火箭发动机化学非平衡流动的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火箭发动机的燃气流是一个非常复杂的物理化学过程,其中的混合组分在高温,高压下,彼此间存在相互反应,混合气体常数、比热、绝热指数等都随温度和组分浓度等因素不断变化。这势必对火箭发动机性能产生极大的影响。因此,准确地研究发动机内燃烧反应流场,对火箭发动机性能预测,改进发动机的设计,具有很重要的现实意义。
     本论文在fluent商业软件的工具平台上,数值模拟了H_2,O_2燃烧的火箭发动机喷管内化学非平衡反应过程和以空气为介质的高焓激波管喷管内瞬态化学非平衡过程。主要工作有以下几方面:
     1.本文在采用了氢气与氧气的6组分,8基元反应模型,和标准κ-ε湍流模型,计算了氢气与氧气的反应过程,并与文献结果进行验证。
     2.基于结构化网格及有限体积方法,对火箭发动机喷管内多组分气体化学平衡流、非平衡流和冻结流进行了数值模拟。结果表明在喷管入口处,非平衡与平衡状态反应基本上接近,冻结流温度偏低,在喷管流动中,化学非平衡性比较显著,计算结果与平衡状态以及冻结流状态有很大的区别。非平衡状态对出口流动参数有一定的影响。
     3.基于以上技术和方法,以空气反应模型,对高焓激波管喷管初始时间段内瞬态工作过程进行了数值模拟,结果表明,激波之后由于温度的急剧上升,化学非平衡性更加明显,使得化学反应更加复杂,组分热力参数Cp、R、γ等变化剧烈,其随状态参数变化而改变。激波和流动分离可能是激波管喷管烧蚀的问题的因素之一。
The flow field of exhaust gas in Rocket Motor is a very complex physical and chemical process. These species in the flow react each other, in higher temperature and pressure conditions. Moreover, the thermal parameters such as mixture gas constant R, specific heat Cp and adiabatic exponent γ are varied with the temperature and species concentrations, which bring to great effect on character of rocket motor. As a result, the investigation of the internal flow field in solid rocket motor is of practical importance for indicating of capability and improving the design for rocket motor. In this paper, the numerical simulation, using H_2 and O_2 as driven gases for rocket motor and using air as driven gases for high-enthalpy shock tube respectively, is presented to study the nonequilibrium reacting flow fields. The main targets are as follows:
    First, a six-species and eight-steps, finite rate chemical reaction model and a k-ε turbulence model are used, and a good agreement result about non-equilibrium reaction for H_2, O_2 is compared with that of reference.
    Second, the equilibrium, non-equilibrium and frozen flow fields in an axis symmetrical rocket motor are simulated based on structural meshes and finite volume method. The results shows that the flow of chemical nonequilibrium in combustion chamber and convergent part is close to equilibrium states, but quite different from those of equilibrium and frozen in divergent part of nozzle. The nonequilibrium reaction makes an important affect on the parameters of nozzle outlet.
    Third, an axisymmetric unsteady flow field with the detailed structure of chemical non-equilibrium reaction, which corresponds to the early stage during the process of producing the test flow of a
引文
[1] Elaine S. Oran and Jay P. Boris, Numerical Simulation of reactive flow. New York, Combustion and Flame, Dec. 1988, 74(3): 311-312P
    [2] 周力行,燃烧理论和化学流体力学.北京:科学出版社,1986:4-35
    [3] 陈义良,张孝春,孙慈,季鹤鸣.燃烧原理.北京:航空工业出版社,1992
    [4] Frank J. Zelenik, Sanford Gordon. Calculation of Complex Chemical Equilibrium. Industrial and Engineering Chemistry. Jun. 1968, 60(6): 27-57P
    [5] 李宜敏,张中钦,赵元修.固体火箭发动机原理.北京:国防工业出版社,1985
    [6] 李军.火箭导弹真实燃气射流流场数值模拟及其应用.南京理工大学博士论文,1995
    [7] P. Colella, H. M. Glaz. Effcient Solution Algorithms for the Riemann Problem for Real Gases. Journal of Computational Physics. 1985(59): 264P
    [8] Jeong-Yeol Choi, In-Seuck Jeung and Youngbin Yoon. Computational Fluid Dynamics algorithms for Unsteady Shock-Induced Combustion. Part 2: Comparison. AIAA Journal, Jul. 2000, 38(7): 1188P
    [9] 刘君,张涵信,高树春.一种新型的计算化学非平衡流动的解耦方法.国防科技大学学报.2000,22(5):19-22页
    [10] 陈义良,张孝春,孙慈,季鹤鸣.燃烧原理.北京:航空工业出版社,1992
    [11] S. Gordon and B. J. McBride. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. NASA SP-273, 1971
    [12] Pack C. Problems of rate Chemistry in the Flight Regimes of Aeroassisted Orbital Transfer Vehicles. Astronautics and??Aeronautics. 1985, 98: 511-537P
    [13] Lee J H. Basic Governing Equations for the Flight Regimes of ieroassisted Orbital Transfer Vehicles. Astronautics and Aeronautics. 1985, 99: 3-53P
    [14] Elaine S. Oran, Jay D. Boris. Numerical Approaches to Combustion Modeling. Naval Research Laboratory. Washington, DC. 1991
    [15] H. C. Yee and Judy L. Shine. Semi-Implicit and Fully Implicit Shock-Capturing Methods for Hyperbolic Conservation Laws with Stiff Source Terms. AIAA, 87-1116P
    [16] S. Yungster, K Radhakrishnan. A Fully Implicit Time Accurate Method for Hypersonic Combustion: Application to Shock-Induced Combustion Instability. AIAA, 94-2965P
    [17] Jeong-Yeol Choi, In-Seuck Jeung and Youngbin Yoon. Computational Fluid Dynamics algorithms for Unsteady Shock-Induced Combustion, Part 1: Validation, AIAA Journal, Jul. 2000, 38(7): 1179P
    [18] Jeong-Yeol Choi, In-Seuck Jeung and Youngbin Yoon. Computational Fluid Dynamics algorithms for Unsteady Shock-Induced Combustion, Part 2: Comparison. AIAA Journal, Jul 2000, 38(7): 1188P
    [19] Matsuzaki R. Quasi-one-dimensional Aerodynamic with Chemical, Vibrational and Thermal Nonequilibrium. Transaction of tbe Japan Society for Aeronautical and Space Science. 1988, 30(9)
    [20] Sagnier P. Marraffa L. Parameter Study of Themal and Chemical noncquilibrium Nozzle flow. AIAA Journal, 1991, 3
    [22] 王大鹏,蔡国飙.喷管一维流场化学非平衡通用计算软件研制.推进技术.Aug 2001,22(4):282-285页
    [23] 刘大有.两相速度平衡条件下的两相流声速.力学学报.Nov.1990,22(6):661-669页
    [24] 李宗杰,余康元.火箭发动机化学非平衡的组合计算方法.北京联合大??学学报.1995,9(1):25-30页
    [25] 沈建伟,瞿章华.高超音速化学非平衡层流粘性激波层钝头细长绕流数值计算.宇航学报,July 1988,3:15-21页
    [26] 张涵信,陈坚强,高树椿.H_2/O_2燃烧的超声速非平衡流动的数值模拟.宇航学报.1994,4(2):14-23页
    [27] 王革,顾璇,贺征.喷管内瞬态激波的数值模拟.弹箭与制导学报.2004,24(2):338-341页
    [28] 刘君.非平衡流计算方法及其模拟激波诱导振荡燃烧.空气动力学学报.March 2003,21(1):53-58页
    [29] 周伟江,汪翼云.钝体化学非平衡粘性流数值模拟.航空学报.Vol.16 No.4,July 1995:397-401页
    [30] 胡光初,乐嘉陵,曹文样.二维非定常化学非平衡流动高精度数值模拟及其与实验的比较.气动实验与测量控制.Sep.1993,7(3):94-100页
    [31] 乐嘉陵,董维中.高温高压喷管化学和热力学非平衡流计算.气动实验与测量控制.Sep.1993,7(3):30-37页
    [32] 欧阳水吾,谢中强.高超声速三维化学非平衡流动N—S方程数值解.力学学报.1996,28(1):90-98页
    [33] 柳军,曾明,瞿章华.飞船再入舱三维化学非平衡流数值模拟.国防科技大学学报.1999,21(6):1-5页
    [34] 叶友达.三维化学非平衡无粘流场的数值模拟.空气动力学学报.Jun.,1996,14(2):127-133页
    [35] 蔡国飙,张化照,庄逢甘.氢氧发动机推力室化学反应流场计算.北京航空航天大学学报.Dec.1998,24(6):671-675页
    [36] 王长辉,刘宇.塞式喷管化学反应非平衡流动的数值模拟.推进技术.Dec.2004,25(6):561-565页
    [36] 黄华,瞿章华.11组元轴对称热化学非平衡流场的数值研究.空气动力学学报.Dec.1999,17(4):462-465页
    [37] 董维中,高铁锁.带座舱飞船高超声速再入非平衡流场的数值研究.空气动力学学报.Jun.2002,20(1):239-245页
    [38] Thilo Schonfeld, Christian Angelberger and Jean Philippe.??Numerical Simulation of Compressible Reactive Flows on Unstructured Grids. AIAA-99-0414
    [39] U. Riedel. A Finite Volume Scheme on Unstructured Grids for Stiff Chemically Reacting Flows. Combustion Science and Technology. 1998, 13(5): 99P
    [40] R. Kee, G. Dixon-Lewis, J. Warnatz, M. Coltrin, J. Miller and H. Moffat. A FORTRAN Computer Code Package for the Evaluation of Gas-Phase, Multicomponent Transport Properties. Technical Report. Mar. 1998, SAND86-8246B
    [41] 袁兆鼎,费景高,刘德贵.刚性常微分方程初值问题的数值解法.北京:科学出版社.1987:297-390页
    [42] Chung K. Law. Elements of Combustion Physics. University of California. 1987, 60(6): 1127-1157P
    [43] 李宜敏,张中钦,赵元修.固体火箭发动机原理.北京:国防工业出版社.1985
    [44] Frank J. Zelenik, Sanford Gordon. Calculation of Complex Chemical Equilibria. Industrial and Engineering Chemistry. Jun. 1968, 60(6): 27-57P
    [45] I.M.克罗兹,R.M.罗森伯格著,鲍银堂,苏企华译.化学热力学.北京:人民教育出版社.1981
    [46] 李军.火箭导弹真实燃气射流流场数值模拟及其应用.南京理工大学博士论文.1995
    [47] B. Van Leer. Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method. Journal of Computational Physics. 1979, (32), 101P
    [48] Phillip Colella and Paul R. Woodward. The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations. Journal of Computational Physics. 1984, 54: 174-201P
    [49] Richard B. Pember. Numerical Methods for Hyperbolic Conservation Laws with Stiff Relaxation, Ⅱ. Higher-Order??Godunov Methods. SIAM J. SCI. COMPUT, Jul. 1993, 14(4): 824-859P
    [50] Toro E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, Jul. 1997, 16(4): 624-659P
    [51] Bonnie J. McBride, Michael J. Zehe, and Sanford Gordon Glenn Research Center, Cleveland, Ohio, NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species, NASA/TPm2002-211556
    [52] Evans J S, Scheurayder C J. Critical influence of finite rate chemistry and ignition and combustion of supersonic H2-air streams, AIAA paper 79-0355, 1979
    [53] 童景山,李敬.流体热物理性质的计算.北京:清华大学出版社.1982
    [54] J. M. Heirnerl and T. P. Coffee Algorithms for Methane Flame, Transport Combustion Science and Technology, 1983, 34: 31-43P
    [55] 王革,顾璇,贺征.用PLM格式进行喷管内瞬态激波的数值模拟.哈尔滨工程大学学报.Oct.2004,25(5):623-626页
    [56] M. Kaneko. I. Men'shov. Y. Nakamura. Numerical simulation of nonequilibrium. owin high-enthalpy shock tunnel. M. Kaneko et al. Energy. 2005, 30: 165-179P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700