.Role of the induction zone.In 21st Symp.(Intl)on Combustion,pp.1669-1676.The Combustion Institute.
    93.Buckmaster,J.D.1988 Pressure transients and the genesis of transverse shocks in unstable detonations.Combust.Sci.Tech.61,1-20.
    94.Bourlioux,A.,Majda,A.J.& Roytburd,V.1991 Theoretical and numerical structure for unstable one-dimensional detonations.SlAM J.Appl.Maths 51,303-343.
    95.Clavin,P.& He,L.T.1996 Stability and nonlinear dynamics of one-dimensional overdriven detonations in gases.J.Fluid Mech.306,353-378.
    96.Sharpe,G.J.& Falle,S.A.E.G.1999 One-dimensional numerical simulations of idealized detonations.Proc.R.Soc.Lond.A 455,1203-1214.
    97.Lee HI,Stewart DS(1990)Calculation of linear detonation instability:one-dimensional instability of plane detonation.J.Fluid Mech.216:103-132
    98. Short M. 1997 A parabolic linear evolution equation for cellular detonation instability. Combust. Theory Modell. 1,313-346.
    99. Short M. & Quirk J. J. 1997 On the nonlinear stability and detonability limit of a detonation wave for a model 3-step chain-branching reaction. J. Fluid. Mech. 339, 89-119.
    100. Short M. & Stewart D. S. 1997 Low-frequency two-dimensional linear instability of plane detonation. J. Fluid Mech. 340, 249-295.
    101. Short M. & Stewart D S 1998 Cellular detonation stability: I. A normal-mode linear analysis J. Fluid Mech. 368,229-62
    102. Short M. & Stewart D. S. 1999 Multi-dimensional stability of weak-heat-release detonations. J. Fluid Mech. 382, 109-136.
    103. Short M., Kapila A. K. & Quirk J. J. 1999 The chemical-gas dynamic mechanisms of pulsating detonation wave instability. Phil. Trans. R. Soc. Lond. A 357, 3621-2638.
    104. Short M., Sharpe J. and Falle S.A.E.G, One-dimensional nonlinear stability of pathological detonations, J. Fluid Mech. (2000), vol. 414, pp. 339-366.
    105. Short M., A nonlinear evolution equation for pulsating Chapman-Jouguet detonations with chain-branching kinetics, J. Fluid Mech. (2001), vol. 430, pp. 381-400.
    106. Short M. and Sharpe J., Pulsating instability of detonations with a two-step chain-branching reaction model: theory and numerics, Combust. Theory Modelling 7 (2003) 401-416
    107. Kapila A. K. , Homogeneous branched-chain reactions: Initiation to completion. Journal of Engineering Mathematics 12 (1978)221-235.
    108. Sichel M., Tonello N. A., Oran E. S. and Jones D. A., A two-step kinetics model for numerical simulation of explosions and detonations in H2-O2 mixtures, Proc. R. Soc. Lond. A (2002) 458, 49-82
    109. Gamezo, V. N., Desbordes, D. & Oran, E. S. 1999 Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116, 154-165.
    110. Ng H. D. and Lee J. H. S. , Direct initiation of detonation with a multi-step reaction scheme. Journal of Fluid Mechanics, 476:179-211,2003.2, 3
    111. Liang Z. and Bauwens L., Cell structure and stability of detonations with a pressure dependent chainbranching reaction rate model. Combust. Theory Model., 9:93-112, 2005.
    112. Oran, E. S., Boris, J. P., Young Jr, T. R., Flanigan, M., Picone, M. & Burks, T. 1980 Simulations of gas phase detonations: introduction of an induction parameter model. NRL Memorandum report 4255, Naval Research Laboratory, Washington, DC.
    113. Oran, E. S., Boris, J. P., Young Jr, T. R., Flanigan, M., Burks, T. & Picone, J. M. 1981 Numerical simulations of detonations in hydrogen-air and methane-air mixtures. Proc. Combust. Inst. 18, 1641-1649.
    114. Oran, E. S., Jones, D. A. & Sichel, M. 1992 Numerical simulations of detonation transmission. Proc. R. Soc. Lond. A436, 267-297.
    115. Oran, E. S., Weber Jr, J. W., Stefaniw, E. L., Lefebvre, M. H. & Anderson Jr, J. D. 1998 A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model. Combust. Flame 113, 147-163.
    116. Aksamentov, S. M., Manzhaley, V. I. & Mitrofanov, V. V. 1992 Numerical modeling of galloping detonation. Prog. Aeronaut. Astronaut. 153, 112-131.
    117. Matsuo A. and Fujii K., Numerical Investigation of the One-Dimensional Piston Support Detonation Waves, Energy Convers. Mgmt, vol. 38,No 10-13, pp. 1283-1295, 1997
    118. Westbrook C K and Dryer F L 1981 Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combust. Sci. Technol. 27 31-43
    119. Kim H., Pae S. and Min K., Reduced Chemical Kinetic Model for the Ignition Delay of Hydrocarbon Fuels and DME, Combust. Sci.and Tech, 174(8): 221-238, 2002
    120. Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W. Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Hanson, Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, and Zhiwei Qin http://www.me.berkeley.edu/gri_mech/
    121. Glass G.P., Kistiakowsky G.B., Michael J.V., and Niki H., Mechanism of Acetylene-Oxygen Reaction in Shock Waves, the Journal of Chemical Physics, vol. 42, no. 2, Jan.15, 1965
    122. KONNOV, A.A., Development and validation of a detailed reaction mechanism for the combustion of small hydrocarbons. 28-th Symposium (Int.) on Combustion, Edinburgh, 2000. Abstr. Symp. Pap. p. 317
    123. Varatharajan B., and Williams F.A., Chemical-Kinetic Descriptions of High-Temperature Ignition and Detonation of Acetylene-Oxygen-Diluent Systems, Combustion and Flame, 125:624-645(2001)
    124. Varatharajan B., Petrova M., Williams F. A. , and Tangirala V.. Two-step chemical-kinetic description for hydrocarbon-oxygen-diluent ignition and detonation applications. In Proceedings of the Combustion Institute, volume 30, pages 1869-1877,2005. 1,15
    125. Petrova M.V. and Williams F.A. A small detailed chemical-kinetic mechanism for hydrocarbon combustion, Combustion and Flame 144 (2006) 526-544
    126. Yetter R.A., Dryer F.L., A Comprehensive Reaction Mechanism For Carbon Monoxide/ Hydrogen/ Oxygen Kinetics, Combust. Sci. and Tech., 1991. Vol. 79, pp. 97-128
    127. Simmie J.M., Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Progress in Energy and Combustion Science 29 (2003) 599-634
    128. Browne S., Liang Z., and Shepherd J.E., Detailed and Simplified Chemical Reaction Mechanisms for Detonation Simulation, Western States Section of the Combustion Institute, Stanford University,Oct.17-18,2005
    129.Bonnie J.McBride,Michael J.Zehe,Sanford Gordon,NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species.NASA/TP -2002-211556
    130.MacCormack R.W.,Paullay A.J.,Computational efficiency achieved by time splitting of finite difference operators.AIAA Paper,1972,pp.72-154.
    131.Sun M.,Takayama K,An artificially upstream flux vector splitting scheme for the Euler equations.Journal of Computational Physics,2003,Vol.189,pp.305-329.
    132.Sun M.,Takayama K,Conservative smoothing on an adaptive quadrilateral grid.Journal of Computational Physics,Vol.150,1999,pp.143-180.
    133.Gear C.W.,The automatic integration of stiff ordinary differential equations,in:A.J.H.Morrell(Ed.),Information Processing,North-Holland,Amsterdam,1969,pp.187-193.
    134.Hindmarsh A.C.,Byrne G.D.,EPISODE:An Effective Package for the Integration of Systems of Ordinary Differential Equations,Lawrence Livermore Laboratory report UCID-30112,Rev.1,1977.
    135.Botros B.B,Zhu Y.J.,Ng H.D.and Lee J.H.S.,The unsteady dynamics of the head-on collision between a detonation and a shock wave,Proc.20th ICDERS,Montreal,Canada,2005
    136.李辉煌,非定常复杂流动及波系干扰的实验和数值研究,中国科技大学博士学位论文,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700