单线态氧与不饱和化合物的反应及其过氧化产物的化学发光研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单线态氧是一种重要的活性氧分子,其分子轨道具有与基态氧分子不同的电子排布,是氧的一种激发态分子的存在形式。由于其活性很高,极易与不饱和化合物发生反应,在物理、化学、环境以及生物医学许多领域都显现出重要的作用,因而近年来引起了研究者的广泛关注。光敏化方法因其简单可控而常用来产生单线态氧。光敏剂接受光辐照将能量传递给基态氧分子从而形成单线态氧分子。本论文旨在研究光敏化产生的单线态氧与不饱和化合物的反应及其后续的化学发光现象。以直链的十八碳不饱和脂肪酸,环状的氯酚类物质以及合成麝香为研究对象,通过实验条件的选择与控制来提高单线态氧对底物的的转化效率,得到最佳的敏化光转化条件。将纳米量子点引入敏化光转化体系,对量子点引发的化学发光机理进行深入研究探讨,探索构建新型光敏剂。利用量子化学手段研究单线态氧与氯酚类物质的具体反应路径,推测预氧化转化的中间物质及产物的结构,并对单线态氧与氯酚类物质反应速率的差异性进行理论解释。最后,将所建立的敏化光降解方法应用于实际样品中合成麝香的去除。这种基于单线态氧与不饱和化合物的预氧化作用机理及其后续的化学发光反应研究,不仅可提高对此类反应的认识水平,同时,本项目提出的原理有望在方法学上具有比较普遍的意义。具体内容分述如下:
     1.综述了单线态氧的性质,产生方法,检测手段,在化学发光分析方法中的应用以及用量子化学计算研究其反应机理的研究现状。
     2.表面活性剂对NaClO/H2O2化学发光体系影响的研究。单线态氧的寿命与溶剂的极性相关,在极性溶剂中寿命较短,因此不利于检测生物体系及生理环境中的单线态氧。而表面活性剂可以提供一种简单的模型来模拟生物膜。本章以一个经典的产生单线态氧的化学发光体系NaClO/H2O2为单线态氧源,将表面活性剂引入该体系,目的研究单线态氧在异相胶束微观体系中的活性及行为。研究表明,表面活性剂参与的NaClO/H2O2体系化学发光强度明显增强。考察不同表面活性剂对化学发光强度的影响,发现表面活性剂所形成的胶束的“笼效应”有效抑制了单线态氧的溶剂淬灭,增加了其稳定性,增强化学发光强度。由不同的醇溶剂对化学发光强度的增敏作用证实表面活性剂的疏水区域对化学发光强度有影响。结合单线态氧猝灭剂NaN3,化学捕获剂1,3-环己二烯-1,4-二乙酸钠以及化学发光光谱实验,进一步研究该体系的发光机理,化学发光光谱显示发射峰位于435-475nm波长范围内,推测单线态氧的双聚体(1O*2)2为体系可能的发光物质。同时发现N-溴代丁二酰亚胺(NBS)/H2O2体系也有类似的发光光谱,表明NBS/H2O2体系与NaClO/H2O2体系具有相似的化学发光机理,为研究NBS/过氧化物的发光机理研究起到辅助作用。
     3.不饱和脂肪酸敏化光转化/化学发光规律研究。不饱和脂肪酸是动植物膜系统的重要组分之一,其过氧化反应是许多病理生物学过程中的基本组成部分,受到许多科学工作者的广泛重视。本章以油酸,亚油酸以及α-亚麻酸三种典型的十八碳不饱和脂肪酸为例,研究三种不饱和脂肪酸的敏化光转化/化学发光现象。对光敏剂,介质条件,光照时间等影响化学发光反应的多种因素进行考察。结果表明,不饱和脂肪酸的敏化光转化速率与其所含不饱和双键数目有关,其光转化速率顺序为:α-亚麻酸>亚油酸>油酸。并借助化学探针捕获,紫外可见吸收光谱,化学发光光谱等方法进一步对化学发光机理进行研究。推测激发态的孟加拉玫瑰红RB*为化学发光体系的发光物质,荧光染料RB与化学发光体系之间存在能量转移。计算光敏化过程中所产生的单线态氧的形成速率vf为1.74×10-6M-1s-1。
     4. CdTe量子点引发的2,4-二氯苯酚的光转化及其化学发光反应。量子点由于其独特的光电性质而引起研究者的极大兴趣,作为光敏剂在光动力疗法以及太阳能电池领域应用广泛。本章将量子点作为光敏剂应用于有机污染物的光转化过程,研究CdTe QDs引发的2,4-二氯苯酚的光转化及其化学发光反应。水相合成了不同粒径的巯基乙酸包覆的CdTe QDs,并通过分子光谱,X-射线衍射以及透射电镜对其结构进行表征。在CdTe QDs存在下,2,4-二氯苯酚光转化生成一种发光前驱体,由NBS引发,可以产生化学发光现象。化学发光光谱显示单线态氧的双聚体(1O*2)*2以及激发态的(CdTe QDs)是最可能的发光体。通过D2O介质的溶剂效应对化学发光强度的增强以及化学捕获剂紫外光谱的变化确证光转化过程中的单线态氧的产生。建立测定2,4-二氯苯酚的化学发光分析方法。化学发光强度与2,4-二氯苯酚在0.36-36μmol L-1范围内呈线性关系,检测限为0.13μmol L-1。
     5.氯酚类物质的过氧化反应的理论研究。本章运用密度泛函理论,对单线态氧与六种氯酚类物质(包括2-氯苯酚、3-氯苯酚、4-氯苯酚、2,4-二氯苯酚、2,4,6-三氯苯酚以及五氯苯酚)在液相中的反应机理进行探讨。对十二条反应路径的反应物,过渡态,产物以及可能的中间产物进行几何构型优化,研究反应的热力学以及动力学性质。结果表明,1,3-加成生成烯丙基氢过氧化物及1,4-加成生成酮类氢过氧化物在热力学上是最可能自发的反应路径。此外,根据反应动力学的研究,前者的反应能垒高于后者,因此,推测单线态氧进攻氯酚类化合物最佳的反应路径为1,4-加成路径,产物为酮类氢过氧化物。通过自由能能垒的比较,前线轨道理论及电离能分析进一步研究单线态氧与氯酚类物质的反应速率差异性,从多方面验证氯原子取代数目与光降解速率相关,氯酚类物质的光降解速率随着氯原子取代基的增加而越低。
     6.水溶液中合成麝香的敏化光降解应用研究。本章利用敏化光降解手段对环境中的持久污染物合成麝香的降解进行探索。以四种应用广泛的合成麝香为研究对象,包括两种多环麝香(佳乐麝香和吐纳麝香),两种硝基麝香(二甲苯麝香以及麝香酮),选择光降解条件为:室温25oC,pH9.0,1.0mg L-1的RB为光敏剂,光照60min后,其光降解百分比分别为84.6%,86.1%,77.7%和49.2%。动力学研究表明,此过程为准一级反应动力学。此外,分别对四种合成麝香在纯水体系及天然水环境中的敏化光降解行为进行探索,发现四种合成麝香在天然水环境中的降解百分比高于纯水体系。结果表明,敏化光降解方法运用于天然水环境中合成麝香的去除具有可行性。
Singlet oxygen is a unique reactive oxygen species and its chemical reactivity derives from its characteristicelectronically-excited state. The involvement of singlet oxygen in many important atmospheric, physical,chemical, biological, and therapeutic processes has attracted intense research interest in recent years.Photosensitized generation of singlet oxygen is a simple, controllable method, requiring only oxygen, light of anappropriate wavelength, and a photosensitizer capable of absorbing and using light energy to excite oxygen to itssinglet state.
     In this work, the interaction of singlet oxygen with the unsaturated organic compounds and the subsequentchemiluminescence (CL) reactions were studied. The transformation conditions of various unsaturated substrates,including unsaturated fatty acids, chlorophenols and synthetic musks were optimized to enhance thephototransformtion efficiency of substrates. Quantum dots were used as the photosensitizer in thephototransfomation process, the mechanism of quantum dot-induced phototransformation and its subsequent CLreaction were studied in detail. Furthermore, the primary and final products in the transformation reactionsbetween singlet oxygen and six chorophenols were studied by quantum theory calculation. Based on thesefindings, the relationship between photodegradation rates and the number of chlorine substitutions was illustratedtheoretically. Finally, the dye-sensitized photodegradation method was preliminarily studied for the removal ofsynthetic musks in real samples. This study is not confined to prompt the understanding of these reactions, moreimportantly, the principle proposed in this study is expected to have a general significance. The contents weresummarized as follows:
     1. The basic properties, the production and the determination methods of singlet oxygen are reviewed.Applications of singlet oxygen in CL system and quantum theory calculations on the reaction mechanism ofsinglet oxygen with unsaturated organic compounds are addressed.
     2. The influence of surfactant micelles on hydrogen peroxide and sodium hypochlorite CL system wasinvestigated. The micellar media based on anionic, cationic and non-ionic surfactants were employed as thesimple models to mimic more complex biological environments. The formation of surfactants cage canimprove the CL quantum yield of singlet oxygen by protecting singlet oxygen from solvent quenching. Theresults showed that the CL emission is related to the hydrophobic group of surfactant medium, which isfurther confirmed by the enhancing effect of the alcohol solvent on the CL intensity. The involvement ofsinglet oxygen was characterized by the quenching effect of a specific singlet oxygen scavenger sodiumazide and chemical trapping of singlet oxygen with the sodium1,3-cyclohexadiene-1,4-diethanoate.Moreover, the CL spectrum of the sodium hypochlorite/hydrogen peroxide system was measured. The lightemission is observed in a wavelength range from435to475nm, which may attributes to the singlet oxygendimol species (1O2)*2.
     3. A dye-sensitized phototransformation method was developed for the evaluation of oxidation damage tounsaturated fatty acids induced by singlet oxygen. The singlet oxygen was generated in thephotosensitization process. Results showed that the order of phototransformation rate of three unsaturatedfatty acids is α-Linolenic acid>Linoleic acid>Oleic acid. The participation of singlet oxygen during thephototransformation process was confirmed by the changes in the UV spectra of a chemical trap CHDDE.The CL spectrum indicates that the excited state of rose bengal was responsible for the light emission.Kinetic studies showed the formation rate of singlet oxygen (vf) is1.74×10-6M-1s-1in the photosensitizedprocess.
     4. We have studied the CdTe quantum dot-induced phototransformation of2,4-dichlorophenol (2,4-DCP) andits subsequent CL reaction. Quantum dots (QDs) of different sizes and capped with thioglycolic acid were prepared and characterized by molecular spectroscopy, X-ray diffraction and transmission electronmicroscopy. In the presence of QDs,2,4-DCP is photochemically transformed into a long-living1ightemitting precursor which can react with N-bromosuccinimide (NBS) to produce CL. The CL spectra indicatethat the singlet oxygen dimol species and the excited state of QDs were responsible for the light emission.The formation of singlet oxygen during the phototransformation process was confirmed by the enhancementeffect of deuterium oxide on the CL reaction and the changes in the UV spectra of a chemical trap. The CLintensity is linearly related to the concentration of2,4-DCP in the range from0.36to36μmol L-1, and thedetection limit (at3σ) is0.13μmol L-1.
     5. With the intention of finding certain predictors to be used for the determination of the most probable reactionpath and estimating the dye-sensitized photodegradation rates of chlorophenols, the reactions of1O2with sixchorophenols (CPs), including2-chlorophenol (2-CP),3-chlorophenol (3-CP),4-chlorophenol (4-CP),2,4-dichlorophenol (2,4-DCP),2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP), wereinvestigated in aqueous solution by using the density functional theory. Results suggested that1,3-addition toa double bond connected to a hydrogen-carrying group, resulting in the formation of allylic hydroperoxides,and1,4-addition to chlorophenols to form of hydroperoxide ketones are thermodynamically more likely totake place. Furthermore, the reaction barrier of the former one is higher than that of later one, which tends toconclude that1,4-addition to chlorophenols to form of hydroperoxide ketones is the most likely route inaqueous solution. The computational results are in agreement with previous experimental results. Also it wasobserved that with the increase of chlorine substitutions, the reactions become less exergonic and kineticallyless favorable due to the increase in reaction barriers. The relationship between photodegradation rates andthe number of chlorine substitutions was illustrated theoretically by using the energies of frontier molecularorbitals and the ionization potentials, which are further confirmed that monochlorophenols are more readilyreact with singlet oxygen.
     6. The removal of synthetic musks in aqueous solution by means of a dye-sensitized photodegradation methodwas preliminarily studied. Two polycyclic musks (HHCB and AHTN) and two nitro musks (MX and MK)were selected as the model compounds due to their wide applications. Important factors that may affect thedegradation process were investigated and the result showed that the optimum performance can be achievedwith rose bengal as the sensitizer (1.0mg L-1) in aqueous solution at pH9.0. Room temperature (25oC) wasfound to be suitable for the degradation of the four musks. The degradation percentages obtained for HHCB,AHTN, MX and MK were84.6%,86.1%,77.7%and49.2%, respectively. The experiment data suggestedthat the kinetics of the dye-sensitized photodegradation followed pseudo first-order reaction. Furthermore,the photodegradation in natural water was simulated and the results were compared with the degradationpercentages in pure water. It was found that the degradation percentages obtained in pure water were lowerthan that in natural water, suggesting that the approach of the dye-sensitized photodegradation could beapplied for the removal of the synthetic musks from water resources.
引文
1. Schweitzer C, Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen [J].Chemical Reviews,2003,103(5):1685-1757
    2. Khan A U, Kasha M. Red chemiluminescnece of oxygen in aqueous solution [J]. Journal of ChemicalPhysics,1963,39(8):2105-2106
    3. Min D B, Boff J M. Chemistry and reaction of singlet oxygen in foods [J]. Comprehensive Reviews inFood Science and Food Safety,2002,1(1):58-72
    4. DeRosa M C, Crutchley R. Photosensitized singlet oxygen and its applications [J]. CoordinationChemistry Reviews,2002,233-234:351-371
    5.周公度.结构化学基础[M].北京:北京大学出版社,1989
    6. Arnold S J, Kubo M, Ogryzlo E A. Relaxation and reactivity of singlet oxygen [M]. In Mayo R J ed.Advances in Chemistry Series. American Chemical Society: Washington, DC,1968,77:133-142
    7. Merkel P B, Kearns D R. Remarkable solvent effects on the lifetime of1Δgoxygen [J]. Journal of theAmerican Chemical Society,1972,94(3):1029-1030
    8. Adam W, Kazakov D V, Kazakov V P. Singlet oxygen chemiluminescence in peroxide reactions [J].Chemical Reviews,2005,105(9):3371-3387
    9. Hurst J R, McDonald J D, Schuster G B. Lifetime of singlet oxygen in solution directly determined bylaser spectroscopy [J]. Journal of the American Chemical Society,1982,104(7):2065-2067
    10. Rodgers M A J. Solvent-induced deactivation of singlet oxygen: additivity relationships innonaromatic solvents [J]. Journal of the American Chemical Society,1983,105(20):6201-6205
    11.宋波.新型稀土荧光探针及单线态氧的时间分辨荧光分析[D]:[博士学位论文].大连:中国科学院大连化学物理研究所,2006
    12. Clennan E L, Pace Andrea. Advances in singlet oxygen chemistry [J]. Tetrahedron,2005,61(28):6665-6691
    13. Alberti M N, Orfanopoulos M. Unraveling the mechanism of the singlet oxygen ene reaction: recentcomputational and experimental approaches [J]. Chemistry-A European Journal,2010,16(31):9414-9421
    14.郝亮. N-溴代丁二酰亚胺-H2O2化学发光体系的研究[D]:[硕士学位论文].西安:陕西师范大学,2007
    15. Kanofsky J R. Singlet oxygen production from the peroxidase-catalyzed oxidation of indole-3-aceticacid [J]. Journal of Biological Chemistry,1988,263(28):14171-14175
    16. Durán N, Faljoni A. Singlet oxygen formation during peroxidase catalyzed degradation ofcarcinogenic N-nitrosamine [J]. Biochemical and Biophysical Research Communications,1978,83(1):287-294
    17. Kanofsky J R, Axelrod B. Singlet oxygen production by soybean lipoxygenase isozymes [J].Journal of Biological Chemistry,1986,261(3):1099-1104
    18. Hawco F J, O'Brien C R, O'Brien P J. Singlet oxygen formation during hemoprotein catalyzed lipidperoxide decomposition [J]. Biochemical and Biophysical Research Communications,1977,76(2):354-361
    19. Maetzke A, Knak Jensen S J. Reaction paths for production of singlet oxygen from hydrogen peroxideand hypochlorite [J]. Chemical Physics Letters,2006,425(1-3):40-43
    20. Tsukagoshi K, Fukumoto K, Nakajima R, et al. Characterization of chemiluminescence from singletoxygen under laminar flow conditions in a micro-channel and its quenching with beverages [J].Talanta,2007,72(2):607-611
    21. Held A M, Halko D J, Hurst J K. Mechanisms of chlorine oxidation of hydrogen peroxide [J].Journal of the American Chemical Society,1978,100(18):5732-5740
    22. Alfano A J, Christe K O. Singlet delta oxygen production from a gas-solid reaction [J].Angewandte Chemie,2002,41(17):3252-3254
    23. Khan A U. Direct spectral evidence of the generation of singlet molecular oxygen (1Δg) in the reactionof potassium superoxide with water [J]. Journal of the American Chemical Society,1981,103(21):6516-6517
    24. Aubry J M. Search for singlet oxygen in the decomposition of hydrogen peroxide by mineralcompounds in aqueous solutions [J]. Journal of the American Chemical Society,1985,107(21):5844-5849
    25. Aubry J M, Cazin B. Chemical sources of singlet oxygen.2. Quantitative generation of singlet oxygenfrom hydrogen peroxide disproportionation catalyzed by molybdate ions [J]. Inorganic Chemistry,1988,27(12):2013-2014
    26. Brauer H D, Eilers B, Lange A. Formation of singlet molecular oxygen by the Radziszewski reactionbetween acetonitrile and hydrogen peroxide in the absence and presence of ketones [J]. Journal of theChemical Society, Perkin Transactions2,2002,(7):1288-1295
    27. Evans D F, Upton M W. Studies on singlet oxygen in aqueous solution. Part1. Formation ofsinglet oxygen from hydrogen peroxide with two-electron oxidants [J]. Journal of the ChemicalSociety, Dalton Transactions: Inorganic Chemistry,1972-1999,1985,(6):1141-1145
    28. Turro N J, Chow M F. Mechanism of thermolysis of endoperoxides of aromatic compounds.Activation parameters, magnetic field, and magnetic isotope effects [J]. Journal of the AmericanChemical Society,1981,103(24):7218-7124
    29. Weldon D, Wang B J, Poulsen T D, et al. Solvent Effect on the O2(b1+g)→O2(a1Δg) EmissionSpectrum [J]. Journal of Physical Chemistry A,1998,102(9):1498-1500
    30. Niu Q J, Foote C S. Singlet molecular oxygen generation from the decomposition of sodiumperoxotungstate and sodium peroxomolybdate [J]. Inorganic Chemistry,1992,31(16):3472-3476
    31. Caminade A M, Khatib F E, Koenig M, et al. Ozonides and phosphite source of singlet oxygen: yieldand mechanism [J]. Canadian Journal of Chemistry,1985,63(11):3203-3209
    32. Carreňo M C, González-López M, Urbano A. Oxidative de-aromatization of para-alkyl phenols intopara-peroxyquinols and para-quinols mediated by oxone as a source of singlet oxygen [J].Angewandte Chemie, International Edition,2006,45(17):2737-2741
    33. Mu oz F, Mvula E, Braslavsky S E, et al. Singlet dioxygen formation in ozone reactions in aqueoussolution [J]. Journal of the Chemical Society, Perkin Transactions2,2001,(7):1109-1116
    34. Kochevar I E, Redmond R W. Photosensitized production of singlet oxygen [M]. In: Packer L, Sies H,eds. Methods in Enzymology. New York: Academic Press,2000.319:20-28
    35. Baier J, Fu T, P llmann C, et al. Theoretical and experimental analysis of the luminescence signal ofsinglet oxygen for different photosensitizers [J]. Journal of Photochemistry and Photobiology, B:Biology,2007,87(3):163-173
    36. Tang W, Xu H, Park E J, et al. Encapsulation of methylene blue in polyacrylamide nanoparticleplatforms protects its photodynamic effectiveness [J]. Biochemical and Biophysical ResearchCommunications,2008,369(2):579-583
    37. Redmond R W,Gamlin J N. A compilation of singlet oxygen yields from biologically relevantmolecules [J]. Photochemistry and Photobiology,1999,70(4):391-475
    38. Wilkinson F, Abdel-Shafi A A. Mechanism of quenching of triplet states by molecular oxygen:biphenyl derivatives in different solvents [J]. Journal of Physical Chemistry A,1999,103(28):5425-5435
    39. Grewer C, Brauer H D. Mechanism of the triplet-state quenching by molecular oxygen in solution [J].Journal of Physical Chemistry,1994,98(16):4230-4235
    40. Olea A F, Wilkinson F. Singlet oxygen production from excited singlet and triplet states of anthracenederivatives in acetonitrile [J]. Journal of Physical Chemistry,1995,99(13):4518-4524
    41. Gutiérrez I, Bertolotti S G., Biasutti M A, et al. Quinones and hydroxyquinones as generators andquenchers of singlet molecular oxygen [J]. Canadian Journal of Chemistry,1997,75(4):423-428
    42. Alegría A E, Ferrer A, Santiago G, et al. Photochemistry of water-soluble quinones. Production of thehydroxyl radical, singlet oxygen and the superoxide ion [J]. Journal of Photochemistry andPhotobiology, A: Chemistry,1999,127(1-3):57-65
    43. W hrle D, Hirth A, Bogdahn-Rai T, et al. Photodynamic therapy of cancer: second and thirdgenerations of photosensitizers [J]. Russian Chemical Bulletin,1998,47(5):807-816
    44. Tsay J M, Trzoss M, Shi L X, et al. Singlet oxygen production by peptide-coated quantumdot-photosensitizer conjugates [J]. Journal of the American Chemical Society,2007,129(21):6865-6871
    45.张奎.量子点光学传感器的设计及其对痕量有害物质的可视化检测[D]:[博士学位论文].合肥:中国科学技术大学,2011
    46. Woo J Y,Kim K N,Jeong S, et al. Thermal behavior of a quantum dot nanocomposite as a colorconverting material and its application to white LED [J]. Nanotechnology,2010,21(49):495704/1-495704/8
    47. Samia A C S, Chen X B, Burda C. Semiconductor quantum dots for photodynamic therapy [J].Journalof the American Chemical Society,2003,125(51):15736-15737
    48. Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].Science,1998,281(5385):2016-2018
    49. Coe S, Woo W, Bawendi M, Bulovi V. Electroluminescence from single monolayers of nanocrystalsin molecular organic devices [J]. Nature,2002,420(6917):800-803
    50. Hansen J A, Wang J, Kawde A, et al. Quantum-dot/aptamer-based ultrasensitive multi-analyteelectrochemical biosensor [J]. Journal of the American Chemical Society,2006,128(7):2228-2229
    51. Yaghini E,Seifalian A M,MacRobert A J. Quantum dots and their potential biomedical applications inphotosensitization for photodynamic therapy [J]. Nanomedicine,2009,4(3):353-363
    52. Bang J H, Kamat P V. Quantum dots sensitized solar cells. A tale of two semiconductor nanocrystals:CdSe and CdTe [J]. ACS Nano,2009,3(6):1467-1476
    53. Shi L X, Hernandez B, Selke M. Singlet oxygen generation from water-soluble quantum dot-organicdye nanocomposites [J]. Journal of the American Chemical Society,2006,128(19):6278-6279
    54. Ma J, Chen J Y, Idowu M, et al. Generation of singlet oxygen via the composites of water-solublethiol-capped CdTe quantum dots-sulfonated aluminum phthalocyanines [J]. Journal of PhysicalChemistry B,2008,112(15):4465-4469
    55. Pierlot C,Nardello V,Schrive J, et al. Calcium peroxide diperoxohydrate as a storable chemicalgenerator of singlet oxygen for organic synthesis [J]. Journal of Organic Chemistry,2002,67(8):2418-2423
    56. Kearns D R. Physical and chemical properties of singlet molecular oxygen [J]. Chemical Reviews,1971,71(4):395-427
    57. Sang M,Ma F, Xie J, et al. High-light induced singlet oxygen formation in cytochrome b6f complexfrom Bryopsis corticulans as detected by EPR spectroscopy [J]. Biophysical chemistry,2010,146(1):7-12
    58. Tada-Oikawa S, Oikawa S, Hirayama J, et al. DNA damage and apoptosis induced byphotosensitization of5,10,15,20-tetrakis (N-methyl-4-pyridyl)-21H,23H-porphyrin via singlet oxygengeneration [J]. Photochemistry and Photobiology,2009,85(6):1391-1399
    59. Jiménez-Banzo A, Ragàs X, Kapusta P, Nonell S. Time-resolved methods in biophysics.7. Photoncounting vs. analog time-resolved singlet oxygen phosphorescence detection [J]. PhotochemicalPhotobiological Sciences,2008,7(9):1003-1010
    60. Furui E, Akai N, Ida A, et al. Observation of collision-induced near-IR emission of singlet oxygen O2a1Δggenerated by visible light excitation of gaseous O2dimol [J]. Chemical Physics Letters,2009,471(1-3):45-49
    61. Molnár A, Dědic R, Svoboda A, et al. Singlet oxygen production by lipophilic photosensitizers inliposomes studied by time and spectral resolved phosphorescence [J]. Journal of Molecular Structure,2007,834-836:488-491
    62. Molnár A, Dědic R, Svoboda A, et al. Spectroscopic study of singlet oxygen photogeneration bylipophilic photosensitiser in liposomes [J]. Journal of Luminescence,2008,128(5-6):783-785
    63. Andersen L K, Gao Z, Ogilby P R, et al. A singlet oxygen image with2.5μm resolution [J]. Journal ofPhysical Chemistry A,2002,106(37):8488-8490
    64. Zebger I, Poulsen L, Gao Z, et al. Singlet oxygen images of heterogeneous samples: examining theeffect of singlet oxygen diffusion across the interfacial boundary in phase-separated liquids andpolymers [J]. Langmuir,2003,19(21):8927-8933
    65. Schlothauer J, Hackbarth S, R der B. A new benchmark for time-resolved detection of singlet oxygenluminescence-revealing the evolution of lifetime in living cells with low dose illumination [J]. LaserPhysics Letters,2009,6(3):216-221
    66. Okazaki S, Tomo T, Mimuro M. Direct measurement of singlet oxygen produced by fourchlorin-ringed chlorophyll species in acetone solution [J]. Chemical Physics Letters,2010,485(1-3):202-206
    67. Lu C, Song G Q, Lin J M. Reactive oxygen species and their chemiluminescence-detection methods[J]. TrAC, Trends in Analytical Chemistry,2006,25(10):985-995
    68. Soh N. Recent advances in fluorescent probes for the detection of reactive oxygen species [J].Analytical and Bioanalytical Chemistry,2006,386(3):532-543
    69. Wu H Y, Song Q J, Ran, G X, et al. Recent developments in the detection of singlet oxygen withmolecular spectroscopic methods [J]. TrAC, Trends in Analytical Chemistry,2011,30(1):133-141
    70. Casta eda F, Zanocco A L, Meléndrez M, et al. Synthesis of2-[n-(N,N,N-trimethyl)-n-alkyl]-5-alkylfuryl halides. Useful probes for studying singlet oxygendynamics and equilibria in microcompartmentalized systems [J]. Journal of Photochemistry andPhotobiology, A: Chemistry,2004,168(3):175-183
    71. Martinez G R,Ravanat J L, Medeiros M H G, et al. Synthesis of a naphthalene endoperoxide as asource of18O-labeled singlet oxygen for mechanistic studies [J]. Journal of the American ChemicalSociety,2000,122(41):10212-10213
    72. Martinez G R, Ravanat J L, Cadet J, et al. Energy transfer between singlet (1Δg) and triplet (3-g)molecular oxygen in aqueous solution [J]. Journal of the American Chemical Society,2004,126(10):3056-3057
    73. Botsivali M, Evans D F. A new trap for singlet oxygen in aqueous solution [J]. Journal of the ChemicalSociety, Chemical Communications,1979,(24):1114-1116
    74. Nardello V, Aubry J M, Johnston P, et al. Facile preparation of the water-soluble singlet oxygen trapsanthracene-9,10-divinylsulfonate (AVS) and anthracene-9,10-diethylsulfonate (AES) via a Heckreaction with vinylsulfonate [J]. Synlett,2005,(17):2667-2669
    75. Nardello V, Aubry J M. Synthesis and properties of a new cationic water-soluble trap of singletmolecular oxygen [J]. Tetrahedron Letters,1997,38(42):7361-7364
    76. Martinez G R, Garcia F, Catalani L H, et al. Synthesis of a hydrophilic and non-ionic anthracenederivative, the N,N'-di-(2,3-dihydroxypropyl)-9,10-anthracenedipropanamide as a chemical trap forsinglet molecular oxygen detection in biological systems [J].Tetrahedron,2006,62(46):10762-10770
    77. Nardello V, Azaroual N, Cervoise I, et al. Synthesis and photooxidation of sodium1,3-cyclohexadiene-1,4-diethanoate: a new colorless and water-soluble trap of singlet oxygen [J].Tetrahedron,1996,52(6):2031-2046
    78. Tanaka K, Miura T, Umezawa N, et al. Rational fesign of fluorescein-based fluorescence Probes.Mechanism-based design of a maximum fluorescence probe for singlet oxygen [J]. Journal of theAmerican Chemical Society,2001,123(11):2530-2536
    79. Umezawa N, Tanaka K, Urano Y, et al. Novel fluorescent probes for singlet oxygen [J].Angewandte Chemie, International Edition,1999,38(19):2899-2901
    80. Arunkumar E, Sudeep P K, Kamat P V, et al. Singlet oxygen generation using iodinated squaraine andsquaraine-rotaxane dyes [J]. New Journal of Chemistry,2007,31(5):677-683
    81. Racine P, Auffray B. Quenching of singlet molecular oxygen by Commiphora myrrha extracts andmenthofuran [J]. Fitoterapia,2005,76(3-4):316-323
    82. Zimcik P, Miletin M, Musil Z, et al. Cationic azaphthalocyanines bearing aliphatic tertiary aminosubstituents-Synthesis, singlet oxygen production and spectroscopic studies [J]. Journal ofPhotochemistry and Photobiology, A: Chemistry,2006,183(1-2):59-69
    83. Kostka M, Zimcik P, Miletin M, et al. Comparison of aggregation properties and photodynamicactivity of phthalocyanines and azaphthalocyanines [J]. Journal of Photochemistry and Photobiology,A: Chemistry,2006,178(1):16-25
    84. Huang Q M, Pan Z Q, Wang P, et al. Zinc(II) and copper(II) complexes of β-substitutedhydroxylporphyrins as tumor photosensitizers [J]. Bioorganic&Medicinal Chemistry Letters,2006,16(11):3030-3033
    85. Ohyashiki T, Nunomura M, Katoh T. Detection of superoxide anion radical in phospholipid liposomalmembrane by fluorescence quenching method using1,3-diphenylisobenzofuran [J]. Biochimica etBiophysica Acta, Biomembranes,1999,1421(1):131-139
    86. Flors C, Fryer M J, Waring J, et al. Imaging the production of singlet oxygen in vivo using a newfluorescent sensor, Singlet Oxygen Sensor Green [J]. Journal of Experimental Botany,2006,57(8):1725-1734
    87. Hideg éva. A comparative study of fluorescent singlet oxygen probes in plant leaves [J]. CentralEuropean Journal of Biology,2008,3(3):273-284
    88. Ragàs X, Jiménez-Banzo A, Sánchez-García D, et al. Singlet oxygen photosensitization by thefluorescent probe Singlet Oxygen Sensor Green [J]. Chemical Communications,2009,(20):2920-2922
    89. Song B, Wang G L, Yuan J L. A new europium chelate-based phosphorescence probe specific forsinglet oxygen [J]. Chemical Communications,2005,(28):3553-3555
    90. Tan M Q, Song B, Wang G L, et al. A new terbium (III) chelate as an efficient singlet oxygenfluorescence probe [J]. Free Radical Biology&Medicine,2006,40(9):1644-1653
    91. Song B, Wang G L, Tan M Q, et al. A Europium (III) complex as an efficient singlet oxygenluminescence probe [J]. Journal of the American Chemical Society,2006,128(41):13442-13450
    92. Yuan J L, Wang G L. Lanthanide-based luminescence probes and time-resolved luminescencebioassays [J]. TrAC, Trends in Analytical Chemistry,2006,25(5):490-500
    93. Liu Y J, Wang K Z. Visible-light-excited singlet-oxygen luminescence probe based on Re(CO)3Cl(aeip)[J]. European Journal of Inorganic Chemistry,2008,(33):5214-5219
    94. He Y H, Xing D, Yan G H, et al. FCLA chemiluminescence from sonodynamic action in vitro and invivo [J]. Cancer Letters,2002,182(2):141-145
    95. Yasuta N, Takenaka N, Takemura T. Mechanism of photosensitized chemiluminescence of2-methyl-6-phenylimidazo[1,2-a]pyrazin-3(7H)-one (CLA) in aqueous solution [J]. Chemistry Letters,1999,(6):451-452
    96. Zhu D B, Xing D, Wei Y D, et al. Evaluation of the degree of medical radiation damage with a highlysensitive chemiluminescence method [J]. Luminescence,2004,19(5):278-282
    97.林金明,屈锋,单孝全.活性氧测定的基本原理与方法[J].分析化学,2002,30(12):1507-1514
    98.林金明.活性氧的化学发光测定法[J].环境科学学报,2003,23(2):230-238
    99. Zhang G X, Li X H, Ma H M, et al. A selective and sensitive chemiluminescence reaction of4,4'(5')-bis[2-(9-anthryloxy)ethylthio]tetrathiafulvalene with singlet oxygen [J]. ChemicalCommunications,2004,(18):2072-2073
    100. Sun S N, Li X H, Zhang G X, et al. Determination of H2O2-dependent generation of singlet oxygenfrom human saliva with a novel chemiluminescence probe [J]. Biochimica et Biophysica Acta,General Subjects,2006,1760(3):440-444
    101. Li X H, Zhang G X, Ma H M, et al.4,5-dimethylthio-4'-[2-(9-anthryloxy)ethylthio]tetrathiafulvalene,a highly selective and sensitive chemiluminescence probe for singlet oxygen [J]. Journal of theAmerican Chemical Society,2004,126(37):11543-11548
    102. Zheng X P, Sun S N, Zhang D Q, et al. A new chemiluminescence probe for singlet oxygen based ontetrathiafulvalene-anthracene dyad capable of performing detection in water/alcohol solution [J].Analytica Chimica Acta,2006,575(1):62-67
    103. Maranzana A, Ghigo G, Tonachini G. Diradical and peroxirane pathways in the [π2+π2] cycloadditionreactions of1Δgdioxygen with ethene, methyl vinyl ether, and butadiene: a density functionalandmultireference perturbation theory study [J]. Journal of the American Chemical Society,2000,122(7):1414-1423
    104. Matsumoto M. Advanced chemistry of dioxetane-based chemiluminescent substrates originating frombioluminescence [J]. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews,2004,5(1):27-53
    105. MacManus-Spencer L A, Latch D E, Kroncke K M, et al. Stable dioxetane precursors as selectivetrap-and-trigger chemiluminescent probes for singlet oxygen [J]. Analytical Chemistry,2005,77(4):1200-1205
    106. MacManus-Spencer L A, McNeill K. Quantification of singlet oxygen production in the reaction ofsuperoxide with hydrogen peroxide using a selective chemiluminescent probe [J]. Journal of theAmerican Chemical Society,2005,127(25):8954-8955
    107. Latch D E, McNeill K. Microheterogeneity of singlet oxygen distributions in irradiated humic acidsolutions [J]. Science,2006,311(5768):1743-1747
    108. Kricka L J. Chemiluminescence and bioluminescence [J]. Analytical Chemistry,1999,71(12):305R-308R
    109. Zhang X R, Baeyens W R G, Carcía-Campa a A M, et al. Recent developments in chemiluminescencesensors [J]. TrAC, Trends in Analytical Chemistry,1999,18(6):384-391
    110. Carcía-Campa a A M, Baeyens W R G. Principles and recent analytical applications ofchemiluminescence [J]. Analusis,2000,28(8):686-698.
    111.林金明.化学发光基础理论与应用[M].北京:化学工业出版社,2004:4
    112.陈国南,张帆.化学发光与生物发光-理论及应用[M].福建:福建科学技术出版社,1998:4
    113. Albert-García J R, Icardo M C, Calatayud J M. Analytical strategyphotodegradation/chemiluminescence/continuous-flow multicommutation methodology for thedetermination of the herbicide propanil [J]. Talanta,2006,69(3):608-614
    114. Palomeque M, García Bautista J A, Catalá Icardo M, et al. Photochemical-chemiluminometricdetermination of aldicarb in a fully automated multicommutation based flow-assembly [J].Analytica Chimica Acta,2004,512(1):149-156
    115. Chivulescu A, Catalá-Icardo M, García Mateo J V, et al. New flow-multicommutation method for thephoto-chemiluminometric determination of the carbamate pesticide asulam [J]. Analytica ChimicaActa,2004,519(1):113-120
    116. Song S J, Song Q J, Chen Z L. Online phototransformation-flow injection chemiluminescencedetermination of triclosan [J]. Analytical and Bioanalytical Chemistry,2007,387(8):2917-2922
    117. Zhang J L, Song Q J, Hu X, et al. Dye-sensitized phototransformation of chlorophenols and theirsubsequent chemiluminescence reactions [J]. Journal of Luminescence,2008,128(12):1880-1885
    118. Rusicka J, Hansen E H. Flow injection analysis (2nd Edition)[M]. Wiley, Chichester, West Sussex,UK,1988
    119.林守麟.流动注射分析[M].武汉:中国地质大学出版社,1991
    120.黄荣富.活性氧化学发光分析特性研究[D].西安:陕西师范大学,2007
    121. Lu J Z, Lau C, Yagisawa S, et al. A simple and sensitive chemiluminescence method for thedetermination of tiopronin for a pharmaceutical formulation [J]. Journal of Pharmaceutical andBiomedical Analysis,2003,33(5):1033-1038
    122. Lau C, Qin X J, Liang J Y, et al. Determination of cysteine in a pharmaceutical formulation by flowinjection analysis with a chemiluminescence detector [J]. Analytica Chimica Acta,2004,514(1):45-49
    123. Makita Y, Umebayashi H, Suzuki T, et al. New analytical chemiluminescence system usingperoxymonosulfate as oxidant [J]. Chemistry Letters,1993,(9):1575-1578
    124. Khan A U, Kasha M. Physical theory of chemiluminescence in systems evolving molecular oxygen [J].Journal of the American Chemical Society,1966,88(7):1574-1576
    125. Khan A U, Kasha M. Chemiluminescence arising from simultaneous transitions in pairs of singletoxygen molecules [J]. Journal of the American Chemical Society,1970,92(11):3293-3300
    126. Ogryzlo E A, Pearson A E. Excitation of violanthrone by singlet oxygen. A chemiluminescencemechanism [J]. Journal of Physical Chemistry,1968,72(8):2913-2916
    127. Wilson T. Fluorescence of rubrene excited by energy transfer from singlet oxygen. Temperaturedependence and competition with oxidation [J]. Journal of the American Chemical Society,1969,91(9):2387-2388
    128. Tsukada S, Miki H, Lin J M, et al. Chemiluminescence from fluorescent organic compounds inducedby cobalt(II) catalyzed decomposition of peroxomonosulfate [J]. Analytica Chimica Acta,1998,371(2-3):163-170
    129. Lin J M, Yamada M. Chemiluminescent reaction of fluorescent organic compounds with KHSO5usingcobalt (II) as catalyst and its first application to molecular imprinting [J]. Analytical Chemistry,2000,72(6):1148-1155
    130. Liu M L, Cheng X L, Zhao L X, et al. On-line preparation of peroxymonocarbonate and its applicationfor the study of energy transfer chemiluminescence to lanthanide inorganic coordinate complexes [J].Luminescence,2006,21(3):179-185
    131.刘美林.碳氧活性化合物的化学发光机理研究[D].北京:中国科学院生态环境研究中心,2006
    132. Gemeay A H. Catalytic activity of silica gel surface modified by transition metal-aminosilanecomplexes in the decomposition of hydrogen peroxide [J]. Colloids and Surfaces, A: Physicochemicaland Engineering Aspects,1996,116(3):277-284
    133. Khan A U, Kovacic D, Kolbanovskiy, A, et al. The decomposition of peroxynitrite to nitroxyl anion(NO-) and singlet oxygen in aqueous solution [J]. Proceedings of the National Academy of Sciences ofthe United States of America,2000,97(7):2984-2989
    134. Chen H, Lin L, Lin Z, et al. Chemiluminescence arising from the decomposition ofperoxymonocarbonate and enhanced by CdTe quantum dots [J]. Journal of Physical Chemistry A,2010,114(37):10049-10058
    135. Zhou Y, Chen H, Ogawa N, et al. Chemiluminescence from NaClO-H2O2and enhanced by L-cysteinecapped Mn-doped ZnS quantum-dots [J]. Journal of Luminescence,2011,131(9):1991-1997
    136.陈惠.纳米粒子增强碳酸氢盐-过氧化氢化学发光反应过程研究[D].北京:北京化工大学,2010
    137.夏少武,夏树伟.量子化学基础[M].北京:科学出版社,2010
    138.林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004
    139. Tejero I, González-Lafont A, Lluch J M, et al. Photooxidation of lipids by singlet oxygen: a theoreticalstudy [J]. Chemical Physics Letters,2004,398(4-6):336-342
    140. Sevin F, McKee M L. Reactions of1,3-cyclohexadiene with singlet oxygen. A theoretical study [J].Journal of the American Chemical Society,2001,123(19):4591-4600
    141. Garavelli M, Bernardi F, Olivucci M, et al. DFT study of the reactions between singlet-oxygen and acarotenoid model [J]. Journal of the American Chemical Society,1998,120(39):10210-10222
    142. Matxain J M,Ristil M,Strid,, et al. Theoretical study of the reaction of vitamin B6with1O2[J].Chemistry--A European Journal,2007,13(16):4636-4642
    143. Song Q J, Niu T, Wang H J. Theoretical study of the reaction of2,4-dichlorophenol with1O2[J].Journal of Molecular Structure: THEOCHEM,2008,861(1-3):27-32
    144.颜肖慈,罗明道.界面化学[M].北京:化学工业出版社,2004
    145.蒋庆哲,宋昭峥,赵密福,等.表面活性剂科学与应用[M].北京:中国石化出版社,2006
    146. Schramm L L, Stasiuk E N, Marangoni D G. Surfactants and their applications [J]. Annual Reportson the Progress of Chemistry, Section C: Physical Chemistry,2003,99:3-48
    147. Lin J M, Yamada M. Microheterogeneous systems of micelles and microemulsions as reaction mediain chemiluminescent analysis [J]. TrAC, Trends in Analytical Chemistry,2003,22(2):99-107
    148.吕超,林金明.胶束微观非均相体系与化学发光能量转移[J].物理化学学报,2004,20(z1):974-981
    149. Hinze W L, Reihl T E, Singh H N, et al. Micelle-enhanced chemiluminescence and application to thedetermination of biological reductants using lucigenin [J]. Analytical Chemistry,1984,56(12):2180-2191
    150. Yamada M, Suzuki S. Micellar enhanced chemiluminescence of1,10-phenanthroline for thedetermination of ultratraces of copper(II) by flow injection method [J]. Analytical Letters (1984),17(A4):251-263
    151. Lu C, Qu F, Lin J M, et al. Flow-injection chemiluminescent determination of nitrite in water based onthe formation of peroxynitrite from the reaction of nitrite and hydrogen peroxide [J]. AnalyticaChimica Acta,2002,474(1-2):107-114
    152. Liang S X, Li H F, Lin J M. Reaction mechanism of surfactant-sensitized chemiluminescence ofbis(2,4,6-trichlorophyenyl) oxalate and hydrogen peroxide induced by gold nanoparticles [J].Luminescence,2008,23(6):381-385
    153. Li R B, Chen H, Li Y, et al. Enhancing effect of alcoholic solvent on hydrosulfite-hydrogen peroxidechemiluminescence system [J]. Journal of Physical Chemistry A,2012,116(9):2192-2197
    154. Gorman A A, Rodgers M A J. Lifetime and reactivity of singlet oxygen in an aqueous micellar system:a pulsed nitrogen laser study [J]. Chemical Physics Letters,1978,55(1):52-54
    155. Lindig B A, Rodgers M A J. Laser photolysis studies of singlet molecular oxygen in aqueous micellardispersions [J]. Journal of Physical Chemistry,1979,83(13):1683-1688
    156. Lindig B A, Rodgers M A J. Rate parameters for the quenching of singlet oxygen by water-soluble andlipid-soluble substrates in aqueous and micellar systems [J]. Photochemistry and Photobiology,1981,33(5):627-634
    157. Biasutti M A, Bertolotti S G, Soltermann A T, et al. Singlet molecular oxygen [O12(Δg)] production andquenching by hydroxybiphenyls in micellar media [J]. Toxicological and Environmental Chemistry,1997,64(1-4):1-13
    158. Lissi E, Rubio M A. Molecular oxygen O32() and O2(1Δ) processes in microheterogenous systems[J]. Pure and Applied Chemistry,1990,62(8):1503-1510
    159. Biasutti M A, Soltermann A T, García N A. Photodynamic effect in lysozyme: a kinetic study indifferent micellar media [J]. Journal of Peptide Research,2000,55(1):41-50
    160. Lissi E A, Lemp E, Zanocco A L. Singlet-oxygen reactions: solvent and compartmentalization effects,Molecular and Supramolecular Photochemistry [M]. New York: Marcel Dekker,2001,8:287-316
    161. Martínez C G, Klopotek B B, Neuner A, et al. Influence of microheterogeneous media on the quantumyield of singlet oxygen (O12(Δg)) production by a Rose bengal derivative bearing a long alkyl chain [J].Afinidad,2002,59(500):454-460
    162. Martínez C G, Braun A M, Oliveros E. Effect of the media on the quantum yield of singlet oxygen(O2(1Δg)) production by9H-fluoren-9-one: microheterogeneous systems [J]. Helvetica Chimica Acta,2004,87(2):382-393
    163. Miyoshi N, Tomita G. Quenching of singlet oxygen by sodium azide in reversed micellar systems [J].Zeitschrift fuer Naturforschung, Teil B: Anorganische Chemie, Organische Chemie,1979,34B(2):339-343
    164. Lee P C, Rodgers M A J. Singlet molecular oxygen in micellar systems.1. Distribution equilibriumsbetween hydrophobic and hydrophilic compartments [J]. Journal of Physical Chemistry,1983,87(24):4894-4898
    165. Matheson I B C, Rodgers M A J. Oxygen transfer rates cross water-micelle interfaces derived frommeasurements of nickel(2+) quenching of singlet molecular oxygen in aerosol-OT-heptane reversemicelles [J]. Journal of Physical Chemistry,1982,86(6):884-887
    166. Miyoshi N, Tomita G. Singlet oxygen production photosensitized by fluorescein in reversed micellarsolutions [J]. Zeitschrift fuer Naturforschung, Teil B: Anorganische Chemie, Organische Chemie,1980,35B(6):731-735
    167. Rodgers M A J, Lee P C. Singlet molecular oxygen in micellar systems.2. Quenching behavior inAOT reverse micelles [J]. Journal of Physical Chemistry,1984,88(16):3480-3484
    168. Rubio M A, Lissi E A. Photooxidation of anthracene derivatives in AOT/heptane reversed micelles [J].Journal of Colloid and Interface Science,1989,128(2):458-463
    169. Redmond R W. Enhancement of the sensitivity of radiative and nonradiative detection techniques inthe study of photosensitization by water soluble sensitizers using a reverse micelle system [J].Photochemistry and Photobiology,1991,54(4):547-556
    170. Dhami S, Cosa J J, Bishop S M, et al. Photophysical characterization of sulfonated aluminumphthalocyanines in a cationic reversed micellar system [J]. Langmuir,1996,12(2):293-300
    171. Montenegro M A, Nazareno M A, Durantini E N, et al. Singlet molecular oxygen quenching ability ofcarotenoids in a reverse-micelle membrane mimetic system [J]. Photochemistry and Photobiology,2002,75(4):353-361
    172. Sanchez-Cruz P, Dejesus-Andino, F, Alegria A E. Roles of hydrophilicities and hydrophobicities ofdye and sacrificial electron donor on the photochemical pathway [J]. Journal of Photochemistry andPhotobiology, A: Chemistry,2012,236:54-60
    173. Gao F, Li H R, Li X M, et al. An attempt to determine the polarity of bilayer of cationic and anionicsurfactants vesicle: A chemical probe technique study [J]. Colloids and Surfaces, A: Physicochemicaland Engineering Aspects,2007,304(1-3):31-35
    174. Zanocco A L, Meléndrez M, Günther G, et al. Study of singlet oxygen equilibrium indioctadecyldimethylammonium chloride vesicles employing2-(n-(N,N,N-trimethylamine)-n-alkyl)-5-alkylfuryl halides [J]. Photochemistry and Photobiology,2007,83(3):584-591
    175. Li H R, Wu L Z, Tung C H. Controllable selectivity of photosensitized oxidation of olefins included invesicles [J]. Tetrahedron,2000,56(38):7437-7442
    176. Li H R, Wu L Z, Tung C H. Reactions of singlet oxygen with olefins and sterically hindered amine inmixed surfactant vesicles [J]. Journal of the American Chemical Society,2000,122(11):2446-2451
    177. Dearden S J. Kinetics of oxygen (1Δg) photooxidation reactions in egg-yolk lecithin vesicles [J].Journal of the Chemical Society, Faraday Transactions1: Physical Chemistry in Condensed Phases,1986,82(5):1627-1635
    178. Rodgers M A J, Bates A L. A laser flash kinetic spectrophotometric examination of the dynamics ofsinglet oxygen in unilammellar vesicles [J]. Photochemistry and Photobiology,1982,35(4):473-477
    179. Shao B H, Pennathur S, Heinecke J W. Myeloperoxidase targets apolipoprotein A-I, the major highdensity lipoprotein protein, for site-specific oxidation in human atherosclerotic Lesions [J]. Journal ofBiological Chemistry,2012,287(9):6375-6386
    180. Zhang Y Z, Zhu X C, Smith J, et al. Direct Observation and Quantitative Characterization of SingletOxygen in Aqueous Solution upon UVA Excitation of6-Thioguanines [J]. Journal of PhysicalChemistry B,2011,115(8):1889-1894
    181. Ha D O, Jeong M K, Park C U, et al. Effects of riboflavin photosensitization on the degradation ofbisphenol A (BPA) in model and real-food systems [J]. Journal of Food Science,2009,74(5):C380-C384
    182. Park C U, Yeo J D, Park M H, et al. Effects of riboflavin photosensitization on daidzein and itsphotosensitized derivatives [J]. Journal of Food Science,2010,75(8): C659-C666
    183. Gerola A P, Semensato J, Pellosi D S, et al. Chemical determination of singlet oxygen fromphotosensitizers illuminated with LED: New calculation methodology considering the influence ofphotobleaching [J]. Journal of Photochemistry and Photobiology, A: Chemistry,2012,232:14-21
    184. Ravanat J L, Martinez G R, Medeiros M H G, et al. Mechanistic aspects of the oxidation of DNAconstituents mediated by singlet molecular oxygen [J]. Archives of Biochemistry and Biophysics,2004,423(1):23-30
    185. Ravanat J L,Sauvaigo S,Caillat S, et al. Singlet oxygen-mediated damage to cellular DNAdetermined by the comet assay associated with DNA repair enzymes [J]. Biological Chemistry,2004,385(1):17-20
    186. Davies M J. Reactive species formed on proteins exposed to singlet oxygen [J].Photochemical&Photobiological Sciences,2004,3(1):17-25
    187. Lee J H, Min D B. Analysis of volatile compounds from chlorophyll photosensitized linoleic acid byheadspace solid-phase microextraction (HS-SPME)[J]. Food Science and Biotechnology,2010,19(3):611-616
    188. Yettella R R, Min D B. Effects of Trolox and ascorbic acid on the riboflavin photosensitized oxidationof aromatic amino acids [J]. Food Chemistry,2010,118(1):35-41
    189. Chwirot W B. New indication of possible role of DNA in ultraweak photon emission from biologicalsystems [J]. Journal of Plant Physiology,1986,122(1):81-86
    190. Ma W J, Cao E H, Zhang J, et al. Phenanthroline-Cu complex-mediated chemiluminescence of DNAand its potential use in antioxidation evaluation [J]. Journal of Photochemistry and Photobiology, B:Biology,1998,44(1):63-68
    191. Miura T, Ogiso T. Luminol chemiluminescence and peroxidation of unsaturated fatty acid induced bythe xanthine oxidase system: effect of oxygen radical scavengers [J]. Chemical&PharmaceuticalBulletin,1985,33(8):3402-3407
    192. Yu W L, Zhao Y P. Chemiluminescence evaluation of oxidative damage to biomolecules induced bysinglet oxygen and the protective effects of antioxidants [J]. Biochimica et Biophysica Acta, GeneralSubjects,2005,1725(1):30-34
    193. Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian, Inc.,Wallingford CT (2004)
    194. Kanicky J R, Shah D O. Effect of degree, type, and position of unsaturation on the pKa of long-chainfatty acids [J]. Journal of Colloid and Interface science,2002,256(1):201-207
    195. Miller J S. Rose bengal-sensitized photooxidation of2-chlorophenol in water using solar simulatedlight [J]. Water Research,2005,39(2-3):412-422
    196. Lambert C R, Kochevar, I E. Electron transfer quenching of the rose bengal triplet state [J].Photochemistry and Photobiology,1997,66(1):15-25
    197. Krasnovskii A A, Kagan V E, Minin A A. Quenching of singlet oxygen luminescence by fatty acidsand lipids. Contribution of physical and chemical mechanisms [J]. FEBS Letters,1983,155(2):233-236
    198. Devasagayam T P A, Boloor K K, Ramasarma T. Methods for estimating lipid peroxidation: ananalysis of merits and demerits [J]. Indian Journal of Biochemistry&Biophysics,2003,40(5):300-308
    199. Aubry J M, Mandard-Cazin B, Rougee M, et al. Kinetic studies of singlet oxygen[4+2]-cycloadditions with cyclic1,3-dienes in28solvents [J]. Journal of the American ChemicalSociety,1995,117(36):9159-9164
    200. Pierlot C, Nardello V, Schmidt R, et al. Determination of physical (kq) and chemical (kr) rateconstants for singlet oxygen quenching using the thermolysis of a naphthalenic endoperoxide in H2Oand D2O [J]. ARKIVOC (Gainesville, FL, United States),2007,(8):245-256
    201. Yachi K, Sugiyama Y, Sawada Y, et al. Characterization of Rose Bengal binding to sinusoidal and bilecanalicular plasma membrane from rat liver [J]. Biochimica et Biophysica Acta, Biomembranes,1989,978(1):1-7
    202. Smith A M, Nie S M. Chemical analysis and cellular imaging with quantum dots [J]. Analyst,2004129(8):672-677
    203. Sapsford K E, Pons T, Medintz I L, et al. Biosensing with luminescent semiconductor quantum dots[J]. Sensors,2006,6(8):925-953
    204. Bruchez M Jr, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science,1998,281(5385):2013-2016
    205. Ding Z F, Quinn B M, Haram S K, et al. Electrochemistry and electrogenerated chemiluminescencefrom silicon nanocrystal quantum dots [J]. Science,2002,296(5571):1293-1297
    206. Huang X Y, Li L, Qian H F, et al. A resonance energy transfer between chemiluminescence donors andluminescent quantum dots as acceptors (CRET)[J]. Angewandte Chemie, International Edition,2006,45(31):5140-5143
    207. Wang Z P, Li J, Liu B, et al. Chemiluminescence of CdTe nanocrystals induced by direct chemicaloxidation and its size-dependent and surfactant-sensitized effect [J]. Journal of Physical Chemistry B,2005,109(49):23304-23311
    208. Guo J Z, Cui H. Lucigenin chemiluminescence induced by noble metal nanoparticles in the presenceof adsorbates [J]. Journal of Physical Chemistry C,2007,111(33):12254-12259
    209. Guo J Z, Cui H, Zhou W, et al. Ag nanoparticle-catalyzed chemiluminescent reaction between luminoland hydrogen peroxide [J]. Journal of Photochemistry and Photobiology, A: Chemistry,2008,193(2-3):89-96
    210. Li Y X, Yang P, Wang P, et al. CdS nanocrystal induced chemiluminescence: reaction mechanism andapplications [J]. Nanotechnology,2007,18(22):225602-225609
    211. Li Z, Wang Y X, Zhang G X, et al. Chemiluminescence resonance energy transfer in the luminol-CdTequantum dots conjugates [J]. Journal of Luminescence,2010,130(6):995-999
    212. Sun C Y, Liu B, Li J H. Sensitized chemiluminescence of CdTe quantum-dots on Ce(IV)-sulfite and itsanalytical applications [J]. Talanta,2008,75(2):447-454
    213. García-Campaňa A M, Baeyens W R G. Chemiluminescence in analytical chemistry [M]. New York:Marcel Dekker,2001
    214. Kanwal S, Fu X H, Su X G. Size dependent active effect of CdTe quantum dots on pyrogallol-H2O2chemiluminescence system for chromium (III) detection [J]. Microchimica Acta,2010,169(1-2):167-172
    215. Feng Q Z, Li H F, Zhang Z Y, et al. Gold nanoparticles for enhanced chemiluminescence anddetermination of2,4-dichlorophenol in environmental water samples [J]. Analyst,2011,136(10):2156-2160
    216. Li S F, Tao S J, Wang F F, et al. Chemiluminescence reactions of luminol system catalyzed bynanoparticles of a gold/silver alloy [J]. Microchimica Acta,2010,169(1-2):73-78
    217. Huang S S, Qu Y X, Li R N, et al. Biosensor based on horseradish peroxide modified carbonnanotubes for determination of2,4-dichlorophenol [J]. Microchimica Acta,2008,162(1-2):261-268
    218. Kong L M, Huang S S, Yue Z L, et al. Sensitive mediator-free tyrosinase biosensor for thedetermination of2,4-dichlorophenol [J]. Microchimica Acta,2009,165(1-2):203-209
    219. Yu W W, Qu L H, Guo W Z, et al. Experimental determination of the extinction coefficient of CdTe,CdSe, and CdS nanocrystals [J]. Chemistry of Materials,2003,15(14):2854-2860
    220. Suzuki N, Takahashi A, Mashiko S, et al. N,N'-dibromo-5,5-dimethylhydantoin andN-bromosuccinimide, chemical sources of singlet molecular oxygen: observation of singlet oxygenwith ultra-sensitive near-infrared chemiluminescence spectroscopy [J]. Agricultural and BiologicalChemistry,1990,54(2):459-462
    221. Ma J, Chen J Y, Zhang Y, et al. Photochemical instability of thiol-capped CdTe quantum dots inaqueous solution and living cells: process and mechanism [J]. Journal of Physical Chemistry B,2007,111(41):12012-12016
    222. Cho S J, Maysinger D, Jain M, et al. Long-term exposure to CdTe quantum dots causes functionalimpairments in live cells [J]. Langmuir,2007,23(4):1974-1980
    223. Merkel P B, Nilsson R, Kearns D R. Deuterium effects on singlet oxygen lifetimes in solutions. Newtest of singlet oxygen reactions [J]. Journal of the American Chemical Society,1972,94(3):1030-1031
    224. Liu J X, Chen H, Lin L, et al. Sensitized chemiluminescence reaction between hydrogen peroxide andperiodate of different types of Mn-doped ZnS quantum dots [J]. Chinese Science Bulletin,2010,55(30):3479-3484
    225. Holcombe G W, Phipps G L, Fiandt J T. Effects of phenol,2,4-dimethylphenol,2,4-dichlorophenol,and pentachlorophenol on embryo, larval, and early-juvenile fathead minnows (Pimephales promelas)[J]. Archives of Environmental Contamination and Toxicology,1982,11(1),73-78
    226. Pandiyan T, Martínez R O, Orozco M J, et al. Comparison of methods for the photochemicaldegradation of chlorophenols [J]. Journal of Photochemistry and Photobiology, A: Chemistry,2002,146(3),149-155
    227. Kasuga K, Miyazako T, Sugimori T, et al. Photooxidation of some phenols in aerated acetonitrile usingtetra-tert-butylphthalocyaninatozinc(II) as a sensitizer [J]. Inorganic Chemistry Communications,2003,6(7),807-809
    228. Calvo L, Mohedano A F, Casas J A, et al. Treatment of chlorophenols-bearing wastewaters throughhydrodechlorination using Pd/activated carbon catalysts [J]. Carbon,2004,42(7):1377-1381
    229. US EPA. Federal Register, Washington, DC,1987,52,131,25861
    230. EEC Directive80/778/EEC15-7-1990: Official Journal of the European Communities,30-8-1990.European Community, Brussels1990
    231. Sun D, Zhang H J. Electrochemical determination of2-chlorophenol using an acetylene black filmmodified glassy carbon electrode [J].Water Research,2006,40(16):3069-3074
    232. Pera-Titus M, García-Molina V, Ba os M A, et al. Degradation of chlorophenols by means ofadvanced oxidation processes: a general review [J]. Applied Catalysis, B: Environmental,2004,47(4):219-256
    233. Rodríguez I, Llompart M P, Cela R. Solid-phase extraction of phenols [J]. Journal of Chromatography,A,2000,885(1+2):291-304
    234. Calvo L, Gilarranz M A, Casas J A, et al. Hydrodechlorination of4-chlorophenol in water with formicacid using a Pd/activated carbon catalyst [J]. Journal of Hazardous Materials,2009,161(2-3):842-847
    235. Skurlatov Y I, Ernestova L S, Vichutinskaya E V, et al. Photochemical transformation ofpolychlorinated phenols [J]. Journal of Photochemistry and Photobiology, A: Chemistry,1997,107(1-3):207-213
    236. Nowakowska M,Szczubialka K. Photosensitized dechlorination of polychlorinated phenols.1.Carbazole-photosensitized dechlorination of pentachlorophenol [J]. Journal of Photochemistry andPhotobiology, A: Chemistry,1995,91(1):81-85
    237. Ozoemena K, Kuznetsova N, Nyokong, T. Photosensitized transformation of4-chlorophenol in thepresence of aggregated and non-aggregated metallophthalocyanines [J]. Journal of Photochemistry andPhotobiology, A: Chemistry,2001,139(2-3):217-224
    238. Agboola B O. Catalytic activities of metallophthalocyanines towards detection and transformation ofpollutants [D]. Grahamstown: Rhodes University,2007
    239. Czaplicka M. Photo-degradation of chlorophenols in the aqueous solution [J]. Journal of HazardousMaterials,2006,134(1-3):45-59
    240. Kili M, Ko türk G, San N, et al. A model for prediction of product distributions for the reactions ofphenol derivatives with hydroxyl radicals [J].Chemosphere,2007,69(9):1396-1408
    241. Cammi R, Tomasi J. Remarks on the use of the apparent surface charges (ASC) methods in solvationproblems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges[J]. Journal of Computational Chemistry,1995,16(12):1449-1458
    242. Gonzalez C, McDouall J J W, Schlegel H B. Ab initio study of the reactions between methane andhydroxyl, hydrogen atom, and triplet oxygen atom [J]. Journal of Physical Chemistry,1990,94(19):7467-7471
    243. Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital,donor-acceptor viewpoint [J]. Chemical Reviews,1988,88(6):899-926
    244. Gerdes R, W hrle D, Spiller W, et al. Photo-oxidation of phenol and monochlorophenols inoxygen-saturated aqueous solutions by different photosensitizers [J]. Journal of Photochemistry andPhotobiology, A: Chemistry,1997,111(1-3):65-74
    245. Iliev V, Mihaylova A, Bilyarska L. Photooxidation of phenols in aqueous solution, catalyzed bymononuclear and polynuclear metal phthalocyanine complexes [J]. Journal of Molecular Catalysis A:Chemical,2002,184(1-2):121-130
    246. Thomas M J, Foote C S. Chemistry of singlet oxygen. XXVI. Photooxygenation of phenols [J].Photochemistry and Photobiology,1978,27(6):683-693
    247. Qiao Q A, Cai Z T, Feng D C, et al. A quantum chemical study of the water-assisted mechanism inone-carbon unit transfer reaction catalyzed by glycinamide ribonucleotide transformylase [J].Biophysical Chemistry,2004,110(3):259-266
    248. Ozoemena K, Kuznetsova N, Nyokong T. Comparative photosensitized transformation ofpolychlorophenols with different sulfonated metallophthalocyanine complexes in aqueous medium [J].Journal of Molecular Catalysis A: Chemical,2001,176,(1-2),29-40
    249.王兆慧,马万红,陈春城,等. TiO2光催化降解氯酚类有机污染物的反应机理[J].中国科学:化学,2011,41(8):1286-1297
    250. Bester K. Analysis of musk fragrances in environmental samples [J]. Journal of Chromatography, A,2009,1216(3):470-480
    251. Balk F, Ford R A. Environmental risk assessment for the polycyclic musks AHTN and HHCB in theEU I. Fate and exposure assessment [J]. Toxicology Letters,1999,111(1-2):57-79
    252. Dietrich D R, Hitzfeld B C. Bioaccumulation and ecotoxicity of synthetic musks in the aquaticenvironment, Handbook of Environmental Chemistry [M]. Berlin: Springer–Verlag,2004,3(Pt. X):233-244
    253. Biselli S, Gatermann R, Kallenborn R, et al. Biotic and abiotic transformation pathways of syntheticmusks in the aquatic environment, Handbook of Environmental Chemistry [M]. Berlin:Springer–Verlag,2004,3(Pt. X):189-211
    254. Peck A M, Kucklick J R, Schantz M M. Synthetic musk fragrances in environmental StandardReference Materials [J]. Analytical and Bioanalytical Chemistry,2007,387(7):2381-2388
    255. Zhang X L, Yao Y, Zeng X Y, et al. Synthetic musks in the aquatic environment and personal careproducts in Shanghai, China [J]. Chemosphere,2008,72(10):1553-1558
    256. Shek W M, Murphy M B, Lam J C W, et al. Synthetic polycyclic musks in Hong Kong sewage sludge[J]. Chemosphere,2008,71(7):1241-1250
    257. Peck A M, Hornbuckle K C. Synthetic musk fragrances in urban and rural air of Iowa and the GreatLakes [J]. Atmospheric Environment,2006,40(32):6101-6111
    258. Shek W M, Murphy M B, Lam J C W, et al. Polycyclic musks in green-lipped mussels (Perna viridis)from Hong Kong [J]. Marine Pollution Bulletin,2008,57(6-12):373-380
    259. Moldovan Z. Occurrences of pharmaceutical and personal care products as micropollutants in riversfrom Romania [J]. Chemosphere,2006,64(11):1808-1817
    260. Rice S L, Mitra S. Microwave-assisted solvent extraction of solid matrices and subsequent detectionof pharmaceuticals and personal care products (PPCPs) using gas chromatography-mass spectrometry[J]. Analytica Chimica Acta,2007,589(1):125-132
    261. Carballa M, Omil F, Lema J M. Removal of cosmetic ingredients and pharmaceuticals in sewageprimary treatment [J]. Water Research,2005,39(19):4790-4796
    262. Neamtu M, Siminiceanu I, Kettrup A. Kinetics of nitromusk compounds degradation in water byultraviolet radiation and hydrogen peroxide [J]. Chemosphere,2000,40(12):1407-1410
    263. Sanchez-Prado L, Lourido M, Lores M, et al. Study of the photoinduced degradation of polycyclicmusk compounds by solid-phase microextraction and gas chromatography/mass spectrometry [J].Rapid Communications in Mass Spectrometry,2004,18(11):1186-1192
    264. Kupper T, Plagellat C, Br ndli R C, et al. Fate and removal of polycyclic musks, UV filters andbiocides during wastewater treatment [J]. Water Research,2006,40(14):2603-2612
    265. Sanchez-Prado L, Lores M, Llompart M, et al. Further solid-phase microextraction-gaschromatography-mass spectrometry applications:"on-fibre" and aqueous photodegradation of nitromusks [J]. Journal of Chromatography, A,2004,1048(1):73-80
    266. Wu H Y, Ding Z Y, Peng M, et al. Quantum dot induced phototransformation of2,4-dichlorophenol,and its subsequent chemiluminescence reaction [J]. Microchimica Acta,2012,178(1-2):203-210
    267. Gutiérrez M I, Soltermann A T, Amat-Guerri F, et al. Kinetics of the dye-sensitized photooxidation oftrihydroxybenzenes [J]. Journal of Photochemistry and Photobiology, A: Chemistry,2000,136(1-2):67-71
    268. Pajares A, Gianotti J, Stettler G, et al. Kinetics of the dye sensitized photooxidation of2-amino-4-hydroxy-6-methylpyrimidine, a model compound for some fungicides [J]. Journal ofPhotochemistry and Photobiology, A: Chemistry,2000,135(2-3):207-212
    269. Escalada J P, Pajares A, Gianotti, J, et al. Dye-sensitized photodegradation of the fungicidecarbendazim and related benzimidazoles [J]. Chemosphere,2006,65(2):237-244
    270. Haggi E, Blasich N, Díaz J, et al. Kinetics and mechanism of the sensitized photodegradation of uracil-modeling the fate of related herbicides in aqueous environments [J]. Photochemistry andPhotobiology,2007,83(3):520-525
    271. Ozcan S, Tor A, Aydin M E. Application of ultrasound-assisted emulsification-micro-extraction for theanalysis of organochlorine pesticides in waters [J]. Water Research,2009,43(17):4269-4277
    272. Regueiro J, Llompart M, Garcia-Jares C, et al. Ultrasound-assisted emulsification-microextraction ofemergent contaminants and pesticides in environmental waters [J]. Journal of Chromatography, A,2008,1190(1-2):27-38
    273. Fontana A R, Wuilloud R G, Martínez L D, et al. Simple approach based on ultrasound-assistedemulsification-microextraction for determination of polibrominated flame retardants in water samplesby gas chromatography-mass spectrometry [J]. Journal of chromatography. A,2009,1216(1):147-153
    274. Ozcan S, Tor A, Aydin M E. Determination of selected polychlorinated biphenyls in water samples byultrasound-assisted emulsification-microextraction and gas chromatography-mass-selective detection[J]. Analytica Chimica Acta,2009,647(2):182-188
    275.臧晓欢,吴秋华,张美月,等.分散液相微萃取技术研究进展[J].分析化学,2009,37(2):161-168
    276. Alarcón E, Edwards A M, Aspee A, et al. Photophysics and photochemistry of dyes bound to humanserum albumin are determined by the dye localization [J]. Photochemical&Photobiological Sciences,2010,9(1):93-102
    277. G rner H. Oxygen uptake induced by electron transfer from donors to the triplet state of methyleneblue and xanthene dyes in air-saturated aqueous solution [J]. Photochemical&PhotobiologicalSciences,2008,7(3):371-376
    278. Kojima M, Kuriyama Y, Sakuragi H, et al. Dye-sensitized oxygenation and dimerization of4-methoxystyrene through electron transfer [J]. Bulletin of the Chemical Society of Japan,1991,64(9):2724-2729
    279. Chen X F, Hou C Y, Han K L. DFT Study of Intermolecular [4+2] versus [3+2] cycloadditions in thedimerization of2,4,6-Trinitrotoluene (TNT): regioselectivity and stereoselectivity [J]. Journal ofPhysical Chemistry A,2010,114(2):1169-1177
    280.傅现彩.物理化学[M].北京:高等教育出版社,2006,360
    281. Grandbois M, Latch D E, McNeill K. Microheterogeneous concentrations of singlet oxygen in naturalorganic matter isolate solutions [J]. Environmental Science&Technology,2008,42(24):9184-9190
    282. Carlos L, Pedersen B W, Ogilby P R, et al. The role of humic acid aggregation on the kinetics ofphotosensitized singlet oxygen production and decay [J]. Photochemical&Photobiological Sciences,2011,10(6):1080-1086

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700