ROR2在骨肉瘤组织及细胞中的表达及其对骨肉瘤细胞生物学行为影响的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨肉瘤(Oseteosarcoma)是除浆细胞瘤外最常见的恶性骨原发性肿瘤,其组织学特点是在多数情况下肿瘤细胞产生骨样或不成熟骨。骨肉瘤发病率各国统计数字差异较大,约1/10万—0.1/10万。骨肉瘤易于侵及生长迅速的干骺端,其典型的位置是在长管状骨,股骨远端及胫骨、肱骨的近端是最常见的发病部位,全部病人的50%—70%病变发生在膝关节周围。虽然骨肉瘤在各年龄组均有报道而且其发病率低于其他常见恶性肿瘤,但由于该病好发于青少年长骨时期,有研究证实75%的骨肉瘤于10岁—30岁人群发病。起病时无明显的临床症状,极易与外伤混淆,且恶性程度高早期即可能发生肺转移,故其危害性大死亡率很高。临床骨科工作者一直致力于对其防治的研究,希望寻找到骨肉瘤精确有效治疗的靶点。
     ROR2 (Receptor Tyrosine Kinase-like Orphan Receptor)全称为受体酪氨酸激酶样孤核受体2,其属于受体酪氨酸激酶家族(RTKs),此激酶家族成员在动物发育的形态发生及组织分化过程中具有重要意义。它们参与调节细胞增殖、分化、粘附、迁移以及凋亡等多种细胞功能。ROR受体属于受体酪氨酸激酶家族中的孤核受体一类,在进化上非常保守。在哺乳动物其包含两种结构上相关的蛋白ROR1和ROR2。已有的研究证实ROR2在面部、四肢、心脏、大脑及肺等重要器官和组织中均有表达,对于神经系统和骨骼的发育具有重要作用。其在中枢神经系统可调节轴突的生长。在人类, ROR2基因的纯合子型突变可导致Robinow综合症,此种病症表现出多种骨骼发育不良:身材矮小、全身肢体短小、脊柱部分节段缺失及面部骨骼畸形。ROR2基因的杂合子型突变与以手指及足趾远节缺失为特征的brachydactyly type B综合症有关。在小鼠,ROR2基因的缺乏可导致侏儒症、肢体及尾巴短小、面部畸形、心室间隔缺损以及引起新生儿死亡的呼吸功能障碍。已有的研究显示ROR2可促进成骨细胞的增殖和分化,Real-time RT-PCR检测显示ROR2在人类骨髓间质干细胞中无表达,随其的成骨分化逐渐增高,而当其分化为定型的前成骨细胞时ROR2的表达达到峰值,而后又迅速下降并在正常骨细胞中表达消失。ROR2受体通过二聚化而激活可促进人类间质干细胞的成骨转化并在组织培养期间增加新的骨形成。ROR2在小鼠体内试验时也表现出很强的促进骨形成的能力。以上结果均提示ROR2在骨骼的发育过程中具有重要作用。而且研究证实ROR2对于骨骼发育的影响主要是通过与WNT家族蛋白结合,调节经典或非经典WNT信号通路来实现。
     有研究显示ROR2与某些肿瘤的发生存在一定的关系。例如其在黑色素瘤组织中有较强的表达,还有研究证实ROR2是Hela宫颈癌细胞的促存活激酶。最新的研究显示在口腔鳞状细胞癌中发现ROR2的增强表达而且ROR2的高表达与其恶性程度相关以及ROR2可促进肾细胞恶性肿瘤的生长。ROR2与肿瘤之间的关系均与其可与Wnt蛋白结合,激活或调整某一WNT信号通路有关。而最近的研究显示WNT通路在放射诱导的的骨肉瘤中具有转录活性。同时WNT/β连环蛋白通路的拮抗剂姜黄素和PKF118-310在人类骨肉瘤细胞实验中显示了抗肿瘤活性。而且2008年有学者研究证实特异性酪氨酸激酶抑制剂(包括表皮生长因子受体抑制剂、胰岛素样生长因子-1受体抑制剂及met抑制剂等)可在体外抑制骨肉瘤细胞的活动能力、集落形成和侵袭能力。此结果显示酪氨酸激酶可能调节骨肉瘤的形成及转移,其可能成为骨肉瘤治疗的新靶点。
     ROR2作为酪氨酸激酶家族成员的身份、其在部分肿瘤中的表达及其生物学行为、骨肉瘤的成骨特性和ROR2对于骨骼发育的影响及其通过WNT信号通路调节成骨细胞增殖及分化的生物学特点使得我们怀疑ROR2可能在骨肉瘤的发生发展过程中具有一定的作用,其可能促进了骨肉瘤的发生发展及恶性生物学行为。因此,ROR2可能成为骨肉瘤新的治疗靶点。针对ROR2和骨肉瘤关系的研究将为骨肉瘤的发病机制研究和治疗靶点选择提供一条全新的思路。
     第一部分:ROR2在骨肉瘤组织及细胞中的表达及意义
     目的:研究ROR2在骨肉瘤组织及细胞中的表达情况,探讨其表达的临床意义。
     方法:使用Western-bloting实验方法检测4例骨肉瘤和3例骨软骨瘤患者新鲜原发灶标本中ROR2表达情况;使用免疫组化方法检测55例骨肉瘤患者和15例骨软骨瘤患者原发灶标本中ROR2表达情况并结合患者临床资料了解其临床意义;使用RT-PCR实验方法检验SaoS-2骨肉瘤细胞中ROR2mRNA表达情况。
     结果:①通过免疫组织化学的方法检测55例骨肉瘤患者标本中有39例患者标本有ROR2阳性表达,其阳性表达率为70.91%,检测的15例骨软骨瘤患者标本有3例ROR2阳性表达,阳性表达率为20.00%,两者阳性表达率有显著性差异(x2=12.73 P<0.05)。②通过Western-bloting实验检测新鲜骨软骨瘤和新鲜骨肉瘤组织中ROR2蛋白表达的结果显示两者标本中ROR2蛋白表达有显著性差异(P<0.05)。③通过RT-PCR实验检测了SaoS-2骨肉瘤细胞株中ROR2基因表达情况,结果显示其内有ROR2基因表达。④检测了有或无转移的骨肉瘤患者肿瘤标本中ROR2表达的结果显示在有转移的患者标本中ROR2的阳性表达率为100.00%,而在无肿瘤转移患者标本中ROR2阳性表达率为61.91%,两者表达阳性率有显著性差异(X2=5.26P<0.05)。⑤检测Ennecking分期分别为I期、Ⅱ期、Ⅲ期的骨肉瘤患者肿瘤标本中ROR2表达的结果显示ROR2在骨肉瘤Enneking分期Ⅰ期表达阳性率为22.22%(2/9),Ⅱ期表达阳性率为72.73%(24/33),Ⅲ期表达阳性率为100.00%(13/13)。Ⅰ期与Ⅱ期间有显著性差异(X2=5.66 P<0.05),Ⅰ期与Ⅲ期间有显著性差异(x2=11.46P<0.05),而Ⅱ期与Ⅲ期间无显著性差异(X2=2.85 P>0.05)。
     结论:①ROR2基因和蛋白在骨肉瘤细胞及组织中有较强表达,而且其可能影响骨肉瘤的生物学行为。
     第二部分:小干扰RNA对骨肉瘤细胞株ROR2基因及蛋白表达水平的影响
     目的:研究小干扰RNA对骨肉瘤细胞株ROR2基因及蛋白表达水平的影响
     方法:使用化学合成法构建针对ROR2的小干扰RNA,通过脂质体法将其转染入骨肉瘤细胞株。使用RT-PCR和Western-bloting实验方法检验其对ROR2基因及蛋白表达水平的影响。
     结果:①通过测序和酶切证实成功构建了针对ROR2的小干扰RNA;②通过RT-PCR实验检测了干扰前后SaoS-2骨肉瘤细胞株中ROR2基因表达情况,转染后干扰组ROR2 mRNA的表达水平(0.19±0.02)明显低于阴性对照组(0.55±0.04)和空白组(0.58±0.04),干扰组和阴性对照组比较有显著性差异(t=13.71,P<0.05),干扰组和空白组比较有显著性差异(t=14.86,P<0.05),而空白组和阴性对照组之间无显著性差异(t=1.24,P>0.05)。③通过Western-bloting实验检测了干扰前后SaoS-2骨肉瘤细胞株中ROR2蛋白表达情况,转染后干扰组ROR2蛋白的表达水平(0.18±0.03)明显低于阴性对照组(0.66±0.04)和空白组(0.84±0.03),干扰组和阴性对照组比较有显著性差异(t=7.61,<0.05),干扰组和空白组比较有显著性差异(t=6.37,P<0.05P),而空白组和阴性对照组之间无显著性差异(t=0.31,P>0.05)。。
     结论:①成功地合成了ROR2 siRNA并将其转染入SaoS-2骨肉瘤细胞;②在国内首次发现ROR2 siRNA能下调SaoS-2骨肉瘤细胞ROR2基因和蛋白的表达水平。
     第三部分:ROR2对骨肉瘤细胞增殖及侵袭力的作用
     目的:研究ROR2对骨肉瘤细胞增殖及侵袭力的影响,证实其在骨肉瘤中的生物学作用
     方法:通过细胞流式检验、Brdu标记实验和transwell侵袭实验了解ROR2 RNA干扰后骨肉瘤细胞增殖和侵袭力的变化。
     结果:①细胞流式检测示RNAi后干扰组细胞中S期细胞所占百分比(12.40±4.85)明显低于阴性对照组(31.23±2.21)和空白组(26.50±2.07),干扰组和阴性对照组比较有显著性差异(t=6.12,P<0.05),干扰组和空白组比较有显著性差异(t=4.63,P<0.05),而空白组和阴性对照组之间无显著性差异(t=2.71,P>0.05)。RNAi后干扰组细胞中G1期细胞所占百分比(81.47±6.56)明显高于阴性对照组(57.87±4.65)和空白组(63.07±4.92),干扰组和阴性对照组比较有显著性差异(t=5.09,P<0.05),干扰组和空白组比较有显著性差异(t=3.86,P<0.05),而空白组和阴性对照组之间无显著性差异(t=1.32,P>0.05)。②Transwell侵袭实验示RNAi后干扰组侵袭细胞数(20.40±11.93)明显低于阴性对照组(37.80±6.83)和空白组(44.00±7.81),干扰组和阴性对照组比较有显著性差异(t=3.70,P<0.05),干扰组和空白组比较有显著性差异(t=2.83,P<0.05),而空白组和阴性对照组之间无显著性差异(t=1.34,P>0.05)。③Brdu标记实验结果示RNAi后干扰组标记指数(0.14±0.03)明显低于阴性对照组(0.32±0.02)和空白组(0.28±0.03),干扰组和阴性对照组比较有显著性差异(t=5.18,P<0.05),干扰组和空白组比较有显著性差异(t=6.70,P<0.05),而空白组和阴性对照组之间无显著性差异(t=2.34,P>0.05)。
     结论:在国内首次证实ROR2 RNAi下调ROR2表达可明显抑制SaoS-2骨肉瘤细胞的增值和侵袭能力,揭示ROR2对骨肉瘤的增值和侵袭等生物学行为有重要影响,其可能为骨肉瘤发病机制研究和特异性治疗提供新的思路和靶点。
Osteosarcoma is the most common osteogenis malignant tumor.It is characterized by production of both osterid and bone by malignant spindle cells.The incidence of the disease is approximately from 1/100000 to 0.1/100000 in the world every year.Osteosarcoma most commonly develops at sites of rapid bone turnover,such as the distal femur、proximal tibia and proximal humerus.The incidence of osteosarcoma peaks in the children and adolescents periods.The onset of osteosarcoma is without obvious clinical symptoms and it is highly malignant and early possible lung metastasis,so the result of osteosarcoma is big harmfulness and the patients have high mortality rate.Thus,many orthopedist want to get early diagnosis and precise treatment for the disease.
     ROR2 is receptor tyrosine kinase-like orphan receptor.It belongs to the receptor tyrosine kinase family.In humans,mutations with in the ROR2 gene are responsible for brachydactyly type B,characterized by hypoplasia/aplasia of distant phalanges,and for Robinow syndrome characterize by short staturt、limb bone shortening segmental defects of the spine,and a dysmorphic facial appearance. Mice lacking Ror2 exhibit dwarfism, short limbs and tails, facial abnormalities, ventricular septal defects, and respiratory dysfunction resulting in neonatal lethality.Thus,ROR2 plays importment role in development morphogenesis,in particular in skeletal development.
     Recently researchs show ROR2 is closely related to some tumorigenesis and demonstrate inhibitors of specific tyrosine kinases regulate motility、colomy formation and invasiveness of osteosarcoma cells.All of which are critical components of tumorigenesis and/or metastasis.So we consider that ROR2 maybe has relationship with tumorigenesis and development of osteosarcoma.
     Part one:Expression of ROR2 in osteosarcoma tissues and cells and its clinical significance
     Objective To investigate the expression and significance of ROR2 in human osteosarcomatous tissue and cells.
     Methods Western-bloting test was performed to detect the expression of ROR2 protein in fresh specimens of 4 osteosarcoma patients and 3 osteochondroma patient;Immunohistochemistry was performed to detect the expression of ROR2 protein in paraffin specimens of 55 osteosarcoma patients and 15 osteochondroma patients;RT-PCR test was performed to detect the expression of ROR2 mRNA in SaoS-2 osteosarcoma cells.
     Results①39 specimens showed positive staining of ROR2 in 55 osteosarcoma cases and the positive rate is 70.91%.3 specimens showed positive staining of ROR2 in 15 osteochondroma cases and the positive rate is 20.00%.The difference of positive rate was statistically significant.②The difference of ROR2 protein in Western-bloting test results was statistically significant.③The results of RT-PCR showed expression of ROR2 mRNA in SaoS-2 osteosarcoma cells.④The positive rate of ROR2 in the osteosarcoma patients with metastasis is 100.00%, however,the positive rate of ROR2 in the osteosarcoma patients without metastasis is 61.91%.The difference was significant.⑤The positive rate of ROR2 in the osteosarcoma patients on the Enneking I stage is 22.22%,that is 72.73% on the EnnekingⅡstage and 100.00% on the EnnekingⅢstage.The difference of the positive rate of ROR2 between EnnekingⅠstage and EnnekingⅡstage was significant,that between EnnekingⅠstage and EnnekingⅢstage was significant but between EnnekingⅡstage and EnnekingⅢstage was not significant.
     Conclusion①The expression of ROR2 protein and gene in osteosarcoma tissues and cells is high. It may effect the biology behavior of the osteosarcoma.
     Part two:The effects of small interfering RNA on ROR2 gene and protein expression in osteosarcoma cell subline
     Objective To explore the effects of small interfering RNA on ROR2 gene and protein expression in osteosarcoma cell subline.
     Methods We designed and chemically synthesized sequence-specific siRNA targeting ROR2 gene and transfected siRNA into osteosarcomatous cell subline by using LipofectamineTM 2000, detected the change of ROR2 mRNA expression by RT-PCR and the change of ROR2 protein expression by Western-bloting.
     Results①ROR2 siRNA was synthesized successfully that confirmed by digestion and sequencing;②The RT-PCR test demonstrated the expression of ROR2 mRNA after transfection (0.19±0.02) was lower than the negative control group(0.55±0.04) and blank group(0.58±0.04), the differences were significant(P<0.05);③The Western-bloting test demonstrated the expression of ROR2 protein after transfection (0.18±0.03) was lower than the negative control group (0.66±0.04) and blank group (0.84±0.03), the differences were significant (P<0.05).
     Conclusions (1) The ROR2 siRNA was successfully synthesized and transfected into osteosarcomatous cell subline; (2)The ROR2 siRNA could successfully inhibit the expression of ROR2 mRNA and ROR2 protein.
     Part three:The effects of ROR2 on proliferation and invasion of osteosarcoma cell subline
     Objective To investigate the effccts of ROR2on proliferation and invasion of osteosarcoma cell and demonstrate the function of ROR2 on osteosarcoma cell biology behavior
     Methods We detected the change of proliferation and invasion of osteosarcoma cell by flow cytomety、Brdu-labeled test and Transwell test after taking effect of ROR2 RNAi on osteosarcoma cell
     Results①The flow cytomety demonstrated the cell proportion in S phase of transfection group (12.40±4.85) was lower than the negative control group(31.23±2.21)and blank group(26.50±2.07), the differences were significant (P<0.05),and the cell proportion in G1 phase of transfection group (81.47±6.65) was higher than the negative control group (57.87±4.65) and blank group (63.07±5.03), the differences were significant (P<0.05);②The Transwell test demonstrated the amount of exosomatic invasive osteosarcoma cell in transfection group(20.40±11.93) was lower than that of negative control group(37.80±6.83)and blank group(44.00±7.81), the difference was significant(p<0.05);③The Brdu-labeled test demonstrate the Brdu-labeled positive index in transfection group(0.14±0.03) was lower than that of negative control group(0.32±0.02)and blank group(0.28±0.03), the difference was significant(P<0.05).
     Conclusion ROR2 is necessary for hman osteosarcoma cell proliferation and invasion,It is a significant role in the biology behavior of osteosarcoma and a potential target for mechanism of osteosarcoma pathogenesis and osteosarcoma specific treatment probably.
引文
[1]Al-Shawi R, Ashton SV, Underwood C, et al. Expression of the Rorl and Ror2 receptor tyrosine kinase genes during mouse development[J]. Dev Genes Evol,2001:211:161-171.
    [2]Julia Billiard, Deana S. Way, Laura M,et al. The Orphan Receptor Tyrosine Kinase Ror2 Modulates Canonical Wnt Signaling in Osteoblastic Cells[J].Molecular Endrocrinology,2004:19:90-101.
    [3]Yan Liu, Ramesh A. Bhat, Laura M.et al. The Orphan Receptor Tyrosine Kinase Ror2 Promotes Osteoblast Differentiation and Enhances ex Vivo Bone Formation[J]. Molecular Endrocrinology,2006:21:376-387.
    [4]MacKeigan JP, Robert A, Shoichi Fukayama, et al. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance[J]. Nat Cell Biol,2005:7:591-600
    [5]Kobayashi M, Shibuya Y, Takeuchi J,et al.Ror2 expression in squamous cell carcinoma and epithelial dysplasia of the oral cavity[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2009:107:398-406.
    [6]Wright TM,Brannon AR,Gordan JD,et al.ROR2,a developmentally regulated kinase,promotes tumor growth potential in renal cellcarcinoma [J].Oncogene,2009:28:2513-2523.
    [7]Daino K, Ugolin N, Altmeyer-Morel S,et al.Gene expression profiling of alpha-radiation-induced rat osteosarcomas:identification of dysregulated genes involved in radiation-induced tumorigenesis of bone[J]. Int JCancer,2009; 125:612-620.
    [8]Leow PC, Tian Q, Ong ZY,et al. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/beta-catenin antagonists against human osteosarcoma cells.Invest New Drugs2009:DOI:10.1007/s10637-009-9311-z.
    [9]Messerschmitt PJ, Rettew AN,Brookover RE,Specific tyrosine kinase inhibitors regulate human osteosarcoma cells in vitor[J].Clin Orthop Relat Res,2008-466:2168-2175.
    [10]Bresalier RS,HO SB,Schoeppner HL,et al.Enhanced sialylation of mucin-associated carbohydrate structure in human colon cancermetastasis [J].Gastroenterology,1996:110:1354-1367.
    [11]Carrle D, Bielack SS:Current strategies of chemotherapy in osteosarcoma[J]. Int Orthop,2006;30:445-451.
    [12]Bielack SS, Kempf-Bielack B, Delling G,et al:Prognostic factors in high-grade osteosarcoma of the extremities or trunk:An analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols[J]. J Clin Oncol 2002;20:776-790.
    [13]Enomoto M, Hayakawa S, Itsukushima S,et al. Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling. Submitted [J].Oncogene,2009:28:3197-3208.
    [14]Kager L, Zoubek A, Potschger U, et al:Primary metastatic osteosarcoma:Presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols[J]. J Clin Oncol, 2003;21:2011-2018.
    [15]Kager L, Zoubek A, Kastner U, et al:Skip metastases in osteosarcoma: Experience of the Cooperative Osteosarcoma Study Group [J]. J Clin Oncol, 2006;24:1535-1541.
    [16]Coyle RC, Latimer A, Jessen JR. Membrane-type 1 matrix metallopro-teinase regulates cell migration during zebrafish gastrulation: evidence for an interaction with non-canonical Wnt signaling[J]. Exp Cell Res,2008:314:2150-2162.
    [17]Brummelkamp T R, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science,2002,296:550-553.
    [18]Lipardi C,Wei Q,Paterson B M. RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell,2001,107:297-307.
    [19]Dorsett Y, Tuschl T. SiRNAs applications in functional genomics and potential as therapeutics[J].Nat Rev Drug Discov,2004,3:318-329.
    [20]Behml C,Bendig M,McCarter J,et al.RNAi-based discovery and validation of new drugmtargets in filarial nematodes[J].Trends in Parasitology,2005:21:97-105.
    [21]Jorgenson R.A ltered gene expression in plants due to trans interactions between homologous gene[J].Trends Biotechnol,1990:8:340-344.
    [22]Guo S,Kemphues KJ.Par-l,a gene required for establishing polarity in C elegans enbryos encode a putative Ser/Thr kinase that is asymmetrically distributed[J].Cell,1995:81:611-620
    [23]Fire A,Xu S,Montgomery MK,et al.Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans[J].Nature,1998:391:806-811.
    [24]马鹏鹏,薛社普,韩代书.RNA干扰技术的原理与应用[J].中国组织化学与细胞化学杂志,2003,12:201-207.
    [25]Leung RK,Whittaker PA.RNA interference from gene silencing to gene-specific therapeutics[J].Phamacol Ther,2005:107:222-239.
    [26]Behlke MA.Progress towards in vivo use of siRNA[J].MolTher,2006:13:644-670.
    [27]Shuey D,McCallus D,Giordano T.RNAi:gene-silencing in therapeutic intervention[J].DDT VOL,2002:7:1040-1049.
    [28]Jone S,Souza P,Lindsa M.siRNA for gene silencing:a route to drug target discovery[J].Current Opinion in Pharmacology,2004:4:522-529.
    [29]Senechal Y,Kelly P,John F,et al.siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain[J].Neurochemistry,2007:102:1928-1939.
    [30]Phillips RJ, Burdick MD, Lutz M,et al.The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in nonsmall cell lung cancer metastases[J]. Am J Respir Crit Care Med,2003, 167(12):1676-1686.
    [31]丁凡,邵增务.骨肉瘤基因治疗研究进展[J].中国矫形外科杂志.2008:16:1326-1328.
    [32]Hughes DP, Thomas DG, Giordano TJ,et al. Essential erbB family phosphorylation in osteosarcoma as a target for CI-1033 inhibition[J]. Pediatr Blood Cancer,2006;46:614-623.
    [33]van Bokhoven, H,Celli J,Kayserili H. et al. Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome[J]. Nat Genet,2000:25:423-426
    [34]Afzal A R,Rajab A,Fenske C D. et al. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2[J]. Nat Genet,2000:25:419-422
    [35]Kazuhito M,Chizu T,Kensuke O,et al.Orphan receptor tyrosine kinase ROR2 as a potential therapeutic target for osteosarcoma[J].Cancer Sci,2009:100:1227-1233.
    [36]Fletcher CD, Unni KK, Mertens F, eds:World Health Organization Classification of Tumours:Pathology and Genetics of Tumours of Soft Tissue and Bone[M]. Lyon, France, IARC Press,2002, pp 227-232,264-285.
    [37]Hayden JB, Hoang BH:Osteosarcoma:Basic science and clinical implications[J].Orthop Clin North Am,2006;37:1-7.
    [38]Ying C,Zhi C Z,Benoit de C,et al.Osterix,a trumscription factor for osteoblaste differentiation mediates antitumor activity in murine osteosarcoma [J].Cancer Res,2005:65:1124-1129.
    [39]Eliseev RA,Dong YF,Sampson E,et al.Runx2 mediated activation of the Bax gene increases osteosarcoma cell sensitivity to apoptosis[J].Oncogene,2008,Jan 28[Epub ahead of print].
    [40]Manara MC,Bernard G,Lollini PL,et al.CD99 acts as an oncosuppressor in osteosarcoma[J].Mol Biol Cell,2006:17:1910-1918.
    [41]Gorlick R, Anderson P, Andrulis I, et al. Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary[J]. Clin Cancer Res,2003;9:5442-53.
    [42]Feugeas O, Guriec N, Babin-Boilletot A, et al. Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma[J]. J Clin Oncol,1996; 14:467-72.
    [43]Haydon RC, Deyrup A, Ishikawa A,et al. Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma[J].Int Cancer,2002; 102:338-342.
    [44]Iwaya K, Ogawa H, Kuroda M,et al.Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis [J]. Clin Exp Metastasis,2003;20:525-529.
    [45]Nomi M, Oishi I, Kani S, et al. Loss of mRorl enhances the heart and skeletal abnormalities in mRor2-deficient mice:redundant and pleiotropic functions of mRorl and mRor2 receptor tyrosine kinases[J]. Mol Cell Biol,2001:21,8329-8335
    [46]Schwabe G C,Trepczik B,Suring K. et al. () Ror2 knockout mouse as a model for the developmental pathology of autosomal recessive Robinow syndrome[J].Dev. Dyn,2004:229,400-410
    [47]Raz R, Stricker S, Gazzerro E, et al. The mutation ROR2W749X, linked to human BDB,is a recessive mutation in the mouse, causing brachydactyly, mediating patterning of joints and modeling recessive Robinow syndrome[J].Development,2008:135,1713-1723
    [48]Takeuchi S. Mouse ROR2 receptor tyrosine kinase is required for the heart development and limb formation[J].Genes Cell,2000:5:71-78
    [49]Wilson C, Goberdhan DC, Steller H..Dror, a potential neurotrophic receptor gene, encodes a Drosophila homolog of the vertebrate Ror family of Trk-related receptor tyrosine kinases[J]. Proc Natl Acad Sci U S A,1993:90:7109-7113.
    [50]Oishi I, Sugiyama S, Liu ZJ,et al.. A novel Drosophila receptor tyrosine kinase expressed specifically in the nervous system. Unique structural features and implication in developmental signaling[J]. J Biol Chem, 1997:272:11916-11923.
    [51]Forrester WC, Dell M, Perens E,et al. A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division[J]. Nature,1999: 400:881-885.
    [52]Koga M, Take-uchi M, Tameishi T, Ohshima Y.Control of DAF-7 TGF-(alpha) expression and neuronal process development by a receptor tyrosine kinase KIN-8 in Caenorhabditis elegans[J].Development 1999:126:5387-5398.
    [53]Takeuchi S, Takeda K, Oishi I,et al. Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation[J]. Genes Cells, 2000:5:71-78.
    [54]Paganoni S, Ferreira A.Expression and subcellular localization of Ror tyrosine kinase receptors are developmentally regulated in cultured hippocampal neurons[J]. JNeurosc Res,2003:73:429-440.
    [55]Ermakov S,Malkin I,Keter M. et al. Family-based association study of ROR2 polymorphisms with an array of radiographic hand bone strength phenotypes. Osteoporos[J]. Int,2007:18,1683-1692
    [56]Iozzo RV, Eichstetter I, Danielson KGAberrant expression of the growth factor Wnt-5A in human malignancy [J]. Cancer Res,1995:55: 3495-3499.
    [57]Weeraratna AT, Jiang Y, Hostetter G,et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma[J]. Cancer Cell,2002:1:279-288.
    [58]Kurayoshi M, Oue N, Yamamoto H, et al. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion[J]. Cancer Res,2006:66:10439-10448.
    [59]Paganoni S, Ferreira A. Neurite extension in central neurons:a novel role for the receptor tyrosine kinases Rorl and Ror2[J]. J Cell Sci, 2005:118,433-446
    [60]Yamamoto H, Yoo SK, Nishita M, et al. () Wnt5a modulates glycogen synthase kinase 3 to induce phosphorylation of receptor tyrosine kinase Ror2[J]. Genes Cells,2007:12,1215-1223
    [61]Nishita M, Yoo SK, Nomachi A,et al. Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration[J]. J Cell Biol,2006:175:555-562.
    [62]Nomachi A, Nishita M, Inaba D,et al. Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase by means of actin-binding protein filamin A[J].J Biol Chem.2008: 283:27973-27981.
    [63]He F, Xiong W, Yu X,et al. Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development[J]. Development,2008:135:3871-3879.
    [1]Schlessinger J. Cell signaling by receptor tyrosine kinases[J]. Cell 2000:103:211-225.
    [2](8,1) Matsuda, T. Nomi M, Ikeya M, et al. Expression of the receptor tyrosine kinase genes, Rorl and Ror2, during mouse development [J]. Mech Dev. 2001:105,153-156
    [3]McKay SE, Hislop J, Scott D.Aplysia ror forms clusters on the urface of identified euroendocrine cells[J]. Mol Cell Neurosci 2001:17:821-841.
    [4]Rodriguez-Niedenfuhr M, Prols F, Christ B. Expression and regulation of ROR-1 during early avian limb development[J]. Anat Embryol (Berl) 2004: 207:495-502.
    [5]Katoh M. Comparative genomics on ROR1 and ROR2 orthologs[J]. Oncol Rep 2005:14:1381-1384.
    [6]Rehn M, Pihlajaniemi T, Hofmann K, et al. The frizzled motif:in how many different protein families does it occur[J]? Trends Biochem Sci 1998: 23:415-417.
    [7]Saldanha J, Singh J, Mahadevan D.Identification of a Frizzled-like cysteine rich domain in the extracellular region of developmental receptor tyrosine kinases[J]. Protein Sci 1998:7:1632-1635.
    [8]Moeller C, Swindell EC, Kispert A,et al. Carboxypeptidase Z (CPZ) modulates Wnt signaling and regulates the development of skeletal elements in the chicken[J]. Development 2003:130:5103-5111.
    [9]Wang L, Shao YY, Ballock RT. Carboxypeptidase Z (CPZ) links thyroid hormone and Wnt signaling pathways in growth plate chondrocytes. J Bone Miner Res 2008 [Epub ahead of print].
    [10]Nakamura T, Aoki S, Kitajima K, et al. Molecular cloning and characterization of Kremen,a novel kringle-containing transmembrane protein[J]. Biochim Biophys Acta 2001:1518:63-72.
    [11]Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome[J]. Oncogene 2000:19:5548-5557.
    [12]Green JL, Kuntz SG, Sternberg PW. Ror receptor tyrosine kinases:or phans no more[J]. Trends Cell Biol 2008:18:536-544.
    [13]Masiakowski, P. Carroll, R.D. A novel family of cell surface receptors with tyrosine kinase-like domain[J]. J Biol Chem.1992:267,26181-26190
    [14]Yoda A, Oishi I, Minami Y. Expression and function of the Ror-family receptor tyrosine kinases during development:lessons from genetic analyses of nematodes, mice, and humans[J]. J Recept Signal Transduct Res 2003; 23:1-15.
    [15]Reddy, U.R, Phatak S, Pleasure D.et al. Human neural tissues express a truncated Rorl receptor tyrosine kinase, lacking both extracellular and transmembrane domains [J]. Oncogene.1996:13,1555-1559
    [16]Oishi, I. Takeuchi S, Hashimoto R et al. Spatio-temporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system[J]. Genes Cells.1999:4,41-56
    [17]Sossin, W.S. Tracing the evolution and function of the Trk superfamily of receptor tyrosine kinases[J]. Brain Behav Evol.2006:68,145-156
    [18]Roszmusz E, Klemm F, Gavin BJ, et al. Localization of disulfide bonds in the frizzled module of Rorl receptor tyrosine kinase[J]. J Biol Chem 2001:276, 18485-18490
    [19]Xu, Y.K. Nusse, R. The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases[J]. Curr Biol. 1998:8, R405-R406
    [20]Logan C Y, Nusse R. The Wnt signaling pathway in development and disease. Annu[J]. Rev Cell Dev Biol.2004:20,781-810
    [21]Katoh M. WNT and FGF gene clusters[J]. Int J Oncol 2002;21:1269-1273.
    [22]Bhanot P, Brink M, Samos CH, et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor[J]. Nature 1996;382:225-230.
    [23]Pinson KI, Brennan J, Monkley S, et al. An LDL-receptor-related protein mediates Wnt signalling in mice[J]. Nature 2000;407:535-538.
    [24]Price MA. CKI, there's more than one:casein kinase Ⅰ family members in Wnt and Hedgehog signaling[J]. Genes Dev 2006;20:399-410.
    [25]Kramps T, Peter O, Brunner E, et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear h-catenin-TCF complex[J]. Cell 2002; 109:47-60.
    [26]Katoh M. Identification and characterization of human BCL9L gene and mouse Bcl91 gene in silico[J]. Int J Mol Med 2003;12:643—9.
    [27]Oishi I, Suzuki H, Onishi N, et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway[J]. Genes Cells 2003;8: 645-654.
    [28]Lu X, Borchers AG, Jolicoeur C, et al. PTK7/CCK-4 is a novel regulator of planar cell polarity in verte-brates[J]. Nature 2004;430:93-8.
    [29]Lu W,Yamamoto V, Ortega B, et al. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 2004; 119:97-108.
    [30]Boutros M, Paricio N, Strutt DI, et al. Dishevelled activates JNK and discriminates between JNK path-ways in planar polarity and wingless signaling[J]. Cell 1998;94:109-18.
    [31]Tao W, Pennica D, Xu L, et al.Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1[J].Genes Dev 2001;15:1796—807.
    [32]Katoh M. WNT/PCP signaling pathway and human cancer[J]. Oncol Rep 2005;14:1583—15888.
    [33]Stricker S, Verhey van Wijk N, Witte F,et al.Cloning and expression pattern of chicken Ror2 and functional characterization of truncating mutations in Brachydactyly type B and Robinow syndrome[J]. Dev Dyn 2006: 235:3456-3465.
    [34]van Bokhoven, H,Celli J,Kayserili H. et al. Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome[J]. Nat Genet.2000:25,423-426
    [35]Afzal A R,Rajab A,Fenske C D. et al. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2[J]. Nat Genet.2000:25,419-422
    [36]Ermakov S,Malkin I,Keter M. et al. Family-based association study of ROR2 polymorphisms with an array of radiographic hand bone strength phenotypes. Osteoporos[J]. Int.2007:18,1683-1692
    [37]Nomi M, Oishi I, Kani S, et al. Loss of mRorl enhances the heart and skeletal abnormalities in mRor2-deficient mice:redundant and pleiotropic functions of mRorl and mRor2 receptor tyrosine kinases[J]. Mol Cell Biol.2001:21,8329-8335
    [38]Schwabe G C,Trepczik B,Suring K. et al. () Ror2 knockout mouse as a model for the developmental pathology of autosomal recessive Robinow syndrome[J].Dev Dyn.2004:229,400-410
    [39]Raz R, Stricker S, Gazzerro E, et al. The mutation ROR2W749X, linked to human BDB,is a recessive mutation in the mouse, causing brachydactyly, mediating patterning of joints and modeling recessive Robinow syndrome[J].Development.2008:135,1713-1723
    [40]Takeuchi S. Mouse ROR2 receptor tyrosine kinase is required for the heart development and limb formation[J].Genes Cell.2000:5:71-78
    [41]Baskar, S, Kwong KY, Hofer T. et al. Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia[J]. Clin Cancer Res.2008:14,396-404
    [42]Fukuda T,Chen L, Endo T. et al. Antisera induced by infusions of autologous Ad-CD 154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a[J]. Proc Natl Acad Sci U S A.2008:105,3047-3052
    [43]Daneshmanesh AH, Mikaelsson E, Jeddi-Tehrani M,et al. Rorl, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and mayserve as a putative target for therapy[J]. Int J Cancer.2008:123:1190-1195.
    [44]Shabani M, Asgarian-Omran H, Vossough P. Expression profile of orphan receptor tyrosine kinase (ROR1)and Wilms' tumor gene 1 (WT1) in different subsets of B-cell acute lymphoblastic leukemia[J]. Leuk Lymphoma.2008:49:1360-1367.
    [45]MacKeigan JP, Robert A, Shoichi Fukayama, et al. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance[J]. Nat Cell Biol.2005:7:591-600
    [46]Salinas PC, Zou Y. Wnt signaling in neural circuit assembly[J]. Annu Rev Neursci.2008:31:339-358.
    [47]Wilson C, Goberdhan DC, Steller H..Dror, a potential neurotrophic receptor gene, encodes a Drosophila homolog of the vertebrate Ror family of Trk-related receptor tyrosine kinases[J]. Proc Natl Acad Sci U S A.1993:90:7109-7113.
    [48]Oishi I, Sugiyama S, Liu ZJ,et al.. A novel Drosophila receptor tyrosine kinase expressed specifically in the nervous system. Unique structural features and implication in developmental signaling[J]. J Biol Chem 1997:272:11916-11923.
    [49]Koga M, Take-uchi M, Tameishi T, Ohshima Y. Control of DAF-7 TGF-(alpha) expression and neuronal process development by a receptor tyrosine kinase KIN-8 in Caenorhabditis elegans[J].Development 1999:126:5387-5398.
    [50]Takeuchi S, Takeda K, Oishi I,et al. Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation[J]. Genes Cells.2000:5:71-78.
    [51]Paganoni S, Ferreira A.Expression and subcellular localization of Ror tyrosine kinase receptors are developmentally regulated in cultured hippocampal neurons[J]. J Neurosci Res.2003:73:429-440.
    [52]Al-Shawi R,Ashton SV,Underwood C. et al. Expression of the Rorl and Ror2 receptor tyrosine kinase genes during mouse development[J]. Dev Genes Evol. 2001:211,161-171
    [53]Zinovyeva A Y.Yamamoto Y,Sawa H. et al. Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development[J]. Genetics.2008:179,1357-1371
    [54]Forrester WC, Garriga G. Genes necessary for C. elegans cell and growth cone migrations [J]. Development.1997:124:1831-1843.
    [55]Francis MM, Evans SP, Jensen M, et al. The Ror receptor tyrosine kinase CAM-1 is required for ACR-16-mediated synaptic transmission at the C.elegans neuromuscular junction [J]. Neuron.2005:46:581-594.
    [56]Salinas PC, Zou Y. Wnt signaling in neural circuit assembly[J]. Annu Rev Neurosci 2008:31:339-358.
    [57]Kawauchi T, Chihama K, Nabeshima Y,et al.The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration[J]. EMBO J.2003:22:4190-4201.
    [58]Eom DS, Choi WS, Ji S,et al. Activation of c-Jun N-terminal ki-nase is required for neurite outgrowth of dopaminergic neuronal cells[J]. Neuroreport.2005:16:823-828.
    [59]Rosso SB, Sussman D, Wynshaw-Boris A,et al. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development[J]. Nat Neurosci. 2005:8:34-42.
    [60]Oliva AA Jr, Atkins CM, Copenagle L,et al.. Activated c-Jun N-ter-minal kinase is required for axon formation[J]. J Neurosci.2006:26: 9462-9470.
    [61]Eminel S, Roemer L, Waetzig V,et al.. c-Jun N-terminal kinases trigger both degeneration and neurite outgrowth in primary hippocampal and cortical neurons[J]. J Neurochem.2008:104:957-969.
    [62]Vivancos V, Chen P, Spassky N,et al. Wnt activity guides facial branchiomotor neuron migration, and involves the PCP pathway and JNK and ROCK kinases[M]. Neural Dev.2009:4:7.
    [63]Forrester WC, Dell M, Perens E, et al. A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division[J]. Nature 1999:400, 881-885
    [64]Forrester W C,Kim C,Garriga G. et al. The Caenorhabditis elegans Ror RTK CAM-1 inhibits EGL-20/Wnt signaling in cell migration[J]. Genetics 2004:168,1951-1962
    [65]Kim C, Forrester W C. Functional analysis of the domains of the C. elegans Ror receptor tyrosine kinase CAM-1 [J]. Dev Biol 2003:264,376-390
    [66]Green JL, Inoue T, Sternberg PW. The C. elegans ROR receptor tyrosine kinase,CAM-1,non-autonomously inhibits the Wnt pathway[J]. Development 2007:134,4053-4062
    [67]Billiard J,Way DS,Seestaller-Wehr LM. et al. The orphan receptor tyrosine kinase Ror2 modulates canonical Wnt signaling in osteoblastic cells[J]. Mol Endocrinol.2005:19,90-101
    [68]Nomachi A, Nishita M, Inaba D,et al. Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase by means of actin-binding protein filamin A[J].J Biol Chem.2008:283:27973-27981.
    [69]Nishita M, Yoo SK, Nomachi A,et al. Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration [J]. J Cell Biol.2006:175:555-562.
    [70]Hikasa H,Shibata M,Hiratsni I. et al. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling[J]. Development 2002:129,5227-5239
    [71]Yamaguchi TP,Bradley A,Mcmahon AP. et al. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo [J]. Development 1999:126,1211-1223
    [72]Green JL, Kuntz SG, Sternberg PW. Ror receptor tyrosine kinases:orphans no more[J]. Trends Cell Biol.2008:18:536-544.
    [73]Li C, Chen H, Hu L,et al.Ror2 modulates the canonical Wnt signaling in lung epithelial cells through cooperation with Fzd2[M].BMC Mol Biol.2008:9:11.
    [74]De Calisto J, Araya C, Marchant L,et al.Essential role of non-canonical Wnt signalling in neural crest migration[J]. Development.2005:132:2587-2597.
    [75]Hikasa H, Shibata M, Hiratani I,et al.. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling[J]. Development.2002:129:5227-5239.
    [76]Lee FS, LaneTF, Kuo A, et al. Insertional mutagenesis identifies a member of the Wnt gene family as a candidate oncogene in the mammary epithelium of int-2/Fgf-3 transgenic mice[J]. Proc Natl Acad Sci U. SA 1995;92:2268—2272.
    [77]Katoh M. Cross-talk of WNT and FGF signaling pathways at GSK3h to regulate h-catenin and SNAIL signaling cascades[J]. Cancer Biol Ther.2006;5: 1059-1064.
    [78]Chen K, Fallen S, Abaan HO, et al. Wnt10b induces chemotaxis of osteosarcoma and correlates with reduced survival[J]. Pediatr Blood Cancer.2008;51:349-355.
    [79]Guo Y, Rubin EM, Xie J,et al. Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model [J]. Clin Orthop Relat Res. 2008;466:2039-2045.
    [80]Guo Y, Zi X, Koontz Z, et al. Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells[J]. J Orthop Res.2007;25:964-971.
    [81]Daino K, Ugolin N, Altmeyer-Morel S,et al.Gene expression profiling of alpha-radiation-induced rat osteosarcomas:identification of dysregulated genes involved in radiation-induced tumorigenesis of bone[J]. Int J Cancer. 2009; 125:612-620.
    [82]Leow PC, Tian Q, Ong ZY,et al. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/beta-catenin antagonists against human osteosarcoma cells. Invest New Drugs.2009;DOI:10.1007/s 10637-009-9311-z.
    [83]Blanc E, Roux GL, Benard J,et al. Low expression of Wnt-5a gene is associated with high-risk neuroblastoma[J]. Oncogene.2005:24:1277-1283.
    [84]Dejmek J, Dejmek A, Safholm A,et al. Wnt-5a protein expression in primary dukes B colon cancers identifies a subgroup of patients with good prognosis[J]. Cancer Res.2005:65:9142-9146.
    [85]Kurayoshi M, Oue N, Yamamoto H,et al.Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion[J]. Cancer Res.2006:66:10439-10448.
    [86]Pukrop T, Klemm F, Hagemann T,et al.. Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines[J]. Proc Natl Acad Sci U S A.2006:103:5454-5459.
    [87]Kobayashi M, Shibuya Y, Takeuchi J,et al.Ror2 expression in squamous cell carcinoma and epithelial dysplasia of the oral cavity [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2009:107:398-406.
    [88]Wright TM,Brannon AR,Gordan JD,et al.ROR2,a developmentally regulated kinase,promotes tumor growth potential in renal cell carcinoma[J]. Oncogene. 2009:28:2513-2523.
    [89]Enomoto M, Hayakawa S, Itsukushima S,et al. Autonomous regulation of osteosarcoma cell invasiveness b Wnt5a/Ror2 signaling. submitted[J]. Oncogene.2009:28:3197-3208.
    [90]Molenaar M, Swindell EC, Studer M, et al. XTcf-3 transcription factor mediates b-catenin-induced axis formation in Xenopus embryos[J]. Cell 1996:86,391-399
    [91]van de Wetering M,Cavallo R,Dooijes D. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF[J].Cell 1997:88,789-799
    [92]Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits b-catenin-TCF signaling depending on receptor context. PLoS Biol.2006:4, c115
    [93]Lin Y,Bodine PV,Billiard J. ROR2,a novel modulator of osteogenesis[J]. J Musculoskelet Neuronal Interact.2007:7:323-324.
    [94]Liu Y, Ross JF, Bodine PV, et al. Homo-dimerization of Ror2 tyrosine kinase receptor induces 14-3-3 b phosphorylation and promotes osteoblast differentiation and bone formation [J]. Mol Endocrinol.2007:21,3050-3061
    [95]Liu Y.Ruban B,Bodine PV, et al. Wnt5a induces homodimerization and activation of Ror2 receptor tyrosine kinase[J]. J Cell Biochem.2008:105, 497-502
    [96]Liu Y.Bhat RA,Seestaller-Wehr LM, et al. The orphan receptor tyrosine kinase Ror2 promotes osteoblast differentiation and enhances ex vivo bone formation [J]. Mol Endocrinol.2007:21,376-387
    [97]Akbarzadeh S,Wheldon LM,Sweet SM, et al. The deleted in brachydactyly B domain of ROR2 is required for receptor activation by recruitment of Src. PLoS ONE.2008:3, e1873
    [98]Coyle RC, Latimer A, Jessen JR. Membrane-type 1 matrix metallopro-teinase regulates cell migration during zebrafish gastrulation: evidence for an interaction with non-canonical Wnt signaling[J]. Exp Cell Res.2008:314:2150-2162.
    [99]Matsuda T,Suzuki H,Oishi I, et al. The receptor tyrosine kinase Ror2 associates with the melanoma-associated antigen (MAGE) family protein Dlxin-1 and regulates its intracellular distribution[J]. J Biol Chem.2003:278, 29057-29064
    [100]Kani S, Oishi I, Yamamoto H, et al. The receptor tyrosine kinase Ror2 associates with and is activated by casein kinase Ie[J]. J Biol Chem.2004:279, 50102-50109
    [101]Zhang H,Hu G,Wang H, et al.Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism[J]. Mol Cell Biol. 1997:17,2920-2932
    [102]Lehmann K,Seemann P,Silan F, et al. A new subtype of brachydactyly type B caused by point mutations in the bone morphogenetic protein antagonist NOGGIN[J]. Am J Hum Genet.2007:81,388-396
    [103]Seifert JR,Mlodzik M. Frizzled/PCP signalling:a conserved mechanism regulating cell polarity and directed motility[J]. Nat Rev Genet 2007:8, 126-138
    [104]Schambony A, Wedlich D.Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway [J]. Dev Cell 2007:12, 779-792
    [105]Bryja V, Schulte G, Rawal N,et al. Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism[J]. J Cell Sci.2007:120:586-595.
    [106]Yamamoto, S, Nishimura O, Misaki K, et al.Cthrcl selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex[J]. Dev Cell.2008:15:23-36
    [107]Yamamoto H, Yoo SK, Nishita M, et al. () Wnt5a modulates glycogen synthase kinase 3 to induce phosphorylation of receptor tyrosine kinase Ror2[J]. Genes Cells 2007:12,1215-1223
    [108]Schlessinger K,McManus EJ, Hall A.Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity[J]. J Cell Biol.2007:178:355-361.
    [109]He F, Xiong W, Yu X,et al. Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development[J]. Development.2008:135:3871-3879.
    [110]Paganoni S, Ferreira A. Neurite extension in central neurons:a novel role for the receptor tyrosine kinases Rorl and Ror2[J]. J Cell Sci.2005:118,433-446
    [111]Iozzo RV, Eichstetter I, Danielson KG Aberrant expression of the growth factor Wnt-5A in human malignancy [J]. Cancer Res 1995: 55:3495-3499.
    [112]Weeraratna AT, Jiang Y, Hostetter G,et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma[J]. Cancer Cell 2002:1:279-288.
    [113]Kurayoshi M, Oue N, Yamamoto H, et al. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion[J]. Cancer Res 2006:66:10439-10448.
    [1]Carrle D, Bielack SS:Current strategies of chemotherapy in osteosarcoma[J]. Int Orthop 2006;30:445-451.
    [2]Bielack SS, Kempf-Bielack B, Delling G,et al:Prognostic factors in high-grade osteosarcoma of the extremities or trunk:An analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols[J]. J Clin Oncol 2002;20:776-790.
    [3]Kager L, Zoubek A, Potschger U, et al:Primary metastatic osteosarcoma:Presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols[J]. J Clin Oncol 2003;21:2011-2018.
    [4]Kager L, Zoubek A, Kastner U, et al:Skip metastases in osteosarcoma: Experience of the Cooperative Osteosarcoma Study Group [J]. J Clin Oncol 2006;24:1535-1541.
    [5]Fletcher CD, Unni KK, Mertens F, eds:World Health Organization Classification of Tumours:Pathology and Genetics of Tumours of Soft Tissue and Bone[M]. Lyon, France, IARC Press,2002, pp 227-232,264-285.
    [6]Hayden JB, Hoang BH:Osteosarcoma:Basic science and clinical implications.Orthop Clin North Am 2006;37:1-7.
    [7]Ying C,Zhi C Z,Benoit de C,et al.Osterix,a trumscription factor for osteoblaste differentiation mediates antitumor activity in murine osteosarcoma [J].Cancer Res,2005:65:1124-1129.
    [8]Eliseev RA,Dong YF,Sampson E,et al.Runx2 mediated activation of the Bax gene increases osteosarcoma cell sensitivity to apoptosis[J].Oncogene,2008,Jan 28[Epub ahead of print].
    [9]Manara MC,Bernard G,Lollini PL,et al.CD99 acts as an oncosuppressor in osteosarcoma[J].Mol Biol Cell.2006:17:1910-1918.
    [10]Gorlick R, Anderson P, Andrulis I, et al. Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary[J]. Clin Cancer Res 2003;9:5442-53.
    [11]Feugeas O, Guriec N, Babin-Boilletot A, et al. Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma[J]. J Clin Oncol 1996; 14:467-72.
    [12]Haydon RC, Deyrup A, Ishikawa A,et al. Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma[J]. Int J Cancer 2002; 102:338-342.
    [13]Iwaya K, Ogawa H, Kuroda M,et al.Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis[J]. Clin Exp Metastasis 2003;20:525-529.
    [14]Enneking WF, Spanier SS, Goodman MA:A system for the surgical staging of musculoskeletal sarcoma[J]. Clin Orthop Relat Res 1980;153:106-120.
    [15]Longhi A, Errani C, De Paolis M,Mercuri M, Bacci G:Primary bone osteosarcoma in the pediatric age:State of the art[J]. Cancer Treat Rev 2006;32:423-436.
    [16]National Comprehensive Cancer Network:NCCN Clinical Practice Guidelines in Oncology:Bone Cancer.National Comprehensive Cancer Network,2009, version 1, p 14. Fort Washington, PA, National Comprehensive Cancer Network.Available at: http://www.nccn.org/professionals/physician_gls/PDF/bone.pdf.Accessed May 15,2009.
    [17]Meyers PA, Gorlick R:Osteosarcoma[J].Pediatr Clin North Am 1997;44:973-989.
    [18]Scully SP, Ghert MA, Zurakowski D,Thompson RC, Gebhardt MC:Pathologic fracture in osteosarcoma:Prognostic importance and treatment implications[J]. J Bone Joint Surg Am 2002;84:49-57.
    [19]Meyers PA, Schwartz CL, Krailo M,et al:Osteosarcoma:The addition of muramyl tripeptide to chemotherapy improves overall survival:A report from the Children's Oncology Group[J]. J Clin Oncol 2008;26:633-638.
    [20]Ferrari S, Smeland S, Mercuri M, et al:Neoadjuvant chemotherapy with high-dose ifosfamide, high-dose methotrexate,cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity:A joint study by the Italian and Scandinavian Sarcoma Groups[J].J Clin Oncol 2005;23:8845-8852.
    [21]Grimer RJ:Surgical options for children with osteosarcoma[J]. Lancet Oncol 2005;6:85-92.
    [22]Smith J, Heelan RT, Huvos AG, et al:Radiographic changes in primary osteogenic sarcoma following intensive chemotherapy:Radiological-pathological correlation in 63 patients [J]. Radiology 1982;143:355-360.
    [23]Hosalkar HS, Dormans JP:Limb sparing surgery for pediatric musculoskeletal tumors[J]. Pediatr Blood Cancer 2004;42:295-310.
    [24]Smeland S, Muller C, Alvegard TA, et al:Scandinavian Sarcoma Group Osteosarcoma Study SSG VIII:Prognostic factors for outcome and the role of replacement salvage chemotherapy for poor histoIogicalresponders[J]. Eur J Cancer 2003;39:488-494.
    [25]Rougraff BT, Simon MA, Kneisl JS,Greenberg DB, Mankin HJ.Limbsalvage compared with amputation for osteosarcoma of the distal end of the femur:A long-term oncological,functional, and quality-of-life study [J].J Bone Joint Surg Am 1994;76:649-656.
    [26]Bacci G, Ferrari S, Lari S, et al:Osteosarcoma of the limb:Amputation or limb salvage in patients treated by neoadjuvant chemotherapy [J]. J Bone Joint Surg Br 2002;84:88-92.
    [27]Jeys LM, Kulkarni A, Grimer RJ,et al.Endoprosthetic reconstruction for the treatment of musculoskeletal tumors of the appendicular skeleton and pelvis[J].J Bone Joint Surg Am 2008;90:1265-1271.
    [28]Nichter LS, Menendez LR.Reconstructive considerations for limb salvage surgery[J]. Orthop Clin North Am 1993;24:511-521.
    [29]Gaffney R, Unni KK, Sim FH, et al.Follow-up study of long-term survivors of osteosarcoma in the prechemotherapy era[J]. Hum Pathol 2006;37:1009-1014.
    [30]Dahlin DC, Coventry MB:Osteogenic sarcoma:A study of six hundred . cases[J].J Bone Joint Surg Am 1967;49:101-110.
    [31]Link MP, Goorin AM, Horowitz M,et al:Adjuvant chemotherapy of high-grade osteosarcoma of the extremity:Updated results of the Multi-Institutional Osteosarcoma Study[J]. Clin Orthop Relat Res 1991;270:8-14.
    [32]Bacci G, Ferrari S, Bertoni F, et al:Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol:An updated report[J]. JClin Oncol 2000; 18:4016-4027.
    [33]Bacci G, Rocca M, Salone M, et al:High grade osteosarcoma of the extremities with lung metastases at presentation:Treatment with neoadjuvant chemotherapy and simultaneous resection of primary and metastatic lesions[J]. J Surg Oncol 2008;98:415-420.
    [34]Okada K, Unni KK, Swee RG, Sim FH:High grade surface osteosarcoma:A clinicopathologic study of 46 cases [J]. Cancer 1999;85:1044-1054.
    [35]Rose PS, Dickey ID, Wenger DE, Unni KK, Sim FH:Periosteal osteosarcoma:Long-term outcome and risk of late recurrence [J]. Clin Orthop Relat Res 2006;453:314-317.
    [36]Grimer RJ, Bielack S, Flege S, et al:Periosteal osteosarcoma:A European review of outcome[J]. Eur J Cancer 2005;41:2806-2811.
    [37]Chen K, Fallen S, Abaan HO, Hayran M, Gonzalez C, Wodajo F,et al. Wnt10b induces chemotaxis of osteosarcoma and correlates with reduced survival [J]. Pediatr Blood Cancer 2008;51:349-355.
    [38]Kempf-Bielack B, Bielack SS, Jurgens H,et al:Osteosarcoma relapse after combined modality therapy:An analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS) [J].J Clin Oncol 2005;23:559-568.
    [39]Ferrari S, Briccoli A, Mercuri M, et al:Postrelapse survival in osteosarcoma of the extremities:Prognostic factors for long-term survival[J]. J Clin Oncol 2003;21:710-715.
    [40]Hughes DP, Thomas DG, Giordano TJ,et al. Essential erbB family phosphorylation in osteosarcoma as a target for CI-1033 inhibition[J]. Pediatr Blood Cancer 2006;46:614-623.
    [41]Messerschmitt PJ, Rettew AN,Brookover RE, et al. Specific tyrosine kinase inhibitors regulate human osteosarcoma cells in vitro[J]. Clin Orthop Relat Res 2008;466:2168-2175.
    [42]Messerschmitt PJ, Rettew AN,Brookover RE,Specific tyrosine kinase inhibitors regulate human osteosarcoma cells in vitor[J].Clin Orthop Relat Res,2008:466:2168-2175.
    [43]丁凡,邵增务.骨肉瘤基因治疗研究进展[J].中国矫形外科杂志.2008:16:1326-1328.
    [44]Meyers PA, Schwartz CL, Krailo M,et al:Osteosarcoma:A randomized,prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate[J]. J Clin Oncol 2005;23:2004-2011.
    [45]李德华,刘明轩,李琦.中医药治疗骨肉瘤研究进展.江西医学院学报.2008:20:98-100.
    [46]Min SK,Won SS,Wan HC,et al.Ezrin expression predicts survival in stage Ⅱ Bosteosarcomas[J].Clin Orthop Relat Res.2007:459:229-238.
    [47]Alok S,Bruno F,Kunbo Z,et al.High WT1expression is associated with very poor survival of patients with osteogenic sarcoma metastasis[J].Clin Cancer Res.2006:12:4237-4246.
    [48]Pakos EE, Nearchou AD, Grimer RJ, et al. Prognostic factors and outcomes for osteosarcoma:an international collaboration[J]. Eur J Cancer 2009;45:2367-75.
    [49]Ferrari S, Palmerini E, Staals E, et al. Sex-and age-related chemotherapy toxicity in patients with non-metastatic osteosarcoma[J]. J Chemother 2009;21:205-10.
    [50]National Cancer Institute:Clinical trials.Bethesda, MD, National Cancer Institute,2009. Available at:http://www.cancer.gov/clinicaltrials. Accessed May 15,2009.
    [51]Provisor AJ, Ettinger LJ, Nachman JB,et al:Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative chemotherapy:A report from the Children's Cancer Group[J]. J Clin Oncol 1997;15:76-84.
    [52]Meyers PA, Heller G, Healy JH, et al:Osteogenic sarcoma with clinically detectable metastasis at initial presentation[J]. J Clin Oncol 1993;11:449-453.
    [53]Huvos AG:Bone Tumors:Diagnosis,Treatment, and Prognosis, ed 2[M].Philadelphia, PA, WB Saunders,1991,pp 122-128.
    [54]Bacci G, Bertoni F, Longhi A, et al:Neoadjuvant chemotherapy for high-grade central osteosarcoma of the extremity:Histologic response to preoperative chemotherapy correlates with histologic subtype of the tumor[J].Cancer 2003;97:3068-3075
    [55]Hsieh MY, Hung GY, Yen HJ, et al. Osteosarcoma in preadolescent patients:experience in a single institute in Taiwan[J]. J Chin Med Assoc 2009;72:455-61.
    [56]Pakos EE, Ioannidis JP. The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma:a meta-analysis[J]. Cancer 2003;98:581-9.
    [57]Serra M, Scotlandi K, Reverter-Branchat G, et al. Value of P-glycoprotein and clinicopathologic factors as the basis for new treatment strategies in high-grade osteosarcoma of the extremities[J]. J Clin Oncol 2003;21:536-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700