石墨烯基导电薄膜及其有机半导体二极管器件的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯具有独特的电学性能、优异的力学性能与机械延展性、良好的热稳定性与化学稳定性,是制备高性能导电薄膜的理想替代者,石墨烯基导电薄膜及其有机半导体光电子器件研究引起了人们广泛的关注.当前制备石墨烯基导电薄膜的主要方法包括真空过滤法、旋涂法、化学气相沉积以及外延生长等,基于石墨烯导电薄膜电极已成功应用于有机太阳能电池、有机电致发光二极管以及场效应管等器件中,取得了一些有意义的研究成果.但是,高性能导电薄膜的低成本制备、机理探索及其在新型有机半导体器件方面的研究依然处于初始阶段,相关基础与应用研究还面临着诸多挑战.本论文介绍了石墨烯薄膜的制备技术及其在有机光电二极管领域的应用,总结了有机/聚合物电存储的实现形式与作用机制,重点设计和制备了新型石墨烯基导电功能薄膜及其有机半导体器件,探索了新型导电薄膜及其半导体器件的作用机制.主要研究内容和结果如下:
     结合当前各种化学还原氧化石墨烯(reduced graphene oxide, rGO)薄膜制备石墨烯导电薄膜技术的优缺点,首次提出一种低温肼润湿还原GO薄膜的方法.此方法采用肼润湿GO薄膜表面来避免还原剂浸泡过程中薄膜剥离问题,同时利用低温(100°C)处理技术提高润湿肼的还原能力,该温度适合绝大多数柔性聚合物衬底.与此同时,我们又首次引入“有效还原深度”概念来评价肼还原GO厚膜的效果,并探索了薄膜的还原机制.与其它常见的化学还原技术相比,肼润湿rGO薄膜具有低的方块电阻与高电导率,其值分别达到160~500 ?/□和26 S/cm,这主要因为低温肼润湿还原薄膜具有大的“有效还原深度”(1.46μm)和高的C/O (8.04).针对肼润湿还原中存在的“有效还原深度”现象,通过多层叠加还原技术实现了不同厚度GO薄膜的彻底有效还原,达到了rGO薄膜方块电阻的可控制备.
     利用高温热退火GO薄膜的高效性与剥离转移技术,成功制备了基于柔性PET衬底的高导电透明柔性rGO薄膜.为了研究GO尺寸对rGO薄膜剥离可行性的影响,通过差速离心方法获得了不同尺寸(~1μm与~4μm)的GO.剥离试验表明基于大尺寸GO (~4μm)制备的rGO薄膜更容易剥离.此外, rGO薄膜剥离的效率受刻蚀剂(NaOH)浓度的影响,快速剥离高质量薄膜的优化摩尔浓度约为2M.这种方法制备的柔性rGO薄膜具有出色的光电性能,方块电阻为8000 /□时的透光率达到80% (550 nm).在此基础上,通过大尺寸GO与羧基化单壁碳纳米管(SWNT-COOH)直接共混在室内条件下湿法制备了高透明导电全碳类杂化薄膜,方块电阻为4500 /□时的透光率达到90% (550 nm).所以上述薄膜优良的导电性、高透光性、大面积成膜以及绿色制备使得它们在柔性电子中有着诱人的应用价值.
     系统分析了rGO薄膜块体的C/O、GO尺寸、薄膜微结构以及有效还原深度等因素与rGO薄膜电导率之间的相互关系,同时研究了GO尺寸、薄膜厚度以及还原方法对rGO薄膜表面形貌的影响.结果显示薄膜的电导率受C/O、GO尺寸、薄膜制备技术及有效还原深度等因素共同影响.当保持GO尺寸、薄膜制备技术以及有效还原深度三个因素相同时,薄膜的电导率伴随着C/O的增大而增高,并最终趋向饱和.类似地,保持其它因素不变时通过改变第四个因素研究其对薄膜电导率的影响,发现基于大尺寸GO (~4μm)的rGO薄膜电导率(1.1×10~5 PS/m)约为小尺寸GO (~1μm)时的2倍.同时,制备技术引起的薄膜微结构差异也对电导率有重大影响,石墨烯层层有序叠加结构的薄膜电导率比局部有序叠加结构的薄膜电导率高出一个数量级.此外,由于有效还原深度现象的存在,整体均匀还原rGO薄膜比部分还原薄膜具有更出色的电学性能.形貌研究发现,保持薄膜厚度相同,旋涂制备薄膜时大尺寸GO对应rGO薄膜平整度更小.除了GO尺寸因素外,旋涂制备薄膜表面的平整度还随厚度的增大而粗糙.在还原方法方面,由于热退火技术属于无接触还原,其薄膜表面平整度高.
     设计和制备了一种结构为rGO/P3HT:PCBM/Al聚合物电存储器件,其中首次将rGO导电薄膜作为电极应用到有机电存储器件中,并首次将体异质结作为功能薄膜用于实现存储功能.该器件的电流电压曲线呈现电学双稳态特性,它具有一次写入多次读取功能.该电存储器件具有高的开关比和低的电转换电压,它们的值取决于rGO导电电极的方块电阻.此外,电流电压的实验与理论拟合数据表明了低导电态时呈现电荷注入限制电流特性,高导电态时呈现欧姆电流特性.这种导电态转变是由于PCBM domain极化引起相邻domains之间局部电场增强所致.除了引用于电存储领域,我们又将湿法制备的GO:SWNT-COOH杂化导电薄膜作为电极应用到有机太阳能电池中,该薄膜的p型半导体性有利于解离空穴的收集.湿法制备的GO:SWNT-COOH/PEDO:PSS/P3HT:PCBM/Al太阳能电池的短路电流与开路电压分别为0.627 mA/cm~2P与0.52 V.
     调制二极管电流电压曲线可以实现对器件功能的调控,指出了场致电荷转移与肖特基势垒是器件实现迟滞整流功能的策略之一.基于此,设计制备了基于后修饰的聚乙烯基咔唑和CdTe纳米晶杂化为电活性材料的二极管,其中咔唑基和纳米晶分别为电子给体和受体.该设计中利用聚合物纳米晶杂化产生场致电荷转移,利用同一有机半导体与不同金属电极接触的能级差来构筑肖特基势垒.电流电压曲线显示负向电压作用时呈现明显的电导转变及磁滞现象,电导转变前后的开关比为~10~3.此外,器件具有整流功能,其整流比为6,最大整流输出电流约为5×10~(-5)P A.这种非对称性电导转变是场致电荷转移及肖特基势垒共同作用的结果,它不仅可以降低交叉型存储器的误读率,而且CdTe纳米晶的化学搀杂可以实现纳米颗粒在基体中均匀分散,有利于器件长久运行的稳定性.在此基础上,我们分别利用柔性rGO薄膜和GO薄膜充当电极和中间功能层制备了结构为rGO/GO/Al的二极管器件.该器件也具有迟滞与整流效应,其整流比约为3.值得注意是正反扫描时迟滞产生的低阻态在外电场撤除后恢复到初始态,表现出了随机存储特性,拓展了GO薄膜二极管在电存储方面的应用范围.
Graphene is a promising conductive material due to its novel electrical properties, extraordinary mechanical property, flexibility, and high chemical and thermal stability, graphene-based conducting electrodes and their applications in organic optoelectronic are emerging as a new field of vital significance. Up to now, various approaches, mainly including vacuum filtration, spin coating, chemical vapor deposition, and expiaxial growth, have been proposed to prepare graphene-based films, much progress has been made toward their use as electrodes in organic solar cells, organic light-emitting diodes, and organic transistors. However, techniques for fabricating graphene films with high performance and low price, mechanisms, and related emerging organic semiconductor devices, are still in their infancy where a lot of challenges remain in fundamental research and practical applications. In this dissertation I introduce the field of fabrication of graphene-based films and related organic optoelectric diodes, progress in organic/polymer memory devices and their mechanisms have been reviewed. While great strides have been made toward the design and fabrication of emerging graphene-based conducting films and their organic electronics. Specially, detailed studies of the conductivity of redued graphene films (rGO) and device mechanisms have been explored. The completed works and the results are mainly summarized as follows:
     Based on the analysis of advantages and disadvantages of rGO films by chemical reduction, a scheme of hydrazine smearing at low temperature was proposed to reduce GO films. Herein, the hydrazine was smeared on the surface of GO film to avoid fragmentation and delamination of rGO film in hydrazine solution. In order to accelerate the reduction reaction, the hydrazine-smeared GO film was heated to 100°C (low temperature), thus many different polymers can be used as substrates. Moreever, a concept of the“effective reduction depth”for GO film was defined to assess the reduction effect and the reduction mechanism is proposed. The prepared rGO film has a lower sheet resistance (~160-500 ohm/sq) and higher conductivity (26 S/cm) as compared to other rGO films obtained by commonly used chemical reduction methods. The effective reduction can be attributed to the large“effective reduction depth”in the GO films (1.46μm) and the high C/O ratio (8.04). By combining reduction with smeared hydrazine at low temperature and the multilayer stacking technique, rGO film with a tunable thickness and sheet resistance are achievd.
     A facile approach for fabricating flexible rGO films on PET substrates by high temperature annealing (high reduction ability) and transfer technique was describled. By controlling the differential centrifugation, GO sheets with tunable laterial size have been separated and obtained to study the influence of GO size on the detachment feasibility of rGO film, with the average value of laterial size of ~4μm for large-size GO and ~1μm for small-size GO. GO size dependent the detachment feasibility of rGO films has been observed and rGO films from large-size GO is easily detached. Meanwhile, the concentration (2M) of NaOH etchant, as a critical factor of detachment efficiency, is optimized. The flexible rGO films show outstanding optic-electronic properties, possessing a sheet resistance of 8000 ohm/sq with a transmittance of ~80% at 550 nm. Moreover, by blending the large-size GO and SWNT-COOH directly, a higher conductive and transparent all-carbon hybrid film was solution processed under ambient condition, possessing a sheet resistance of 4500 ohm/sq with a transimittance of ~90% at 550 nm. Thus, combining the remarkable conductivity, high transparency, large-scale, and green production of these conducting films make them of tremendous potential in flexible electronics.
     The relationship between the conductivity of rGO film and its four contributions, including GO size, C/O ratio, film fabrication process, and effective reduction depth, has been systematically analysed, the effect of GO size, film thickness, and reduction method on the film morphology is investigated as well. By varying the fourth factor with other three factors restricted, measurement results show that the film conductivity is dependent on the four contributions. The conductivity increases with an increasing C/O ratio and tend to saturation finally. Furthermore, rGO films from large-size GO exhibit a higher conductivity with a value of 5P S/m, about two times than that from small-size GO. Moreover, great significance of the difference of conductivity induced by the microstructure of rGO film fabrication is obtained; the conductivity of rGO films with well stacked microstructures is about 10 times higher than that with random stacked microstructures. In addition, the GO films reduced completely and uniformly show a higher electrical property than that reduced partially due to the presence of effective reduction depth. From the point of view of film morphology, the roughness from large-size GO sheets is lower than that from small-size GO when their thickness are similar. Meanwhile, thin film has smooth surface relative to thick film. We also find the film morphology by thermal annealing show the highest quality compared to that by other reduction methods.
     A unique device structure with a configuration of rGO/P3HT: PCBM/Al has been designed for the polymer memory device, where the rGO film and bulk heterojunction concept are firstly applied as the electrodes and functional layer in organic memory, respectively. The current-voltage curves of the device show the electrical bistable behavior and WORM memory effect, with a high On/Off ratio (10P) and low switching threshold voltage (0.5-1.2 V), which are dependent on the sheet resistance of rGO electrode. Our experimental results confirm that the carrier transport mechanism in the Off and On states are dominated by the thermonic emission current and ohmic current. The polarization of PCBM domains and the localized internal electrical field formed among the adjacent domains are proposed to explain the electrical switching of the memory device. In addition, solution-processable GO: SWNT-COOH hybrid films are also introduced as electrodes in organic solar cells, the hybrid film favors the collection of dissociated hole due to its p-type semiconductor property. The solution-processable polymer solar cell with a configuration of GO: SWNT-COOH/PEDOT: PSS/P3HT: PCBM/Al has a shor-circuit current of 0.627 mA/cmP and open-circuit voltage of 0.52 V.
     The device function is dependent on its current-voltage characteristics; one of the strategies to tune current-voltage behanviors in organic diodes is to combine field-induced charge transfer with schottky barrier. According to this principle, a diode was fabricated utilizing a hybrid of post-functionalized polystyrene derivative covalently tethered with electron-donar carbazole moieties and electron-acceptor CdTe nanocrystals. Current-voltage curves show an electrical transition with some hysteresis is only observed under a negative bias, with three orders of On/Off ratio. Moreover, the device has rectifying effect with a rectification ratio of 6 and its maximum rectified output current is ~5×10~5P A. The asymmetric switching is interpreted as the result of both field induced charge transfer ad schottky barrier, capable of reducing the misreading of crossbar memory. Meanwhile, chemical doping of CdTe nanocrystals favor their uniform dispersion in matrix and stable operation of device. Based on above analysis, a diode with flexible rGO film as electrode and GO film as functional layer was designed and fabricated, with a configuration of rGO/GO/Al. Both hysteresis effect and rectifying effect are observed in device, with a rectification ratio of 3. Note that the low resistance state by hysteresis under the positive and negative sweeping will back to its initial state when the applied voltage is removed, promising the effect of random acess memory, which extends the scope of applications of GO film- based diodes in electrical memory.
引文
1 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666.
    2 Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotech, 2008, 3, 491.
    3 Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature, 2005, 438, 197.
    4 Deprez D, McLachlan D S. The analysis of the electrical conductivity of graphite conductivity of graphite powers during compaction. J Phys D: Appl Phys, 1998, 21, 101.
    5 Zhang Y, Tang T, Caglar G, et al. Direct observation of widely tunable bandgap in bilayer graphene. Nature, 2009, 459, 820.
    6 Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned expitaxial graphene. Science, 2006, 312, 1191.
    7 Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324, 1312.
    8 Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457, 706.
    9 Sutter P W, Flege J-I, Sutter E A. Expitaxial grephene on ruthenium. Nat Mater, 2008, 7: 406
    10 Hummers W S, Offeman R E. Preparation of graphite oxide. J Am Chem Soc, 1958, 80, 1339.
    11 Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotech, 2008, 3, 270.
    12 Hitrata M, Gotou T, Horiuchi S, et al. Thin film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon, 2004, 42, 2929.
    13 Hernandez Y, Nicolosi V, Lotya M, et al. High yield production of graphene by liquid phase exfoliation of graphite. Nat Nanotech, 2008, 3, 563.
    14 Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc, 2009, 131, 3611.
    15 Losynkin D V, Higginbothan A L, Sinitshii A, et al. Longitudinal unzipping of carbonnanotubes to form graphene nanoribbons. Nature, 2009, 458, 872.
    16 Jiao L, Li Z, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458, 877.
    17 Wu J, Pisula W, Mullen K. Graphene as potential material for electronics. Chem Rev, 2007, 107, 718.
    18 Subrahmanyam K S, Panchakarla L S, Govindaraj A, et al. Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C, 2009, 113, 4257.
    19 Zhang Y B, Small J P, Pontius W V, Kim P. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl Phys Lett, 2005, 86, 073104.
    20 Gao L, Ren W, Li F, Cheng H-M. Total color difference for rapid and accurate identification of graphene. ACS Nano, 2008, 2, 1625.
    21 Wu Y, Ye P, Capano M M, et al. Top-gated graphene field-effect-transistors formed by deposition of SiC. Appl Phys Lett, 2008, 92, 092102.
    22 Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon, 2010, doi:10.1016/j.carbon.2010.01.058
    23 Stankvich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45, 1558.
    24 Shin H–J, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater, 2009, 19, 1987.
    25 Fan X, Peng W, Li Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater, 2008, 20, 4490.
    26 Sreeprasad H S, Samal A K, Pradeep T. Tellurium nanowire-induced room temperature conversion of graphite oxide to leaf-like graphenic structures. J Phys Chem C, 2009, 113, 1727.
    27 Cote L J, Cruz-Silva R, Huang J. Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc, 2009, 131, 11027.
    28 Wang Z J, Zhou X Z, Zhang J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C, 2009, 113, 14071.
    29 Zhu Y, Murali S, Stoller M D, et al. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon, 2010, 48, 2118.
    30 Hernandez Y, Nicolosi V, Lotya M, et al. High yield production of graphene by liquid phase exfoliation of graphite. Nat Nanotech, 2008, 3, 563.
    31 Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc, 2009, 131, 3611.
    32 Ghosh A, Rao K V, George S J, Rao C N R. Non-covalent functionalization, exfoliation and solubilization of graphene in water employing a fluorescent coronene carboxylate. Chem–Euro J, 2009, 16, 2700.
    33 Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and langmuir-blodgett films. Nat Nanotech, 2008, 3, 538.
    34 Son Y–W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons. Phys Rev Lett, 2006, 97, 216803.
    35 Zhou X, Lu G, Qi X, et al. A method for fabrication of graphene oxide nanoribbons from graphene oxide wrinkles. J Phys Chem C, 2009, 113, 19119.
    36 Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81, 109.
    37 Kosynkin D V, Higginbotham A L, Sinitshii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458, 872.
    38 Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458, 877.
    39 Ju S, Doll J, Sharma I, Papadimitrakopoulos F. Selectron of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nat Nanotech, 2008, 3, 356.
    40 Kunstmann J, Quandt A, Boustani I. An approach to control the radius and the chirality of nanotubes. Nanotechnology, 2007, 18, 155703.
    41 Choucair M, Thordarson P, Stride J A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotech, 2009, 4, 30.
    42 Tung V C, Allen M J, Yang Y, Kaner R B. High-throughput solution processing of large-scale graphene. Nat Nanotech, 2008, 4, 25.
    43 Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 2008, 8, 323.
    44 Wu J, Becerril H A, Bao Z, et al. Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett, 2008, 92, 263302.
    45 Wang Y, Chen X, Zhong Y, et al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett, 2009, 95, 063302.
    46 Blake P, Brimicombe P D, Nair R R, et al. Graphene-based liquid crystal device. Nano Lett, 2008, 8, 1704.
    47 Wu J, Agrawal M, Becerril H A, et al. Organic light-emitting diodes on solution processed graphene transparent electrodes. ACS Nano, 2010, 4, 43.
    48 Sun T, Wang Z L, Shi Z J, et al. Multilayered graphene used as anode of organic light emitting devices. Appl Phys Lett, 2010, 96, 133301.
    49 Ishiwara H, Okuyama M. A survey of circuit innovations in ferroelectric random-access memories. Proc of the IEEE, 2000, 88, 667.
    50 Johnson M, Bennett B, Yang M. Hybrid ferromagnetic semiconductor nonvolatile gate. IEEE Trans Magn, 1998, 34, 1054.
    51 Collier C P, Wong E W, Belohradsky M, et al. Electrically configurable molecular-based logic gates. Science, 1999, 285, 391.
    52 Lai S. Current status of the phase change memory and its future. Proc IEEE Int Electron Devices Meeting. 2003, 10.1.1-4
    53 Zhu Y, Zhao D T, Li R G, et al. Self-aligned TiSiB2B/Si heteronanocrystal nonvolatile memory. Appl Phys Lett, 2006, 88, 103507.
    54 Rueckes T, Kim K, Joselevich E, et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 2000, 289, 94.
    55 Collier C P, Mattersteig G, Wong E W, et al. A [2] catenane-based solid state electronically reconfigurable switch. Science, 2000, 289, 1172.
    56 Ma D G, Aguiar M, Freire J A, et al. Organic reversible switching devices for memory application. Adv Mater, 2000, 12, 1063.
    57 Gao H J, Xue Z Q, Wang K Z, et al. Ionized-cluster-beam deposition and electrical bistability of CB60B-tetracyanoquinodimethane thin films. Appl Phys Lett, 1996, 68, 2192.
    58 M?ller S, Perlov C, Jackson W, et al. A polymer/semiconductor write-once-read-many times memory. Nature, 2003, 426, 166.
    59 Ling Q D, Chang F C, Song Y, et al. Synthesis and dynamic random access memory behavior of a functional polyimide. J Am Chem Soc, 2006, 128, 8732.
    60 Ling Q D, Song Y, Ding S J, et al. Non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and Eu-complexed vinylbenzoate. Adv Mater, 2005, 17, 455.
    61 Ling Q D, Song Y, Lim S L, et al. A dynamic random access memory based on aconjugated copolymer containing electron-donor and–acceptor moieties. Angew Chem Int Ed, 2006, 18, 2947.
    62 Tseng R J, Huang J, Ouyang J Y, et al. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett, 2005, 5, 1077.
    63 Tseng R J, Ouyang J Y, Chu C W, et al. Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device. Appl Phys Lett, 2006, 88, 123506.
    64 Tseng R J, Baker C O, Shedd B, et al. Charge transfer effect in the polyaniline-gold nanoparticle memory system. Appl Phys Lett, 2007, 90, 053101.
    65 Prakash A, Ouyang J Y, Lin J L, et al. Polymer memory device based on conjugated polymer and gold nanoparticles. J Appl Phys, 2006, 100, 054309.
    66 Lin H T, Pei Z, Chan Y J. Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device. IEEE Electron Device Lett, 2007, 28, 569.
    67 Song Y, Ling Q D, Lim S L, et al. Electrically bistable thin-film device based on PVK and GNPs polymer material. IEEE Electron Device Lett, 2007, 28, 107.
    68 Li F S, Kim T W, Dong W G, et al. Formation and electrical bistability properties of ZnO nanoparticles embedded in polyimide nanocomposites sandwiched between two CB60B layers. Appl Phys Lett, 2008, 92, 011906.
    69 Mohanta K, Majee S K, Batabyal S K, et al. Electrical bistability in electrostatic assemblies of CdSe nanoparticles. J Phys Chem B, 2006, 110, 18231.
    70 Jung J H, Kim J H, Kim T W, et al. Nonvolatile organic bistable devices fabricated utilizing Cu2O nanocrystals embedded in a polyimide layer. Appl Phys Lett, 2006, 89, 122110.
    71 Pradhan B, Batabyal S K, Pal A J. Electrical bistaility and memory phenomenon in carbon nanotube-conjugated polymer matrixes. J Phys Chem B, 2006, 110, 8274.
    72 Liu G, Ling Q D, Kang E T, et al. Bistable electrical switching and write-once read-many-times memory effect in a donor-acceptor containing polyfluorene derivative and its carbon nanotube composites. J Appl Phys, 2007, 102, 024502.
    73 Majumdar H S, Baral J K, ?sterbacka R, et al. Fullerene-based bistable devices and associated negative differential resistance effect. Org Lett, 2005, 6, 188.
    74 Chu C W, Ouyang J Y, Tseng J H, et al. Organic donor-acceptor system exhibiting electrical bistability for use in memory devices. Adv Mater, 2005, 17, 1440.
    75 Ling Q D, Lim S L, Song Y, et al. Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded CB60B. Langmuir, 2007, 23, 312.
    76 Ago H, Kugler T, Cacialli F, et al. Workfunction of purified and oxidised carbon nanotubes. Synthe Metal, 1999, 103, 2494.
    77 Mahapatro A K, Agrawal R, Ghosh S, et al. Electric-field-induced conductance transition in 8-hydroxyquinoline aluminum (Alq3). J Appl Phys, 2004, 96, 3583.
    78 Kanwal A, Chhowalla M. Stable, three layered organic memory devices from CB60B molecules and insulating polymers. Appl Phys Lett, 2006, 89, 203103.
    79 Tondelier D, Lmimouni K, Vuillaume D, et al. Metal/organic/metal bistable memory device. Appl Phys Lett, 2004, 85, 5763.
    80 Ma L P, Xu Q F, Yang Y. Organic nonvolatile memory by controlling the dynamic copper-ion concentration within organic layer. Appl Phys Lett, 2004, 84, 4908.
    81 Joo W J, Choi T L, Lee J, et al. Metal filament growth in electrically conductive polymers for nonvolatile memory application. J Phys Chem B, 2006, 110, 23812.
    82 Joo W J, Choi T L, Lee K H, et al. Study on threshold behavior of operation voltage in metal filament-based polymer memory. J Phys Chem B, 2007, 111, 7756.
    83 Verbakel F, Meskers S C J, Janssen R A J, et al. Reproducible resistive switching in nonvolatile organic memories. Appl Phys Lett, 2007, 91, 192103.
    84 Guo P, Dong Y W, Ji X, et al. Nonvolatile multilevel conductance and memory effect in molecule-based devices. IEEE electron device lett, 2007, 28, 572.
    85 Ling Q D, Liaw D J, Teo E Y H, et al. Polymer memories: bistable electrical switching and device performance. Polymer, 2007, 48, 5182.
    86 Shang Y L, Wen Y Q, Li S L, et al. A triphenylamine-containing donor-acceptor molecule for stable, reversible, ultrahigh density date storage. J Am Chem Soc, 2007, 129, 11674.
    87 Jiang G Y, Michinobu T, Yuan W F, et al. Crystalline thin film of a donor-substituted cyanoethynylethene for nanoscale data recording through intermolecular charge-transfer interactions. Adv Mater, 2005, 17, 2170.
    88姜桂元,温永强,吴惠萌,等.超高密度电学信息存储研究进展.物理, 2006, 35, 773.
    89 Hong S H, Kim O, Choi S, et al. Bipolar resistive switching in a single layer memory device based on a conjugated copolymer. Appl Phys Lett, 2007, 91, 093517.
    90 Feng M, Guo X F, Lin X, et al. Stable, reproducible nanorecording on rotaxane thin films. J Am Chem Soc, 2005, 127, 15338.
    91 Feng M, Gao L, Deng Z T, et al. Reversible, erasable, and rewritable nanorecording on an H2 rotaxane thin film. J Am Chem Soc, 2007, 129, 2204.
    92 Feng M, Gao L, Du S X, et al. Observation of structural and conductance transition ofrotaxane molecules at a submolecular scale. Adv Funct Mater, 2007, 17, 770.
    93 Bandyopadhyay A, Pal A J. Large conductive switching and memory effects in organic molecules for date-storage applications. Appl Phys Lett, 2003, 82, 1215.
    94 Coropceanu V, Cornil J, Silva D, et al. Charge transport in organic semiconductors. Chem Rev, 2007, 107, 926.
    95 Xie L H, Ling Q D, Hou X Y, et al. An effective friedel-crafts postfunctionization of poly(N-vinylcarbazole) to tune carrier transportation of supramolecular organic semiconductors based onπ-stacked polymers for nonvolatile flash memory cell. J Am Chem Soc, 2008, 130, 2120.
    96 Teo E Y H, Ling Q D, Song Y, et al. Non-volatile WORM memory device based on an acrylate polymer with electron donating carbazole pendant groups. Organic Electronics, 2006, 7, 173.
    97 Lim S L, Ling Q D, Teo E Y H, et al. Conformation-induced electrical bistability in non-conjugated polymers with pendant carbazole moieties. Chem Mater, 2007, 19, 5148.
    98 Ling Q D, Wang W, Song Y, et al. Bistable electrical switching and memory effects in a thin film of copolymer containing electron donor-acceptor moieties and europium complexes. J Phys Chem B, 2006, 23995.
    99 Ling Q D, Song Y, Teo E Y H, et al. WORM-type memory device based on a conjugated copolymer containing europium complex in the main chain. Electronchem Solid-State Lett, 2006, 9, 268.
    100 Song Y, Ling Q D, Zhu E T, et al. Memory performance of a thin-film device based on a conjugated copolymer containing fluorene and chelated europium complex. IEEE Electron Device Lett, 2006, 27, 154.
    101 Choi T L, Lee K H, Joo W J, et al. Synthesis and nonvolatile memory memory behavior of redox-active conjugated polymer-containing ferrocene. J Am Chem Soc, 2007, 129, 9842.
    102 Li L, Ling Q D, Lim S L, et al. A flexible polymer memory device. Org Electron, 2007, 8, 401.
    103 Potember R S, Poehler T O, Cowan D O, et al. Electrical switching and memory phenomena in Cu-TCNQ thin films. Appl Phys Lett, 1979, 34, 405.
    104 Oyamada T, Hanaka H, Matsushige K, et al. Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition. Appl Phys Lett, 2003, 83, 1252.
    105 Kever T, B?ttger U, Schindler C, et al. On the origin of bistable resistive switching in metal organic charge transfer complex memory cells. Appl Phys Lett, 2007, 91, 083506.
    106 Müller R, Genoe J, Heremans P. Nonvolatile Cu/CuTCNQ/Al memory prepared bycurrent controlled oxidation of a Cu anode in LiTCNQ saturated acetonitrile. Appl Phys Lett, 2006, 88, 242105.
    107 Müller R, Jonge S D, Myny K, et al. Organic CuTCNQ integrated in complementary metal oxide semiconductor copper back end-of-line for nonvolatile memories. Appl Phys Lett, 2006, 89, 223501.
    108 Müller R, Naulaerts R, Billen J, et al. CuTCNQ resistive nonvolatile memories with a noble metal bottom electrode. Appl Phys Lett, 2007, 90, 063503.
    109 Billen J, Steudel S, Müller R, et al. A comprehensive model for bipolar electrical switching of CuTCNQ memories. Appl Phys Lett, 2007, 91, 263507.
    110 Chen L, Xia Y D, Liang X F, et al. Nonvolatile memory devices with CuB2BS and Cu-Pc bilayered films. Appl Phys Lett, 2007, 91, 073511.
    111 Li C, Fan W, Lei B, et al. Multilevel memory based on molecular devices. Appl Phys Lett, 2004, 84, 1949.
    112 Xu X, Register R A, Forrest S R, et al. Mechanism for current-induced conductivity changes in a conducting polymer. Appl Phys Lett, 2006, 89, 142109.
    113 Lin J, Ma D G. The morphology control of pentacene for write-once-read-many-times memory devices. J Appl Phys, 2008, 103, 024507.
    114 Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers : halogen derivatives of polyacetylene, (CH)BxB. J Chem Soc Chem Commun, 1977, 578.
    115 Dürr A C, Schreiber F, Kelsch M, et al. Morphology and interdiffusion behavior of evaporated metal films on crystalline diindenoperylene thin films. J Appl Phys, 2003, 93, 5201.
    116 Parthasarathy G, Shen C, Kahn A, et al. Lithium doping of semiconducting organic charge transport materials. J Appl Phys, 2001, 89, 4986.
    117 Kamitsos E, Tzinis C, Risen W M. Raman study of the mechanism of electrical switching in CuTCNQ film. Solid State Commun, 1982, 42, 561.
    118 Gao H J, Sohlberg K, Xue Z Q, et al. Reversible, nanometer-scale conductance transitions in an organic complex. Phys Rev Lett, 2000, 84, 1780.
    119 Safoula G, Napo K, Bernede J C, et al. Electrical conductivity of halogen doped poly(N-vivylcarbazole) thin film. Eur Polym J, 2001, 37, 843.
    120 Vandendriessche J, Palmans P, Toppet S, et al. Configurational and conformational aspects in the excimer formation of bis(carbazoles). J Am Chen Soc, 1984, 106, 8057.
    121 Zhu D B, Zhang B, Qin W. Organic conductor and superconductor. In: Zhu D B, Wang F S, editor. Organic solid, Shanghai, PR China: Shanghai Science and Technology Press;1999, 48-88
    122 Cyr P W, Tzolov M, Manners I, et al. Photooxidation and photoconductivity of polyferrocenylsilane thin films. Macromol Chem Phys, 2003, 204, 915.
    1 Cao Q, Rogers J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 2008, 21, 29.
    2 Saran N, Parikh K, Suh D.–S, et al. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. J. Am. Chem. Soc. 2004, 126, 4462.
    3 Geim A. K, Novoselov K. S. The rise of graphene. Nat. Mater. 2007, 6, 183.
    4 Chen H, Müller M. B, Gilmore K. J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater. 2008, 20, 3557.
    5 Novoselov K. S, Geim A. K, Morozov S. V, et al. Electrical field effect in atomically thin carbon films. Science 2004, 306, 666.
    6 Novoselov K. S, Geim A. K, Morozov S. V, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197.
    7 Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano. Lett. 2008, 8, 323.
    8 Yin Z, Wu S, Zhou X, et al. Electrochemical deposition of ZnO nanorodes on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 2010, 6, 307.
    9 (a) Schedin F, Geim A. K, Morozov S. V, Hill E. W, Blake P, Katsnelson M. I, Novoselov K. S. Detection of individual gras molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652. (b) Wang Z, Zhou X, Zhang J, et al. J. Phys. Chem. C, 2009, 113, 14071.
    10 Standley B, Bao W. Z, Zhang H, et al. Graphene-based atomic-scale switches. Nano Lett. 2008, 8, 3345.
    11 Wu Z. S, Pei S. F, Ren W. C, et al. Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv. Mater. 2009, 21, 1756.
    12 Berger C, Song Z. M, Li X. B, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191.
    13 Sutter P. W, Flege J.–I, Sutter E. A. Expitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406.
    14 Choucair M, Thordarson P, Stride J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotech. 2009, 4, 30.
    15 Hernandez Y, Nicolosi V, Lotya M, et al. High yield production of graphene by liquid phase exfoliation of graphene. Nat. Nanotech. 2008, 3, 563.
    16 Lotya M, Hernandez Y, King P. J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611.
    17 (a) Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotech. 2008, 3, 270. (b) Zhou X, Huang X, Qi X, et al. J. Phys. Chem. C 2009, 113, 10842. (c) Zhou X, Lu G, Qi X, et al. J. Phys. Chem. C 2009, 113, 19119.
    18 Hummers W. S, Offeman R. E. Preparation of graphite oxide. J. Am. Chem. Soc. 1958, 80, 1339.
    19 Becerril H. A. Mao J. Liu Z. F, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463.
    20 Stankvich S, Dikin D. A, Piner R. D, et al. Synthesis of graphene-based nanosheets via chemical redution of exfoliated graphite oxide. Carbon 2007, 45, 1558.
    21 Shin H.–J, Kim K. K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987.
    22 Zhou M, Wang Y, Zhai Y, et al. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 2009, 15, 6116.
    23 Cote L. J, Cruz-Silva R, Huang J. Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 2009, 131, 11027.
    24 Cai D. Y, Song M. Preparation of fully exfoliated graphite oxide nanoplates in organic solvents. J. Mater. Chem. 2007, 17, 3678.
    25 Tung V. C, Chen L, Allen M. J, et al. Low-temperature solution processing of graphene# carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 2009, 9, 1949.
    26 Grunner G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006, 16, 3533
    27 Son Y.–W, Cohen M. L, Louie S. G. Energy gap in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.
    28 Castro Neto A. H, Guinea F, Peres N. M. R, et al. The electric properties of graphene. Rev. Mod. Phys. 2009, 81, 109.
    29 Ren H, Li Q, Su H, et al. Edge effects on the electronic structures of chemically modified armchair graphene nanoribbons. 2007, eprint arXiv:0711.1700.
    30 Li D, Müller M. B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101.
    31 Deprez D, McLachlan D. S. The analysis of electrical conductivity of graphite conductivity of graphite powders during compaction. J. Phys. D: Appl. Phys. 1998, 21, 101.
    1 Saran N, Parikh K, Suh D.–S, et al. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. J. Am. Chem. Soc. 2004, 126, 4462.
    2 Geim A. K, Novoselov K. S. The rise of graphene. Nat. Mater. 2007, 6, 183.
    3 Chen H, Müller M. B, Gilmore K. J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater. 2008, 20, 3557.
    4 Novoselov K. S, Geim A. K, Morozov S. V, et al. Electrical field effect in atomically thin carbon films. Science 2004, 306, 666.
    5 Novoselov K. S, Geim A. K, Morozov S. V, et al. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438, 197.
    6 Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano. Lett. 2008, 8, 323.
    7 Liu Z. F, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 2008, 20, 3924.
    8 Yin Z, Wu S, Zhou X, Huang X, Zhang Q, Boey F, Zhang H. Electrochemical deposition of ZnO nanorodes on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 2010, 6, 307.
    9 Wu J, Agrawal M, Becerril H. A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS nano 2010, 4, 43.
    10 Sun T, Wang Z. L, Shi Z. J, et al. Multilayered graphene used as anode of organic light emitting devices. Appl. Phys. Lett. 2010, 96, 133301.
    11 Liu J. Q, Lin Z. Q, Liu T. J, et al. Multilayer stacked low-temperature-reduced graphene oxide films: preparation, characterization, and application in polymer memory devices. Small 2010, 6, 1536.
    12 Liu J. Q, Yin Z. Y, Cao X. H, et al. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. ACS nano 2010, 4, 3987.
    13 Berger C, Song Z. M, Li X. B, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191.
    14 Sutter P. W, Flege J.–I, Sutter E. A. Expitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406.
    15 Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotech. 2008, 3, 270.
    16 Hummers W. S, Offeman R. E. Preparation of graphite oxide. J. Am. Chem. Soc. 1958, 80, 1339.
    17 Sun X, Luo D, Liu J. F, Evans D. G. Monodisperse chemically modified graphene obtained by density gradient ultrachentrifugal rate separation. ACS nano 2010, 4, 3381.
    18 Luo Z, Lu Y, Somers L. A, Johnson A. T. C. High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 2009, 131, 898.
    19 Zhang L, Liang J, Huang Y, et al. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 2009, 47, 3365.
    20 Su C. Y, Xu Y, Zhang W, et al. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 2009, 21, 5674.
    21 Reina A, Jia X. T, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30.
    22 Wang S, Ang P. K, Wang Z. Q, et al. High mobility, printable, and solution-processed graphene electtronics. Nano Lett. 2010, 10, 92.
    23 Regan W, Alem N, Aleman B, et al. A direct transfer of layer-area graphene. Appl. Phys. Lett, 2010, 86, 113102.
    1 Chen H, Müller M. B, Gilmore K. J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater. 2008, 20, 3557.
    2 Wu J, Agrawal M, Becerril H. A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS nano 2010, 4, 43.
    3 Yin Z, Wu S, Zhou X, et al. Electrochemical deposition of ZnO nanorodes on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 2010, 6, 307.
    4 Liu J. Q, Yin Z. Y, Cao X. H, et al. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. ACS nano, 2010, 4, 3987.
    5 Liu J. Q, Lin Z. Q, Liu T. J, et al. Multilayer stacked low-temperature-reduced graphene oxide films: preparation, characterization, and application in polymer memory devices. Small 2010, 6, 1536.
    6 Shin H.–J, Kim K. K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987.
    7 Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and langmuir-blodgett films. Nat Nanotech, 2008, 3: 538.
    8 Stankvich S, Dikin D. A, Piner R. D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558.
    9 Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotech. 2008, 3, 270.
    10 Li D, Müller M. B, Gilje S, Kaner R. B, Wallace G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101.
    11 Fan X. B, Peng W. C, Li Y, Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 2008, 20, 4490.
    12 Braun S, Salaneck W. R, Fahlman M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 2009, 21, 1450.
    13 Koo W. H, Jeong S. M, Araoka F, et al. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nat. Photonics. 2010, 4, 222.
    14 Xu Y. X, Bai H, Lu G. W, et al. Flexible graphene films via the filtration of water-solublenoncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856.
    15 Dubin S, Gilje S, Wang K, et al. A one-step, solvothermal reduction method for reducing gaphene oxide dispersions in organic solvents. ACS nano 2010, 4, 3845.
    16 Sun X, Luo D, Liu J. F, Evans D. G. Monodisperse chemically modified graphene obtained by density gradient ultrachentrifugal rate separation. ACS nano, 2010, 4, 3381.
    17 Mattevi C, Eda C, Agnoli S, et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009, 19, 2577.
    18 Deprez D, McLachlan D. S. The analysis of electrical conductivity of graphite conductivity of graphite powders during compaction. J. Phys. D: Appl. Phys. 1998, 21, 101.
    19 Tuinstra F, Koenig J. L. Raman spectra of graphite. J. Chem. Phys. 1970, 53, 1126.
    1 Collier C. P, Mattersteig G, Wong E. W, et al. A [2]catenane-based solid state electronically reconfigurable switch. Science 2000, 289, 1172.
    2 Shang Y, Wen Y, Li S, et al. A triphenylamine-containing donor-acceptor molecule for stable, reversble, ultrahigh density data storage. J. Am. Chem. Soc. 2007, 129, 11674.
    3 Xie L, Ling Q, Hou X, Huang W. An effective friedel-crafts postfunctionization of poly(N-vinylcarbazole) to tune carrier transportation of supramolecular organic semiconductors based onπ-stacked polymers for nonvolatile flash memory cell. J. Am. Chem. Soc. 2008, 130, 2120.
    4 Ling Q. D, Song Y, Ding S. J, et al. Non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and Eu-complexed vinylbenzoate. Adv. Mater. 2005, 17, 455.
    5 Liu G, Ling Q, Teo E. Y. H, et al. Electrical conductance tuning and bistable switching in poly(N-vinylcarbazole)-carbon nanotube composite films. ACS nano 2009, 3, 1929.
    6 Tseng R. J, Huang J, Ouyang J. Y, et al. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano. Lett. 2005, 5, 1077.
    7 Yun D. Y, Kwak J. K, Jung J. H, et al. Electrical bistabilities and carrier transport mechansims of write-once-read-many-times memory devices fabricated utilizing ZnO nanoparticles embedded in a polystyrene layer. Appl. Phys. Lett. 2009, 95, 143301.
    8 Chu C. W, Ouyang J. Y, Tseng J. H, Yang Y. Organic donor-acceptor system exhibiting electrical bistability for use in memory devices. Adv. Mater. 2005, 17, 1440.
    9 Majumdar H. S, Baral J. K, ?sterbacka R, et al. Fullerene-based bistable devices and associated negative differential resistance effect. Org. Electron. 2005, 6, 188.
    10 Padinger F, Rittberger R. S, Sariciftci N. S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 2003, 13, 85.
    11 Lenes M, Shelton S. W, Sieval A. B, et al. Electron trapping in higher adduct fullerene-based solar cells. Adv. Funct. Mater. 2009, 19, 3002.
    12 Ling Q. D, Song Y, Lim S. L, et al. A dynamic random access memory based on a conjugated copolymer containing electron-donor and–acceptor moieties. Angew. Chem. Int. Ed. 2006, 45, 2947.
    13 Li L, Ling Q. D, Lim S. L, et al. A flexible polymer memory device. Org. Electron. 2007, 8, 401.
    14 Joo W. J, Choi T. L, Lee J, et al. Metal filament growth in electrically conductive polymers for nonvolatile memory application. J Phys. Chem. B 2006, 110, 23812.
    15 Liu J, Chen S, Chen L, et al. Organic/polymeric memory and their switching mechanisms. Chinese Sci. Bull (Chinese Ver). 2009, 54: 3420.
    16 Chiguvare Z, Parisi J, Dyakonov V. Current limiting mechanisms in indium-tin-oxide /poly3-hexylthiophene/aluminum thin film devices. J. Appl. Phys. 2003, 94, 2440.
    17 Baral J. K, Majumdar H. S, Laiho A, et al. Organic memory using [6,6]-phenyl-C61 butyric acid methyl ester: morphology, thickness and concentration dependence studies. Nanotechnology 2008, 19, 035203.
    18 Novoselov K. S, Geim A. K, Morozov S. V, et al. Electrical field effect in atomically thin carbon films. Science 2004, 306, 666.
    19 Berger C, Song Z. M, Li X. B, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191.
    20 Sutter P. W, Flege J.–I, Sutter E. A. Expitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406.
    21 Choucair M, Thordarson P, Stride J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotech. 2009, 4, 30.
    22 Hernandez Y, Nicolosi V, Lotya M, et al. High yield production of graphene by liquid phase exfoliation of graphene. Nat. Nanotech. 2008, 3, 563.
    23 Lotya M, Hernandez Y, King P. J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611.
    24 Blake P, Brimicombe P. D, Nair R. R, et al. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704.
    25 Yin Z, Wu S, Zhou X, et al. Electrochemical deposition of ZnO nanorodes on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 2010, 6, 307.
    26 Wu J, Agrawal M, Becerril H. A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43.
    27 Li, B, Cao X, Ong H G, et al. All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes. Adv. Mater. 2010, 22, 3058.
    28 He Q, Sudibya H. G, Yin Z, et al. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano. 2010, 4, 3201.
    29 MouléA. J, Meerholz K. Controlling morphology in polymer-fullerene mixtures. Adv. Mater. 2008, 20, 240.
    30 Ling Q D, Song Y, Teo E Y H, et al. WORM-type memory device based on a conjugated copolymer containing europium complex in the main chain. Electronchem. Solid-State Lett. 2006, 9, 268.
    31 Sze, S. M. Physics of semiconductor devices. Wiley, New York, 1981.
    32 Lenes M, Wetzelaer G. A. H, Kooistra F. B, et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv. Mater. 2008, 20, 2116.
    33 Lin H.–T, Pei Z, Chan Y.–J. Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device. IEEE Electon Device Lett. 2007, 28, 569.
    34 Kim T. W, Jung J. H, Yoon C. S, Kim Y.–H. Multilevel charging and discharging mechanisms of vertically stacked NiB1-xBFeBxB self-assembled nanoparticle arrays embedded in polyimide layers. Appl. Phys. Lett. 2008, 92, 042103.
    35 Liu Z, Xue F, Su Y, Varhramyan K. Electrically bistable memory device based on spin-coated molecular complex thin film. IEEE Electron Device Lett. 2006, 27, 151.
    36 Kong B. S, Geng J, Jung H. T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun. 2009, 2174.
    37 Li L, Lu G, Li S, et al. Epitaxy-assisted creation of PCBM nanocrystals and its application in constructing optimized morphology for bulk-heterojunction polymer solar cells. J. Phys. Chem. B 2008, 112, 156651.
    38 Swinnen A, Haeldermans I, vande Ven, M, et al. Tuning the dimensions of CB60B-based needlelike crystals in blended thin films. Adv. Funct. Mater. 2006, 16, 760.
    39 Beal R. M, Stavrinadis A, Warner J. H, et al. The molecular structure of polymer-fullerene composite solar cells and its influence on device performance. Macromolecules 2010, 43, 2343.
    40 Blom P. W. M, Mihailetchi V. D, Koster L. J. A, et al. Device physics of polymer: fullerene bulk heterojunction solar cells. Adv. Mater. 2007, 19, 1551.
    41 Ju?ka G, Genevi?ius K, ?sterbacka R, et al. Initial transport of photogenerated charge carriers inπ-conjugated polymers. Phys. Rev. B 2003, 67, 081201.
    42 Sliauzys G, Juska G, Genevi?ius K, et al. Charge polarization in annealed bulk-heterojumtion solar cell. Thin Solid Films 2008, 516, 7230.
    43 Laiho A, Himadri S, Majumdar S, et al. Tuning the electrical switching of polymer fulleren nanocomposite thin film devices by control of morphology. Appl. Phys. Lett. 2008, 93, 203309.
    1 Chung B. C, Virshup G. F, Hidido S, et al. 27. 6% efficiency (1 sun, air mass 1. 5) monolithic Al sub 0. 37 Ga sub 0. 63 As/GaAs two-junction cascade solar cell with prismatic cover glass. Appl. Phys. Lett. 1989, 55, 1741.
    2 Gratzel M. Photoelectrochemical cells. Nature. 2001, 414, 338.
    3 He Y. J, Chen H. Y, Hou J. H, Li Y. F. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. J. Am. Chem. Soc. 2010, 132, 1377.
    4 Huo L. J, Hou J. H, Zhang S. Q, et al. A polybenzo[1,2-b:4,5-b]dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. Angew. Chem. Int. Ed. 2010, 49, 1500.
    5 Po R, Maggini M, Camaioni N. Polymer solar cells: recent approaches and achievements. J. Phys. Chem. C. 2010, 114, 695.
    6 Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864.
    7 Thompson B. C, Frechet J. M. J. Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 2008, 47, 58.
    8 De S, Coleman J. N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS nano. 2010, 4, 2713.
    9 LeMieux M. C, Roberts M, Barman S, et al. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101.
    10 Opatkiewicz J, LeMieux M. C, Bao Z. Nanotubes on display: how carbon nanotubes can be integrated into electronic displays. ACS nano 2010, 4, 2975.
    11 Hu L B, Hecht D S, Gruner G. Carbon nanotube thin films: fabrication, properties, and applications. Chem. Rev. 2010, 110, 5790.
    12 Hecht D. S, Thomas D, H L. B, et al. Carbon nanotube film on plastic as transparent electrode for resistive touch screens. Journal of the SID, 2009, 17/11, 941.
    13 Kaempgen M, Chan C. K, Ma J, et al. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872-.
    14 Meitl M. A, Zhou Y, Gaur A, et al. Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett. 2004, 4, 1643.
    15 Song Y, Yang C. M, Kim D. Y, et al. Flexible transparent conducting single-wall carbon nanotube film with network bridging method. Journal of Colloid and Interface Science. 2008, 318, 365.
    16 Wei T, Ruan J, Fan Z. J, et al. Preparation of a carbon nanotube film by ink-jet printing. Carbon. 2007, 45, 2692.
    17 Southard A, Sangwan V, Cheng J, et al. Solution-processed single walled carbon nanotube electrodes for organic thin-film transistors. Organic Electronics, 2009, 10, 1556.
    18 Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105.
    19 Qiu L, Yang X. W, Gou X. L, et al. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem. Eur. J. 2010, 16, 10653.
    20 Campidelli S, Sooambar C, Lozano Diz E, et al. Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. J. Am. Chem. Soc. 2006, 128, 12544.
    21 Liu J. Q, Xiao T, Wu P, Liao K. Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionalizations. Nanotechnology, 2007, 18, 165701.
    22 King P. J, Khan U, Lotya M, et al. Improvement of transparent conducting nanotube films by addition of small quantities of graphene. ACS nano. 2010, 4, 4238.
    23 Li S. S, Tu K. H, Lin C. C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS nano. 2010, 4, 3169.
    24 Liu J. Q, Lin Z. Q, Liu T. J, et al. Multilayer stacked low-temperature-reduced graphene oxide films: preparation, characterization, and application in polymer memory devices. Small. 2010, 6, 1536.
    25 Green M. J, Parra-Vasquez A. N. G, Behabtu N, Rasquali M. Modeling the phase behavior of polydisperse rigid rods with attractive inmteractions with applications to single-waled carbon nanotubes in superacids. J. Chem. Phys. 2009, 131, 084901
    26 Tung V. C, Chen L. M, Allen M. J, et al. Low temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 2009, 9, 1949.
    27 Snow E. S, Novak J. P, Lay M. D, Perkins F. K. 1/f noise in single-walled carbon nanotube devices. Appl. Phys. Lett. 2004, 85, 4172.
    28 Lu G. H, Ocola L. E, Chen J. H. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology. 2009, 20, 445502.
    29 Kim S, Yin J, Wang X. H, et al. Spin- and spray-deposited single-walled carbon nanotube electrodes for organic solar cells. Adv. Funct. Mater. 2010, 20, 2310.
    30 Pasquier A. D, Unalan H. E, Kanwal A, et al. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett. 2005, 87, 203511.
    1 Chen R, Zhu R, Zheng C, et al. Germafluorene conjugated copolymer-synthesis and applications in blue-light-emitting diodes and host materials. Sci China Ser B-Chem, 2009, 52, 212.
    2 Ebata H, Izawa T, Miyazaki E, et al. Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J Am Chem Soc, 2007, 129, 15732.
    3 Liu D, Zhao B, Shen P, et al. Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells. Sci China Ser B-Chem, 2009, 52, 1198.
    4 Chen M. Threshold-voltage tuning characteristics of all-organic electrochemical vertical rectifier on flexible substrates. IEEE Electron Device Lett, 2006, 27, 243.
    5 Liu J, Chen S, Chen L, et al. Organic/polymeric memory and their switching mechanisms. Chinese Sci Bull (Chinese Ver), 2009, 54, 3420.
    6 Liu J. Q, Yin Z. Y, Cao X. H, et al. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. ACS nano, 2010, 4, 3987.
    7 Metzger R. M. Rectification by a single molecule. Synth Met, 2001, 124, 107.
    8 Metzger R. M, Xu T, Peterson I. R. Electrical rectification by a monolayer of hexadecylquinolinium tricyanodimethanide measured between macroscopic gold electrodes. J Phys Chem B, 2001, 105, 7280.
    9 Hide F, Greenwald Y, Wudl F, Heeger A. J. Polymer diodes using poly(3,4-dicyanothiophene). Synth Met, 1997, 85, 1255.
    10 Liang G, Cui T, Varahramyan K. Electrical characteristics of diodes fabricated with organic semiconductors. Microelectron Eng, 2003, 65, 279.
    11 Liu Y, Cui T. Polymer-based rectifying diodes on a glass substrate fabricated by ink-jet printing. Macromol Rapid Commun, 2005, 26, 289.
    12 Tan Y. P, Song Y, Teo E. Y. H, et al. WORM-type device with rectifying effect based on a conjugated copolymer of fluorene and europium complex. J Electrochem Soc, 2008, 155, H17.
    13 Chu C. W, Ouyang J. Y, Tseng J. H, Yang Y. Organic donor-acceptor system exhibiting electrical bistability for use in memory devices. Adv. Mater. 2005, 17, 1440..
    14 Li F, Son D. I, Seo S. M, et al. Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer. Appl Phys Lett, 2007, 91, 122111.
    15 Yook K.S, Lee J.Y, Kim S.H, Jang J. Transparent organic bistable memory device with pure organic active material and Al/indium tin oxide electrode. Appl Phys Lett, 2008, 92, 223305.
    16 Qi X, Pu K, Fang C, et al. Semiconductor nanocomposites of emissive flexible random copolymers and CdTe nanocrystals: preparation, characterization, and optoelectronic properties. Macromol Chem Phys, 2007, 208, 2007.
    17 Fang C, Qi X, Fan Q, et al. A facile route to semiconductor nanocrystal-semiconducting polymer complex using amine-functionalized rod-coil triblock copolymer as multidentate ligand. Nanotechnology, 2007, 18: 035704.
    18 Sun H, Zhang J, Zhang H, et al. Pure white-light emission of nanocrystal-polymer composites. Chemphyschem, 2006, 7, 2492.
    19 Zhang H, Wang C, Li M, et al. Fluorescent nanocrystal-polymer complexes with flexible processability. Adv Mater, 2005, 17, 853.
    20 Sun H, Zhang J, Zhang H, et al. Preparation of carbazole-containing amphiphilic copolymers: an efficient method for the incorporation of functional nanocrystals. Macromol Mater Eng, 2006, 291, 929.
    21 Tu D, Liu M, Shang L, et al. Asymmetric electrical bistable behavior of an eicosanoic acid/zirconium oxide bilayer system with rectifying effect. Appl Phys Lett, 2008, 92, 123302.
    22 Yonekuta Y, Susuki K, Oyaizu KC, et al. Battery-inspired, nonvolatile, and rewritable memory architecture: a radical polymer-based organic device. J Am Chem Soc, 2007, 129, 14128.
    23 Rajh OIMT, Nozik A. J. Synthesis and characterization of surface-modified colloidal CdTe quantum dots. J Phys Chem, 1993, 97, 11999.
    24 Lim S. L, Ling Q. D, Teo E. Y. H, et al. Conformation-induced electrical bistability in non-conjugated polymers with pendant carbazole moieties. Chem Mater, 2007, 19, 5148.
    25 Potter B. G, Jr, Simmons J. H. Quantum confinement effects at the L point in CdTe. Phys Rev B, 1991, 43, 2234.
    26 Ling Q, Liaw D-J, Zhu C, et al. Polymer electronic memories: materials, devices and mechanisms. Prog Polym Sci, 2008, 33, 917.
    27 Green J. E, Choi J. W, Boukai A, et al. A 160-kilobit molecular electronic memory patterned at 10P11P bits per square centimetre. Nature, 2007, 445, 414.
    28 Jeong H. Y, Kim J. Y, Kim J. W, et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 2010, DOI : 10.1021/nl101902k.
    29 He C. L, Zhuge F, Li M, et al. Nonvolatile resistive switching in graphene oxide thin films. W. Appl. Phys. Lett. 2009, 95, 232101.
    30 Sze, S. M. Physics of semiconductor devices. Wiley, New York, 1981.
    31 Lin H. T, Pei Z. W, Chan Y. J. Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device. IEEE Electron Device Letters. 2007, 28, 569.
    32 Jin M, Jeong H. K, Yu W. et al. Graphene oxide thin film field effect transistors iwth reduction. J. Phys. D: Appl. Phys. 2009, 42, 135109.
    33 Li S. S, Tu K. H, Lin C. C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS nano. 2010, 4, 3169.
    34 Burrows P. E, Shen Z, Bulovic V, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices. J. Appl. Phys. 1996, 79, 7991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700