短碳链二元酸二元醇脂肪族聚酯及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可生物降解聚合物二十世纪八十年代中期才开始研究,近几年进展很快,已进入工业化生产,但还有许多问题需要进一步研究。其中包括,可生物降解聚合物的分解速率、分解彻底性、降解过程和机理。在材料的性能优化、加工技术及形态结构等方面也值得进一步的探索。目前,国外对可生物降解聚合物的研究主要集中在聚羟基丁酸酯系列、聚乳酸、聚二酸二醇酯系列聚合物的合成、性质等方面,并对影响聚合物降解性的内部因素和外部因素进行了研究。已有的研究表明,聚合物的分子量、空间构型、聚合物的结晶度、脂肪族二元酸和二元醇的碳链长等是影响降解反应的内因;温度、pH值、酶或微生物的种类是影响聚合物降解反应的外因。但是,由于每一种聚合物的特殊性和复杂性,控制其化学结构与降解速度的关系很困难,而且对每一种聚合物来说影响其降解反应的因素很多。
     我国对脂肪族聚酯的研究主要集中在合成、化学结构的表征和聚合物的改性方面,并没有从结构和降解速度的相互关系上真正揭示聚合物的降解反应机理。对降解反应机理的研究也显得很薄弱,对可降解聚合物的结构、降解性和降解反应速度之间关系的研究缺乏系统性和理论性,从而阻碍了对可降解聚合物的深入研究,现有的研究还不能达到对可控性环境降解产品开发的要求。因此根据不同用途和环境条件,并通过分子设计,开发准时可控性环境降解高分子成为的研究必要。
     另外,对于脂肪族聚酯的制备方法,主要有生物法和化学法,通过生物法合成的脂肪族聚酯一般脆性很高,很难直接满足使用要求;而化学合成法制得的脂肪族聚酯大多相对分子质量较低,很难单独作为塑料制品使用。因此对于脂肪族聚酯的制备研究及其改性也成为研究的必要。
     由于脂肪族二元酸和二元醇的碳链长也是影响脂肪族聚酯降解反应的主要内因之一,所以在本课题的研究中,主要采用短链的脂肪族二元酸和脂肪族二元醇作为原料来制备脂肪族聚酯。
     本课题主要以反丁烯二酸(FA)和丁二羧酸(SA)为脂肪族二元酸,一缩二乙二醇(DEG)和1,4-丁二醇(BD)为脂肪族二元醇采用直接酯化-缩聚法制备脂肪族聚酯,对该聚酯的生物降解性及生物降解可控性进行研究;以聚丁二酸丁二醇酯的环状二聚体(CDBS)为单体,采用开环聚合的方法制备了聚丁二酸丁二醇酯,对该聚丁二酸丁二醇酯的性能及生物降解性进行了研究,并与采用直接酯化-缩聚法制备的聚丁二酸丁二醇酯进行对比;采用共聚、扩链、共混等方法对合成的脂肪族聚酯进行改性,研究聚酯改性后的生物降解性、生物降解可控性、热性能以及力学性能等。
     首先,以反丁烯二酸(FA)和丁二羧酸(SA)为脂肪族二元酸,以一缩二乙二醇(DEG)和1,4-丁二醇(BD)为脂肪族二元醇采用直接酯化-缩聚法制备端羟基脂肪族聚酯。探讨了醇酸的摩尔比、反应温度、反应时间、催化剂种类以及体系压力的大小对聚酯影响,并通过红外光谱、核磁对聚酯的结构进行表征。研究表明,制备端羟基的脂肪族聚酯二元醇和二元酸的物质的量之比确定为n醇:n酸=6:5,催化剂为SnCl2;在氮气保护下,酯化温度为150℃,常压;缩聚温度为190-200℃,体系压力为3.3 KPa。
     其次,采用质量保留率对合成的端羟基脂肪族聚酯的生物降解性和生物降解可控性进行研究。对比了以FA、DEG和BD合成的端羟基不饱和脂肪族聚酯poly(FA-co-DEG)、poly(FA-co-BD)和以SA、DEG和BD合成的端羟基饱和脂肪族聚酯poly(SA-co-DEG)、poly(SA-co-BD)的生物降解性;同时重点研究端羟基不饱和脂肪族聚酯poly(FA-co-DEG)中C=C双键的引入及其交联性对聚酯的生物降解性的影响。研究表明:脂肪族聚酯的生物降解性与聚酯的分子量、熔点Tm以及分子结构有关;另外,不饱和脂肪族二元酸合成的聚酯分子链中含有C=C不饱和双键,在空气氛中高温焙烘下,C=C双键会打开发生交联,交联度随着焙烘温度的升高和焙烘时间的延长会增加,交联后,聚酯会由线状结构变成支链结构、星形结构或是网状结构;不饱和脂肪族聚酯交联后的生物降解性会降低,且随着交联度的增加而降低。
     采用2,4-甲苯二异氰酸酯(TDI)以及BD为原料,对合成的端羟基不饱和脂肪族聚酯poly(FA-co-DEG)进行扩链。研究了反应温度、反应时间、原料的摩尔比、催化剂用量等对-NCO转化率以及聚酯扩链后的性能的影响;同时对聚酯扩链后的产物的生物降解性进行了研
     究。研究表明:聚酯扩链后在脂肪酶的磷酸缓冲溶液中有一定的生物降解性,但生物降解性比扩链前的聚酯poly(FA-co-DEG)的差;而聚酯扩链后的产物交联后的生物降解性较未交联的生物降解性差。将聚酯扩链后的产物作粘合剂使用,主要考察了热压压力、热压温度和热压时间对剥离强度的影响。研究表明:该粘合剂有好的剥离强度,但剥离强度与热压压力、热压时间和热压温度有关。
     分离提纯聚丁二酸丁二醇酯的环状二聚体(cyclic dimer of poly(succinic acid-co-butanediol), CDBS),以纯化的CDBS为原料,十二醇为初始剂,辛酸锡为催化剂,采用开环聚合法制备聚丁二酸丁二醇酯(poly(SA-co-BD)),通过红外和核磁对聚酯的结构进行表征,并与直接酯化-缩聚法制备的端羟基脂肪族聚酯poly(SA-co-BD)进行了对比。研究表明:与以SA与BD为原料采用直接酯化-缩聚法制备的poly(SA-co-BD)(?)目比,开环反应温度220℃左右,在较短的反应时间内,开环聚合能得到较高分子量的poly(SA-co-BD),开环反应3h,分子量可达到63.3 KDa,而采用直接酯化-缩聚法,酯化反应4h,降低体系压力至3.3 KPa,缩聚反应2-3 h,所得聚酯的数均分子量仅为2.7 KDa。
     采用酶催化降解实验对该聚丁酸丁二醇酯的生物降解性进行研究,讨论分子量大小对聚丁二酸丁二醇酯降解性的影响。研究表明:在poly(SA-co-BD)的Tg、Tm和结晶度近似相同的条件下,poly(SA-co-BD)的分子量越小,其降解速率越快。
     最后,通过熔融共混法制备了聚丁二酸丁二醇酯(poly(SA-co-BD))/液晶高分子聚合物(LCP)的共混物,同时加入扩链剂聚碳化二亚胺(PCD)和1,1-羰基二己内酰胺(CBC)制备了共混样品。用差示扫描量热仪、X射线衍射仪、扫描电镜及力学性能测试等手段研究了poly(SA-co-BD)/LCP共混物的热性能、结晶性能、力学性能以及共混物相容性。研究结果表明:加入LCP共混后的样品具有很高的储能模量(E'),在整个测试温度变化范围内,共混样品的储能模量(E’)都高于poly(SA-co-BD)的储能模量(E'),尤其是当LCP的含量为30%时,室温下,储能模量(E')达到9.6 GPa。通过SEM观察共混样品的断面发现,在加入LCP共混后,有很多LCP的小纤维质穿插在poly(SA-co-BD)中,而这些LCP的小纤维质就是共混样品的模量增加的主要因素。共混后的样品在室温下有较高的模量,基本上可以和传统的工程塑料相媲美。
From an environmental perspective, biodegradable polymers produce an attractive alternative to conventional non-biodegradable products. There are much research has been done on the syntheses, physicochemical properties, and degradations of biodegradable polymers over the past few decades. Among those polymers, one of the successfully developed polymers is aliphatic polyester, such as poly(glycolic acid) (PGA), poly(lactic acid) (PLA), and poly(ε-caprolactone) (PCL), have been diffusely applied in medical and pharmaceutical areas, due to their excellent biocompatibility and biodegradability. The biodegradability of polyesters depends mainly on its chemical structure and especially on the hydrolysable ester bond in the main chain. Other factors such as molecular weight, crystallinity, stereoregularity, morphology, temperature, pH value, enzyme and microorganism also affect the biodegradation of polymers. The researches mainly focused on the synthesis, the structure of the polymers and polymer modification over the past few decades. The biodegradable mechanism is weak and could not produce the controlled biodegradable polymers. Therefore, according to the requirement and the environment, it needs to exploit the controlled biodegradation polymers through molecular design in the near future.
     There are biological method and chemical method to prepare the aliphatic polyesters. The aliphatic polyesters obtained from biological synthesis are usually brittle. The molecular-weight of aliphatic polyesters obtained from chemical synthesis is low, which is not fit to be plastic products. So it is important to research on the prepared method or polymer modification.
     As the length of the carbon-chain could affect the biodegradability of the aliphatic polyesters, in the present research, we use the short carbon-chain dicarboxylic acid and diols as the materials to prepare the aliphatic polyesters.
     In the present research, the aliphatic polyesters and co-polyesters were prepared from fumaric acid (FA), succinic acid (SA), diethylene glycol (DEG) and 1,4-butanediol (BD) by melt polycondensation method. The biodegradability and the controlled biodegradability were investigated in phosphate buffer solution with porcine pancreas lipase. In the present research, cyclic dimer of poly(succinic acid-co-butanediol) (CDBS) was purified from the crude oligomers of poly(butylene succinate). The purified CDBS was subjected to ring-opening polymerization (ROP) to obtain poly(succinic acid-co-butanediol) (poly(SA-co-BD)), and compared with the poly(SA-co-BD) obtained from succinic acid (SA) and 1,4-butanediol (BD) by melt polycondensation method. In the present research, the biodegradability and other properties of the aliphatic polyesters after copolymerization, blending, and chain-extension were also investigated.
     Firstly, hydroxyl terminated aliphatic polyesters and co-polyesters were prepared from fumaric acid (FA), succinic acid (SA), diethylene glycol (DEG) and 1,4-butanediol (BD) by melt polycondensation method. The effects of mole ratio of diacid to diols, reactive temperature, reactive time, the kind of catalyst, and the air pressure on polyesters were discussed. The resultant aliphatic polyester was characterized by Fourier transform infrared (FTIR) spectroscopy and 1H NMR spectrum. The results showed that, to obtain the hydroxyl terminated aliphatic polyesters, the mole ratio of diacid to diols is 6:5, SnCl2 as catalyst, esterification temperature is 150℃, polycondensation temperature is 190~200℃under low air pressure (3.3 KPa).
     Secondly, the enzymatic degradation was performed in phosphate buffer solution with porcine pancreas lipase. The biodegradability of unsaturated aliphatic polyesters poly(FA-co-DEG)、poly(FA-co-BD) was compared with the saturated aliphatic polyesters poly(SA-co-DEG) and poly(SA-co-BD). Effects of structures, compositions and cross-linking degrees of carbon-carbon double bonds of polyesters on the biodegradability were discussed. The results indicated that, the molecular weights, Tm value, and the polyester structure affect the biodegradability of aliphatic polyesters. The results also indicated that, the C=C double bonds in unsaturated aliphatic polyesters poly(FA-co-DEG) have been opened partially after heat-treatment under high temperature in air, and the higher the cross-linking degree, the slower the enzymatic degradation of poly(FA-co-DEG).
     Thirdly, chain-extended polymer was prepared by the reaction of poly(FA-co-DEG),2, 4-toluene diisocyanate (TDI) and 1,4-butanediol (BD). The effects of mole ratio of polyester to TDI, mole ratio of polyester to BD, reactive temperature, reactive time, and catalyst on chain-extension reaction were discussed. And the biodegradability of chain-extended polymer was also investigated. It was found that the biodegradation of the obtained chain-extended polymer was slower than that of the original unsaturated aliphatic polyester poly(FA-co-DEG). Accordingly, the degradability of the chain-extended polymer after cross-linked was slower than that of the uncross-linked polymer.
     In order to investigate the peeling strength of the resulting chain-extended polymer, the effects of laminating pressure, temperature and time on peeling strength were measured. The results show that, the peeling strength of the chain-extended polymer revealed good adhesion of the polymer to fabrics. The adhesion property was affected by laminating pressure, time and temperature, because the C=C bonds were allowed to cross-link to increase the cohesive interaction of the chain-extended polymer.
     Fourthly, cyclic dimer of poly(succinic acid-co-butanediol) (CDBS) was purified from the crude oligomers of poly(butylene succinate). The purified CDBS was subjected to ring-opening polymerization (ROP) to obtain poly(succinic acid-co-butanediol) (poly(SA-co-BD)) with 1-dodecanol as the initiator and tin octoate as the catalyst. Compared with the poly(SA-co-BD) obtained from succinic acid (SA) and 1,4-butanediol (BD) by melt polycondensation method. The resultant aliphatic polyester was characterized by Fourier transform infrared (FTIR) spectroscopy and 1H NMR spectrum. The results show that, ROP can obtain high-molecular-weight poly(SA-co-BD), the highest number-average molecular weight (Mn) reached about 63.3 kDa in 3 h at 220℃. The enzymatic degradation of the resultant poly(SA-co-BD) was performed in phosphate buffer solution with porcine pancreas lipase. The results show that, the higher the molecular-weight, the slower the biodegradation.
     Finally, a novel polymer blend system consisting of poly(succinic acid-co-butanediol) (poly(SA-co-BD)) and a thermotropic liquid crystalline polymer (LCP:an aromatic polyester comprising poly(4-hydroxybenzoate) sequences) was investigated in the presence and absence of a polycabodiimide (PCD) or 1, 1'-carbonyl biscaprolactam (CBC) which worked as chain extender. The properties of the resultant blend samples were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron micrographs (SEM), wide-angle X-ray diffraction (WAXD) and tensile test. It was found that, the blend specimens containing LCP in 10-30 wt% were found to hold high dynamic storage-moduli (E'), and those containing 30 wt% of LCP showed E'reaching 9.6 GPa at room temperature. Scanning electron micrograph (SEM) of the polymer blends revealed the fibrous structure of LCP in the poly(SA-co-BD) matrix by which efficient toughning of the injection-molded polymer blends was supported. These polymer blends can replace the conventional oil-based engineering plastics having superior mechanical properties.
引文
[1]平郑弊,汪长春.高分子世界[M],2001年,复旦大学出版社,上海,p50.
    [2]陆大年,王宁,眭伟民.新型绿色材料--脂肪族聚酯[J].上海化工,2001,5:7.
    [3]邱威扬,等.淀粉塑料现状及发展前景[J].高分子通讯,2000,12(4):77-82.
    [4]R. Samra, A. Ray. Polyhydroxybutyrate its copolymers and blends [J]. Journal of Macromolecular Science- Reviews in Macromolecular Chemistry & Physics,1995, C35 (2):327-359.
    [5]R.H. Schwaar. Degradable high-molecular-weight polymers and copoly-mers from lactic acid. Process economics program (review No 92-1-4). Menlo Park, California, Economics Handbook-SRI International,1993,3:1-29.
    [6]S. J. Huang. Pilymer waste management-biodegradation incineration and recycling [J]. Journal of Macromolecular Science- Reviews in Macromolecular Chemistry & Physics,1995, A32 (4):593-597.
    [7]M. K. Cox. Recycling biopolymer-composting and material recycling [J]. Journal of Macromolecular Science- Reviews in Macromolecular Chemistry & Physics, 1995, C 32 (4):607-612.
    [8]G. M. Bohlmann, P. J. Daniel, Y. Yoshida. Biodegradable Polymers:Ceh marketing research report (plastics and resins 5800280A). Menlo Park, California, Chemical Economics Handbook-SRI International,1995:4.
    [9]G. M. Bohlmann. Environmentally degradable Polymers (supplement B), Process economies program (report No 115B). Menlo Park, California, Economies Handbook-SRI International,1994:12.
    [10]W. Amass, A. Amass, B. Tighe. A review of biodegradable polymers:Users, current developments in the synthesis and characterization of biodegradable polymers, blends of biodegradable polymers and recent advances in biodegradable studies [J]. Polymer International,1998,47:89-144.
    [11]A. L. Cimecioglu, G. C. East, M. Morshed. The Synthesis and Characterization of Poly(methylene terephthalate) [J]. Journal of Polymer Science, Part A:Polymer Chemistry,1988,26 (8):2129-2139.
    [12]黄发荣.降解高分子的设计及其材料[J].化学世界,2000年,增刊:214-215.
    [13]徐永祥,徐军,孙元碧,等.聚(丁二酸丁二酯-co-丁二酸丙二酯)的等温结晶行为研究[J].高分子学报,2006,8(11):1001-1006.
    [14]Jian Yang, Antonio R. Webb, J. Samuel. Pickerill, et al. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers [J]. Biomaterials,2006,27 (9): 1889-1898.
    [15]M. Soccio, N. Lotti, L. Finelli, M. Gazzano, et al. Aliphatic poly(propylene dicarboxylate)s:Effect of chain length on thermal properties and crystallization kinetics [J]. Polymer,2007,48 (11):3125-3136.
    [16]V. Tserki, P. Matzinos, E. Pavlidou, et al. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate) [J]. Polymer Degradation and Stability,2006,91 (2):367-376.
    [17]M. Venkata Nivasu, Shekharam Tammishetti. Hydrophobically Graded Polyester Polyol Acry late Polymers:Synthesis, Characterization, and Microencapsulation of Sulfamethoxazole for Controlled Release Application [J]. Journal of Applied Polymer Science,2006,102 (4),4058-4065.
    [18]Jincheng Tang, Zheguo Zhang, Zifeng Song, et al. Synthesis and characterization of elastic aliphatic polyesters from sebacic acid, glycol and glycerol [J]. European Polymer Journal,2006,42 (12):3360-3366.
    [19]杨建军,吴明元,查刘生,等.癸二酸系聚酯多元醇的合成[J].合成橡胶工业,1997,22(4):230-232.
    [20]M. Ajioka, H. Suizu, C. Higuchi, et al. Aliphatic polyesters and their copolymers synthesized through direct condensation polymerization [J]. Polymer Degradation Stability,1998,59 (1):137-143.
    [21]T. Fujimaki. Processability and properties of aliphatic polyesters,'BIONOLLE', synthesized by polycondensation reaction [J]. Polymer Degradation Stability, 1998,59 (1):209-214.
    [22]G. Maglio, C. Marchetta, A. Botta, R. Palumbo, M. PracellaSynthesis and characterization of aliphatic unsaturated polyesters from trans-4-octene-1, 8-dioic and trans-3-hexene-1,6-dioic acids [J]. European Polymer Journal,1979, 15 (7):695-699.
    [23]D. S. Sadafule, S. P. Panda. Photocrosslinkable unsaturated polyesters from aliphatic diacids Original Research Article [J]. Polymer Photochemistry,1982,2 (1):13-21.
    [24]Shigenobu Takenouchi, Akinori Takasu, Yoshihito Inai, et al. Effect of geometric structure in unsaturated aliphatic polyesters on their biodegradability [J]. Polymer Journal,2001,33 (10):746-753.
    [25]He S, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG. Injectable biodegradable polymer composites based on poly (propylene fumarate) crosslinked with poly (ethylene glycol)-dimethacrylate [J]. Biomaterials,2000,21 (23):2389-2394.
    [26]Park H, Temenoff JS, Tabata Y, Caplan A, Mikos AG. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering[J]. Biomaterials,2007,28 (21): 3217-3227.
    [27]Farhood Najafi, Mohammad N. Sarbolouki. Synthesis and characterization of block copolymers from aromatic diols, fumaric acid, sebacic acid and PEG [J]. Journal of Applied Polymer Science,2003,90 (9):2358-2363.
    [28]Seongbong Jo, Heungsoo Shin, Slbert K. Shung, et al. Synthesis and characterization of oligo(poly(ethylene glycol) fumarate) Macromer [J]. Macromolecules,2001,34 (9):2839-2844.
    [29]John P. Fisher, Mark D. Timmer, Theresa A. Holland, et al. Photoinitiated Crosslinking of the biodegradable polyester poly(propylene fumarate) [J]. Part I, Determination of network structure [J]. Biomacromolecules,2003,4 (5): 1327-1334.
    [30]Andrew H. Brown, Valerie V. Sheares. Amorphous unsaturated aliphatic polyesters derived from dicarboxylic monomers synthesized by Diels-Alder chemistry [J]. Macromolecules,2007,40 (14):4848-4853.
    [31]Azadeh S. Hashemi Doulabi, Hamid Mirzadeh, Mohammad Imani, et al. Synthesis and preparation of biodegradable and visible light crosslinkable unsaturated fumarate-based networks for biomedical applications [J]. Polymers for Advanced Technologies,2008,19 (9):1199-1208.
    [32]Qun YANG, Fen-Juan SHAO, Da-Nian LU, Yoshiharu Kimura. Preparation and biodegradation of hydroxyl terminated poly(fumaric acid-co-diethylene glycol) and its segmented polyurethane [J]. Journal of Applied Polymer Science,2011, 120 (4),2477-2484.
    [33]Farhood Najafi, Mohammad N. Sarbolouki. Synthesis and characterization of block copolymers from aromatic diols, fumaric acid, sebacic acid and PEG [J]. Journal of Applied Polymer Science,2003,90 (9):2358-2363.
    [34]潘祖仁.高分子化学[M].1995,化学工业出版社,北京:.205-225.
    [35]Nobes, G A. R.; Kazlauskas, R. J.; Marchessault, R. H. Lipase-catalyzed ring-opening polymerization of lactone:A novel route to poly(hydroxyalkanoate)s [J]. Macromolecules,1996,29 (14):4829-4833.
    [36]Vainionpaa, S.; Kilpikari, J.; Laiho, J.; Helevirta, P.; Rokkanen, P.; Tormala, P. Strength and strength retention in vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation [J]. Biomaterials,1987,8 (1): 46-48.
    [37]Lee, S. Y; Choi, J. I. Effect of fermentation performance on the economics of poly(3-hydroxybutyrate) production by Alcaligenes latus [J]. Polymer Degradation Stability,1998,59 (1-3):387-393.
    [38]刘兴利,刘谦.从微生物细胞中收集生物降解塑料PHB[J].塑料工业,1999,27(5):4647.
    [39]Booma, SE Selheand, JR Giacn. Degradable Plastics [J]. Journal of Elastomers and Plastics,1994,26 (4):7988.
    [40]Yang Kyoo Han, Jae Won UM, Seung Soon IM, Byoung Chul Kim. Synthesis and characterization of high molecular weight branched PBA [J]. Journal of Polymer Science Part A, Polymer Chemistry,2001,39 (13):2148-2150.
    [41]何曼君,陈维教.高分子物理[M].1983,复旦大学出版社,上海:86-104.
    [42]P. Molyneux. Synthetie Polymers in Water:A Comprehesive Treatise. Franks F., ed., Plenum Press, New York,1975:14.
    [43]严瑞,陈瑞兴,宋宗文.水溶性聚合物[M],1988,.轻工业出版社,北京:.16.
    [44]Matsuki, J. Kuwsta, H. Takayama. JP63/256619,1998.
    [45]丁颂东.脂肪族聚酯的降解与稳定研究[D].四川大学材料学院博士学位论文,2006,4-15.
    [46]Jacoben, S.; Fritz, H. Cz; Degee, Ph.; Dubois, Ph.; Jerome, R. New developments on the ring opening polymerization of polylactide [J]. Industrial Crops and Products,2000,11 (2-3):265-275.
    [47]张国栋,杨纪元,冯新德,顾忠伟.聚乳酸的合成研究进展[J].化学进展,2000,12(1):89-102.
    [48]Reed, A. M.; Gilding, D. K. Biodegradable polymers for use in surgery: poly(glycolic)/poly(lactic acid) homo-and copolymers in vitro degradation [J]. Polymer,1981,22 (4):494-498.
    [49]Leenslag, J. W.; Pennings, A. J.; Bos, R. R.; Rozema, F. R.; Boering, G. Resorbable materials of poly(L-lactide). VI. Plates and screws for internal fracture fixation [J]. Biomaterials,1987,8 (1):70-73.
    [50]Kricheldorf, H. R.; Damrau, D. O. Polylactones,42:Zn L-Lactate-catalyzed polymerizations of 1,4-dioxan-2-one [J]. Macromolecular Chemistry and Physics,1998,199(6):1089-1097.
    [51]Nishida, H.; Yamashita, M.; Endo, T.; Tokiwa, Y. Equilibrium polymerization behavior of 1,4-dioxan-2-one in bulk [J]. Macromolecules,2000,33 (19), 6982-6986.
    [52]Doddi, N.; Versfelt, C. C.; Wasserman, D. Synthetic absorbable surgical devices of poly-dioxanone. US 4,032,988, October 11,1977.
    [53]温永堂,付国瑞,于建明,等.聚对二氧环己酮医用可吸收缝合线纺丝工艺研究[J].中国纺织大学学报,1997,23(4):21-25.
    [54]温永堂,郭振友,边栋材,等.TF缝合线与PDS缝合线性能对比研究[J].天津纺织工学院学报,1998,17(1):22-27.
    [55]郭敏杰,刘振,付国瑞.增塑剂对对二氧环己酮均聚物及共聚物可吸收缝合线结构与性能的影响[J].高分子学报,2003(4):554-558.
    [56]Ray, J. A.; Doddi, N.; Regina, D.; Williams, J. A.; Melveger, A. Polydioxanone (PDS), A novel monofilament synthetic absorbable suture [J]. Surgery, Gynecology and Obstetrics,1981,153 (4):497-507.
    [57]Von Fraunhofer, J. A.; Storey, R. S.; Stone, I. K.; Masterson, B. J. Tensile strength of suture materials [J]. Journal of Biomedical Materials Research,1985, 19 (5):595-600.
    [58]Knoop, M.; Lunstedt, B.; Thiede, A. Maxon and PDS--evaluation and physical and biologic properties of monofilament absorbable suture materials [J]. Langenbecks Arch Chir,1987,371 (1):13-28.
    [59]Lin, H. L.; Chu, C. C.; Grubb, D. Hydrolytic degradation and morphologic study of poly-p-dioxanone [J]. Journal of Biomedical Materials Research,1993,27 (2): 153-166.
    [60]Tomihata, K.; Suzuki, M.; Oka, T.; et al. A new resorbable monofilament stature [J]. Polymer Degradation Stability,1998,59 (1-3):13-18.
    [61]Jamiolkowski, D. D.; Newman Jr., H. D. Medical devices containing high inherent viscosity polyp-dioxanone). EP 0691359, Januray 10,1996.
    [62]Newman Jr., H. D.; Jamiolkowski, D. D. Medical devices containing high inherent viscosity polyp-dioxanone). US 5,869,597, February 9,1999.
    [63]Mathisen, T.; Albertsson, A.-C. Hydrolytic degradation of melt extruded fibers from β-propiolactone [J]. Journal of Applied Polymer Science,1990,39 (3): 591-601.
    [64]Kasuya, K.; Takagi, K.; Ishiwatari, S.; Yoshida, Y.; Doi, Y. Biodegradabilities of various aliphatic polyesters in natural waters [J]. Polymer Degradation Stability, 1998,59 (1-3):327-332.
    [65]Holland, S. J.; Tighe, B.; Gould, P. Polymers for biodegradable medical devices Ⅰ. The potential of polyesters as controlled macromolecular release systems [J]. Controlled Release,1986,4(3):155-180.
    [66]Park, T. G.; Cohen, S.; Langer, R. Poly(L-lactic acid) pluronic blends: Characterization of phase-separation behavior, degradation and morphology and use as protein releasing matrices [J]. Macromolecules,1992,25 (1):116-122.
    [67]Reeve, M. S.; McCarthy, S. P.; Downey, M. J.; Gross, R. A. Polylactide stereochemistry:Effect on enzymatic degradability [J]. Macromolecules,1994, 27 (3):825-831.
    [68]Albertsson, A.-C.; Ljungquist,O. Degradable polymers. IV:Degradation of aliphatic thermoplastic block copolymers [J]. Journal of Macromolecular Science, part A, Pure and Applied Chemistry,1988,25 (4):467-498.
    [69]那海天,宋春雷,莫志深.可生物降解聚合物的现状及生物降解性研究[J].功能高分子学报,2003,16(3):423-427.
    [70]Albertsson, A.-C.; Ljungquist, O. Degradable polymers. II. Synthesis, characterization and degradation of an aliphatic thermoplastic block copolymers [J]. Journal of Macromolecular Science, part A, Pure and Applied Chemistry, 1986,23 (3):411-422.
    [71]Tokiwa, Y; Suzuki, T. Microbial degradation of polyesters. Part III. Purification and some properties of polyethylene adipate-degrading enzyme produced by Penicillium sp. strain 14-3 [J]. Agricultural Biology and Chemistry,1977,41: 265-274.
    [72]Fields, R. D.; Rodriguez, F.; Finn, R. K. Microbial degradation of polyesters: Polycaprolactone degradation by Pullularia pullulans [J]. Journal of Applied Polymer Science,1974,18 (12):3571-3580.
    [73]H. Shirahama, Y. Kwaaguehi, M. S. Aludin, et al. Synthesis and enzymatic degradation of high molecular weight aliphatic polyesters [J]. Journal of Applied Polymer Science,2001,80 (3):340-347.
    [74]S. Davaran, A. Entezami. Synthesis and hydrolysis of polyurethanes containing ibuprofen pendent group source [J]. Journal of Bioactive and Compatible Polymers,1997,12 (1):47-58.
    [75]C. G Pitt, Z. W. Gu, P. Ingram, et al. The synthesis of biodegradable polymers with functional side chains [J]. Journal of Polymer Science, Part A:Polymer Chemistry,1987,25 (4):955-966.
    [76]E. Takiyama, T. Fujimaki. "BIONOLLE" Biodegradable Plastic through Chemical Synthesis [J]. Biogradable Plastics and Polmyers,1994,12 (3): 150-174.
    [77]U. Witt, R. J. Muller, J. Aungsta, H. Widdecke, W. D. Deeker. Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol [J]. Macromolecular Chemistry and Physics,1994,195 (2):793-802.
    [78]A. R. Mullo, O. I. Corrigna. Effect of poly-hydorxy aliphatic ester polymer type on amoxycillin release from cylindrical compacts [J]. International Journal of Pharmaceutics,2003,268 (1):71-79.
    [79]U. Witt, R. J. Muller, W. D. Decker. Biodegradation of polyester copolymers containing aromatic compounds [J]. Journal of Macromolecular Science, Part A, Pure Applied Chemistry and Physics,1995,32 (4):851-856.
    [80]Akira Hoshino, Yasuyuki Isono. Degradation of aliphatic polyester films by commercially available lipsases with reference to rapid and complete degradation of Poly(L-lactide) film by lipase PL derived from Alcaligenes sp [J]. Biodegradation,2002,13 (2):141-147.
    [81]王晓霞.模拟自然环境下脂肪族聚酯的生物降解性能的研究[D].西安,西安建筑科技大学硕士学位论文,2005,5-9.
    [82]Raquez, J. M.; Degee, P.; Narayan, R.; Dubois, P. Synthesis of melt-stable and semi-crystalline poly(l,4-dioxan-2-one) by ring-opening (co)polymerization of 1,4-dioxan-2-one with different lactones [J]. Polymer Degradation Stability, 2004,86 (1),159-169.
    [83]Tsuji, H.; Fukui, I. Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending [J]. Polymer,2003,44 (10),2891-2896.
    [84]Showa Highpolymer Co., Ltd. Preparation of biodegradable high molecular weight aliphatic polyesters. EP 0572256, May 27,1993.
    [85]K. S. Miller, J. M. Krochta. Oxygen and aroma barrier properties of edible films: A review [J]. Trends in Food Science & Technology,1997,8 (7):228-237.
    [86]Ru Chen, Brian C. Benicewicz. Substituted oligoanilines:synthesis and characterization [J]. Synthetic Metals,2004,146 (2):133-137.
    [87]D. K. Gilding, A. M. Reed, S. A. Baskett. Ethylene oxide sterilization:effect of polymer structure and sterilization conditions on residue levels [J]. Biomaterials, 1980,1 (3):145-148.
    [88]徐高峰.生物降解材料在临床骨科中的应用[J].国外医学生物医学工程分册,2003,26(3):137-141.
    [89]D. Cutrihgt, J. Beasley, B. Perezb. Histologic comparison of polylactic and polyglycolic acid sutures [J]. Oral Surgery,1971,32 (1):165-173.
    [90]朱颖先,陈大俊,李瑶君.可生物降解型纤维材料[J].高分子通报,2001,(1): 48-73.
    [91]徐晓霞,赵素华,卢艳波,刘延杰.降解塑料的实际推广应用中存在的问题及建议[J].环境卫生工程,1999,7(2):60-64.
    [92]唐赛珍.中国降解塑料的研究与开发[J].合成树脂及塑料,1999,16(2):1.
    [93]吴鸣建,沈国鹏.降解性塑料的研究与发展[J].河南化工,1999,(5):6-7.
    [94]骆为林,沈新元.生物可降解纤维Lactron及其开发和应用[J].国外纺织技术,2000,187(10):26-29.
    [95]陈辉.水溶性聚酯的合成与性能研究[D].青岛大学,纺织化学与染整工程硕士学位论文,2000,49-51.
    [96]李绍雄,朱吕民编著.聚氨酯树脂[M].1992,:江苏科学技术出版社,南京
    [97]孙彦璞,程国平.聚酯型水性聚氨酯预聚体粘度及其水分散性的研究[J].宁夏工程技术,2007,6(1):47-49.
    [98]刘凉冰,贾林才,刘红梅.扩链剂对基于聚酯/MDI聚氨酯弹性体力学性能的影响[J].化学推进剂与高分子材料,2007,(3):27-30.
    [99]Young Duk Kim, Sung Chul Kim. Effect of chemical structure on the biodegradation of polyurethanes under composting conditions [J]. Polymer Degradation and Stability,1998,62 (2):343-352.
    [100]V.Tserki, P.Matzinos, E.Pavlidou, et al. Biodegradable aliphatic polyesters. Part I:Properties and biodegradation of poly(butylene succinate-co-butylene adipate) [J]. Polymer Degradation and Stability,2006,91 (2):377-384.
    [101]B. K. Kim and T. K. Kim. Aqueous dispersion of polyurethanes from H12MDI, PTAd/PPG, and DMPA:particle size of dispersion and physical properties of emulsion cast films [J]. Journal of Applied Polymer Science,1991,43 (2): 393-398.
    [102]Hideho Tanaka, Fumio Adachi, Masaru Kunimura, Kohichiro Kurachi. Poly(ester-urethane)s Synthesized Using Polyoxalate Diols [J]. Polymer Engineering and Science,2005,45 (2):163-173.
    [103]S. Y. Moon, J. K. Kim, C. Nah, et al. Polyurethane/montmorillonite nanocomposites prepared from crystalline polyols, using 1,4-butanediol and organclay hybrid as chain extenders [J]. European Polymer Journal,2004,40 (8):1615-1621.
    [104]Y. Liu, M. S. Lindblad, E. Ranucci, A. C. Albertsson. New segmented poly(ester-urethane)s from renewable resources [J]. Journal of Polymer Science, Part A:Polymer Chemistry,2001,39 (5):630-639.
    [105]I. Rehman, E. H. Andrews, R. Smith. In vitro degradation of poly(ester-urethanes) for biomedical applications [J]. Journal of Materials Science:Materials in Medicine,1996,7 (1):17-20.
    [106]张俊良,Douglas J. Hourston, Mo Song.聚己内酯二醇型水性聚氨酯分散液的合成和性能[J].聚氨酯工业.2004,19(6):21-26.
    [107]Y. Tokiwa, T. Ando, T. Suzuki, et al. Biodegradation of synthetic polymers containing ester bonds [J]. Polymeric Materials Science and Engineering,1990, 62:988-992.
    [108]B. Bogdanov, V. Toncheva, E. Schacht, et al. Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols [J]. Polymer,1999,40 (11):3171-3182.
    [109]Shin H, Temenoff JS, Mikos AG. In vitro cytotoxicity of unsaturated oligopoly(ethylene glycol) fumarate macromers and their cross-linked hydrogels [J]. Biomacromolecules,2003,4 (3):552-560.
    [110]Akihito Ohtaki, Naoki Akakura Nakasaki. Effects of temperature and inoculum on the degradability of Poly(ε-caprolactone) during composting [J]. Polymer Degradation Stability,1998,62 (1):279-284.
    [111]Magdalena Wrobel, Jacek Zebrowske, Jan Szopa. Polyhydroxybutyrate synthesis in transgenic flax [J]. Journal of Biotechnology,2004,107 (1):41-54.
    [112]Y. Doi, S. Kitamura, H. Abe. Microbial Synthesis and Characterization of poly(ε-hydroxybutyrate-co-ε-hydroxyhexanoate) [J]. Macromolecules,1995,28: 4822-4828.
    [113]Yoda Satoshi, Bratton Daniel, Howdle Steven M. Direct synthesis of poly(1-lactic acid) in supercritical carbon dioxide with dicyelohexyldimethylearbodiimide and 4-dimethylaminopyridine [J]. Polymer, 2004,45 (23):7839-7843.
    [114]O. Martin, L. Averous, Poly(lactic acid):Plasticization and properties of biodegradable multiphase systems [J]. Polymer,2001,14 (42):6209-6219.
    [115]Lindstrom, Annika, Albertsson, et al. Quantitative determination of degradation products an effective means to study early stages of degradation in linear and branched poly(butylene adipate) and poly(butylene succinate) [J]. Polymer Degradation and Stability,2004,83 (3):487-493.
    [116]Z. Gan, K. Kuwabar, H. Abe, T.Iwata, Y. Doi. The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly(butylene adipate) films [J]. Polymer Degradation and Stability,2005,87 (1):191-199.
    [117]Wen Hong, Morris, R. Kenneth, et al. Hydrogen bonding interactions between adsorbed polymer molecules and crystal surface of acetaminophen [J]. Journal of Colloid and Interface Science,2005,290 (2):325-335.
    [118]Paola Rizzarelli, Giuseppe, Impallomeni, et al. Evidence for selective hydrolysis of aliphatic copolyesters induced by lipase catalysis [J]. Biomacromolecules,2004,5 (2):433-444.
    [119]Hezayen, Francis F., Steinbuchel, Alexander, Rehm, Bernd H.A. Biochemical and enzymological properties of the polyhydroxybutyrate synthase from the extremely halophilic archaeon strain [J]. Archives of Biochemistry and Biophysics,2002,403 (2):284-291.
    [120]Paola Rizzarelli, Coneetto Puglisi, Giorgio Montaudo. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters [J]. Polymer Degradation and Stability,2004,85 (2):855-863.
    [121]Kunihiko Takeda, Haruo Unno, Min Zhang. Polymer reaction in polycarbonate with Na2CO3 [J]. Journal of Applied Polymer Science,2004,93 (2):920-926.
    [1]韩雪清.聚酯纤维新产品开发现状及发展前景[J].合成纤维工业,1999,22(4):30-35.
    [2]王德诚.世界聚酯工业发展的特点和趋势[J].聚酯工业,2000,13(2):1-5
    [3]H. S. Brown, H. H. Chuah. Texturing of Textile Filament Yarns Based on Poly(trimethylene terephthalate) [J]. Chemical Fibers International,1997,47 (1): 72-74.
    [4]I. M. Ward, M. A. Wilding. The mechanical properties and structure of poly(m-methylene terephthalate) fibers [J]. Journal of Polymer Science:Polymer Physics,1976,14 (2):396-274.
    [5]S. D. Chen, J. E. Spruiell. Structure and properties of high-speed melt-spun filament of poly(butylene terephthalate) [J]. Journal of Applied Polymer Science, 1987,33 (4):1427-1444.
    [6]G. C. East, M. Morshed. The preparation of poly(methylene esters) [J]. Polymer, 1982,23(11):1555-1557.
    [7]R. Samra, A. Ray. Polyhydroxybutyrate copolymers and blends [J]. Journal of Macromolecular Science- Reviews in Macromolecular Chemistry & Physics,1995, C 35 (2):327-359.
    [8]孙彦璞,杨文远.聚酯二元醇合成工艺的研究[J].宁夏工程技术,2005,4(3):262-164.
    [9]S. J. Huang. Polymer waste management biodegradation incineration and recycling [J]. Journal of Macromolecular Science:Pure and Applied Chemistry, 1995, A 32 (4):593-597.
    [10]秦江川.脂肪族聚酯降解性能的研究[D].哈尔滨,黑龙江大学硕士学位论文,2005,17.
    [11]W. Amass, A. Amass, B. Tighe. A review of biodegradable polymers:Users, current developments in the synthesis and characterization of biodegradable polymers, blends of biodegradable polymers and recent advances in biodegradable studies [J]. Polymer International,1998,47:89.
    [12]Magdalena Wrobel, Jacek Zebrowske, Jan Szopa. Polyhydroxybutyrate synthesized in transgenic flax [J]. Journal of Biotechnology,2004,107:41-54
    [13]Y. Doi, S. Kitamura, H. Abe. Microbial Synthesis and Characterization of poly(ε-hydroxybutyrate-co-ε-hydroxyhexanoate) [J]. Macromolecules,1995,28: 4822-4828.
    [14]Yoda Satoshi, Bratton Daniel, Howdle Steven M. Direct synthesis of poly(L-lactic acid) in supercritical carbon dioxide with dicyelohexyldimethylearbodiimide and 4-dimethylaminopyridine [J]. Polymer, 2004,45 (23):7839-7843.
    [15]O. Martin, L. Averous, Poly(lactic acid):Plasticization and properties of biodegradable multiphase systems [J]. Polymer,2001,14 (42):6209-6219.
    [16]V.Tserki, P.Matzinos, E.Pavlidou, et al. Biodegradable aliphatic polyesters. Part I: Properties and biodegradation of poly(butylene succinate-co-butylene adipate) [J]. Polymer Degradation and Stability,2006,91 (2):377-384.
    [17]R. Samra, A. Ray. Polyhydroxybutyrate its copolymers and blends [J]. Journal of Macromolecular Science- Reviews in Macromolecular Chemistry & Physics,1995, C 35 (2):327-359.
    [18]R.H. Schwaar. Degradable high-molecular-weight polymers and copoly-mers from lactic acid. Process economics program (review No92-1-4) [J]. Menlo Park, California, Economics Handbook-SRI International,1993,3,1-29.
    [19]S. J. Huang. Pilymer waste management-biodegradation incineration and recycling [J]. Journal of Macromolecular Science:Pure and Applied Chemistry, 1995, A32 (4):593-597.
    [20]M. K. Cox. Recycling biopolymer-composting and material recycling [J]. Journal of Macromolecular Science:Pure and Applied Chemistry,1995, C 32(4): 607-612.
    [21]G. M. Bohlmann, P. J. Daniel, Y. Yoshida. Biodegradable Polymers:Ceh marketing research report (plastics and resins5800280A). Menlo Park, California, Chemical Economics Handbook-SRI International,1995:4.
    [22]王晓霞.模拟自然环境下脂肪族聚酯的生物降解性能的研究[D].西安,西安建筑科技大学硕士学位论文,2005,17.
    [23]W. Amass, A. Amass, B. Tighe. A review of biodegradable polymers:Users, current developments in the synthesis and characterization of biodegradable polymers, blends of biodegradable polymers and recent advances in biodegradable studies [J]. Polymer International,1998,47:89-144.
    [24]Mirzadeh H, Sharifi S, Imani M, Atai M, Bakhshi R, Ziaee F. Engineering in Medicine and Biology Science [J].28th Annual International Conference of the IEEE,2006; 791-794.
    [25]黄发荣.降解高分子的设计及其材料[J].化学世界,2000年,增刊:214-215.
    [26]沈开猷.不饱和聚酯树脂及其应用[M],2002,第二版.化学工业出版社,北 京,61-66.
    [27]张俐娜,薛奇,莫志深,金熹高著.高分子物理近代研究方法[M],2006.武汉大学出版社,湖北武汉,64-69.
    [1]殷敬华,莫志深.现代高分子物理学[M].2001年,科学出版社,北京,382-407.
    [2]T. M. Aminbahvai, R. H. Balundgi, P. E. Cassidy. A review on biodegradable Plastics [J]. Polymer Plastics Technology and Engineering,1990,29 (3):235-262.
    [3]杨惠娣,唐赛珍.降解塑料试验评价方法探讨[J].塑料,1996,25,16-22.
    [4]邱威扬,王飞镝,邱贤华,喻继文,陈云.淀粉塑料现状及发展前景[J].高分子通讯,2000,12(4):77-82.
    [5]G. Seott. Photor-biodegradable Plastics:Their role in the protection of the environment [J]. Polymer Degradation Stability,1990,29 (1):135-154.
    [6]Akihito Ohtaki, Naoki Akakura Nakasaki. Effects of temperature and inoculum on the degradability of Poly(ε-caprolactone) during composting [J]. Polymer Degradation Stability,1998,62 (1):279-284.
    [7]Magdalena Wrobel, Jacek Zebrowske, Jan Szopa. Polyhydroxybutyrate synthesis in transgenic flax [J]. Journal of Biotechnology,2004,107 (1):41-54.
    [8]秦江川.脂肪族聚酯降解性能的研究[D].哈尔滨,黑龙江大学硕士学位论文,2005,17.
    [9]Kasuya, K.; Takagi, K.; Ishiwatari, S.; Yoshida, Y.; Doi, Y. Biodegradabilities of various aliphatic polyesters in natural waters [J]. Polymer Degradation Stability, 1998,59 (1-3):327-332.
    [10]Holland, S. J.; Tighe, B.; Gould, P. Polymers for biodegradable medical devices Ⅰ. The potential of polyesters as controlled macromolecular release systems [J]. Journal of Controlled Release,1986,4(3):155-180.
    [11]Park, T. G.; Cohen, S.; Langer, R. Poly(L-lactic acid)/pluronic blends: Characterization of phase separation behavior, degradation, and morphology and use as protein releasing matrices [J]. Macromolecules,1992,25:116-122.
    [12]Reeve, M. S.; McCarthy, S. P.; Downey, M. J.; Gross, R. A. Polylactide stereochemistry:Effect on enzymatic degradability [J]. Macromolecules,1994, 27 (3):825-831.
    [13]Albertsson, A.-C.; Ljungquist, O. Degradable polymers. Ⅳ:Hydrolytic degradation of aliphatic thermoplastic block copolymers [J]. Journal of Macromolecular Science,1988, A25 (4):467-498.
    [14]Albertsson, A.-C.; Ljungquist, O. Degradable polyesters as biomaterials [J]. Acta Polymer,1988,39 (1-2):95-104.
    [15]Albertsson, A.-C.; Ljungquist, O. Degradable polymers. Ⅱ. Synthesis, characterization and degradation of an aliphatic thermoplastic block copolymers [J]. Journal of Macromolecular Science,1986, A23 (3):411-422.
    [16]Tokiwa, Y; Suzuki, T. Microbial degradation of polyesters. Part Ⅲ. Purification and some properties of polyethylene adipate-degrading enzyme produced by Penicillium sp. strain 14-3 [J]. Agricultural Biology and Chemistry,1977,41: 265-274.
    [17]王晓霞.模拟自然环境下脂肪族聚酯的生物降解性能的研究[D].西安,西安建筑科技大学硕士学位论文,2005,17.
    [18]张逸民,杜宝石.CR硫化胶结晶度的X衍射分峰计算法[J].橡胶工业,1998,45,524-527.
    [19]V.Tserki, P.Matzinos, E.Pavlidou, et al. Biodegradable aliphatic polyesters. Part I: Properties and biodegradation of poly(butylene succinate-co-butylene adipate) [J]. Polymer Degradation and Stability,2006,91 (2):377-384.
    [20]Lindstrom, Annika, Albertsson, et al. Quantitative determination of degradation products an effective means to study early stages of degradation in linear and branched poly(butylene adipate) and poly(butylene succinate) [J]. Polymer Degradation and Stability,2004,83 (3):487-493.
    [21]Azadeh S. Hashemi Doulabi, Hamid Mirzadeh, Mohammad Imani, et al. Synthesis and preparation of biodegradable and visible light crosslinkable unsaturated fumarate-based networks for biomedical applications [J]. Polymers for Advanced Technologies,2008,19(9):1199-1208.
    [22]邵芬娟,杨群,陆大年.不饱和脂肪族聚酯生物降解性的研究[J].粘接,2009,(12),48-51.
    [23]Qun YANG, Fen-Juan SHAO, Da-Nian LU, Yoshiharu Kimura. Preparation and biodegradation of hydroxyl terminated poly(fumaric acid-co-diethylene glycol) and its segmented polyurethane [J]. Journal of Applied Polymer Science,2011, 120 (4),2477-2484.
    [24]Z. Gan, K. Kuwabar, H. Abe, T.Iwata, Y. Doi. The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly(butylene adipate) films [J]. Polymer Degradation and Stability,2005,87 (1): 191-199.
    [25]Wen Hong, Morris, R. Kenneth, et al. Hydrogen bonding interactions between adsorbed polymer molecules and crystal surface of acetaminophen [J]. Journal of Colloid and Interface Science,2005,290 (2):325-335.
    [26]Paola Rizzarelli, Giuseppe, Impallomeni, et al. Evidence for selective hydrolysis of aliphatic copolyesters induced by lipase catalysis [J]. Biomacromolecules, 2004,5 (2):433-444.
    [27]Hezayen Francis F., Steinbuchel Alexander, Rehm Bernd H. A. Biochemical and enzymological properties of the polyhydroxybutyrate synthase from the extremely halophilic archaeon strain 56 [J]. Archives of Biochemistry and Biophysics,2002,403 (2):284-291.
    [28]Paola Rizzarelli, Coneetto Puglisi, Giorgio Montaudo. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters [J]. Polymer Degradation and Stability,2004,85 (2):855-863.
    [29]Mirzadeh H, Sharifi S, Imani M, Atai M, Bakhshi R, Ziaee F. Engineering in Medicine and Biology Science [J].28th Annual International Conference of the IEEE,2006; 791-794.
    [1]Tsuji, H.; Fukui, I. Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending [J]. Polymer,2003,44 (10),2891-2896.
    [2]Showa Highpolymer Co., Ltd. Preparation of biodegradable high molecular weight aliphatic polyesters. EP 0572256, May 27,1993.
    [3]Akihito Ohtaki, Naoki Akakura Nakasaki. Effects of temperature and inoculum on the degradability of Poly(ε-caprolactone) during composting [J]. Polymer Degradation Stability,1998,62 (1):279-284.
    [4]Magdalena Wrobel, Jacek Zebrowske, Jan Szopa. Polyhydroxybutyrate synthesis in transgenic flax [J]. Journal of Biotechnology,2004,107 (1):41-54.
    [5]Y. Doi, S. Kitamura, H. Abe. Microbial Synthesis and Characterization of poly(ε-hydroxybutyrate-co-ε-hydroxyhexanoate) [J]. Macromolecules,1995,28: 4822-4828.
    [6]Yoda Satoshi, Bratton Daniel, Howdle Steven M. Direct synthesis of poly(1-lactic acid) in supercritical carbon dioxide with dicyelohexyldimethylearbodiimide and 4-dimethylaminopyridine [J]. Polymer,2004,45 (23):7839-7843.
    [7]Hezayen, Francis F., Steinbuchel, Alexander, Rehm, Bernd H.A. Biochemical and enzymological properties of the polyhydroxybutyrate synthase from the extremely halophilic archaeon strain 56 [J]. Archives of Biochemistry and Biophysics,2002, 403 (2):284-291.
    [8]Paola Rizzarelli, Coneetto Puglisi, Giorgio Montaudo. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters [J]. Polymer Degradation and Stability,2004,85 (2):855-863.
    [9]Kunihiko Takeda, Haruo Unno, Min Zhang. Polymer reaction in polycarbonate with Na2CO3 [J]. Journal of Applied Polymer Science,2004,93 (2):920-926.
    [10]刘占琦,彭述文,庄宇钢,董丽松.一种可生物降解的脂肪族聚酯复合材料.CN1366004A,2002.8.28.
    [11]Jamshidi, K.; Hyon, S.-H.; Ikada, Y. Thermal characterization of polylactides [J]. Polymer,1988,29 (12):2229-2234.
    [12]熊磊,胡春燕,苏开第.聚氨酯改性氨基硅烷免烫整理剂的研制和应用[J].印染,2007,18,5-8.
    [13]Nakano Y, Makino M, Yamane H, et al. Role of chain extender in the blends of liquid crystalline/flexible polyesters [J]. Japan Journal of Polymer Science & Technology,1992,49 (8):635-643.
    [14]肖超渤,胡运华.高分子化学[M].1998年,武汉大学出版社,武汉,84.
    [15]杨慧.二苯基甲烷二异氰酸酯(MDI)的性能及应用发展[J],山西化工,2001,21(2):21-22.
    [16]赵孝彬、杜磊、张小平,聚氨酯的结构与微相分离[J],聚氨酯工业,2001,16(1):4-8.
    [17]李鑫,单组分反应型聚氨酯热溶胶的制备及性能研究[D],湖南:湖南大学硕士学位论文,2000.
    [18]李少雄、刘益军,聚氨酯树脂及其应用[M].2002,化学工业出版社,北京.
    [19]熊磊.聚氨酯改性有机硅抗皱免烫整理剂的合成与应用[D].无锡,江南大学硕士学位论文,2008,25-27.
    [20]王化举.聚酯型聚氨酯胶粘剂的结构、形态与粘结性能的研究[D].北京,北京化工大学硕士学位论文,2000,28-35.
    [21]刘彩兵.可降解聚氨酯共聚物的合成、结构与性能研究[D].四川,四川大学硕士学位论文,2007.
    [22]Qun YANG, Fen-Juan SHAO, Da-Nian LU, Yoshiharu Kimura. Preparation and biodegradation of hydroxyl terminated poly(fumaric acid-co-diethylene glycol) and its segmented polyurethane [J]. Journal of Applied Polymer Science,2011, 120 (4),2477-2484.
    [1]P. T. Anastas, T. C. Williamson. Green Chemistry:Environmentally Benign Chemical Synthesis and Processes [M]. Oxford Science Publications,1998.
    [2]P. T. Anastas, J. C. Warner. Green Chemistry:Theory and Practice [M]. Oxford Science Publications,1998.
    [3]A. K. Mohantya, M. Misraa, G. Hinrichsen. Biofibres, biodegradable polymers and biocomposites. An overview [J]. Macromolecular Materials and Engineering, 2000,276/'277:1-24.
    [4]Fukushima K, Furuhashi Y, Sogo K, Miura S, Kimura Y. Stereoblock Poly(lactic acid):Synthesis via solid-state polycondensation of a stereocomplexed mixture of poly(L-lactic acid) and poly(D-lactic acid) [J]. Macromolecular Bioscience,2005, 5(1):21-29
    [5]Fukushima K, Hirata M, Kimura Y. Synthesis and characterization of stereoblock poly(lactic acid)s with nonequivalent D/L sequence ratios [J]. Macromolecules, 2007,40 (9):3049-3055.
    [6]Fukushima K, Kimura Y. A Novel Synthetic Approach to Stereo-Block Poly(lactic acid) [J]. Macromolecular Symposia,2005,224 (1):133-144.
    [7]Hirata M, Kimura Y. Thermomechanical properties of stereoblock poly(lactic acid)s with different PLLA/PDLA block compositions [J]. Polymer,2008,49 (11): 2656-2661.
    [8]Fukushima K, Kimura Y. An efficient solid-state polycondensation method for synthesizing stereocomplexed poly(lactic acid)s with high molecular weight [J]. Journal of Polymer Science, Part A:Polymer Chemistry,2008,46 (11): 3714-3722.
    [9]Kricheldorf H R, Simon Rost, Christoph Wutz, Domb A. Stereocomplexes of A-B-A triblock copolymers based on poly(L-lactide) and poly(D -lactide) A blocks [J]. Macromolecules,2005,38 (16):7018-7025.
    [10]Kricheldorf H R, Simon Rost. Copolymerizations of epsilon-caprolactone and glycolide-A comparison of tin(Ⅱ) octanoate and bismuth(Ⅲ) Subsalicylate as initiators [J]. Biomacromolecules,2005,6 (3):1345-1352.
    [11]Kricheldorf H R, Simon Rost. Biodegradable multiblock copolyesters prepared from epsilon-caprolactone, L-lactide, and trimethylene carbonate by means of bismuth hexanoate [J]. Macromolecules,2005,38 (20):8220-8226.
    [12]Momoko I, Masaki O, Yuji S et al. Convenient synthesis of aliphatic polyesters by distannoxane-catalyzed poly condensation [J]. Biomacromolecules,2001,2 (4):1267-1270.
    [13]R. Nagahata, J.J. Sugiyamaa, M. Goyal, M. Goto, K. Honda, M. Asai, M. Ueda, K. Takeuchi. Thermal polymerization of uniform macrocyclic ethylene terephthalate dimer [J].Polymer,2001,42 (3):1275-1279.
    [14]K. Pang, R. Kotek, A. Tonelli. Ring-opening polymerization of the cyclic dimer of poly(trimethylene terephthalate) [J]. Journal of Polymer Science, Part A: Polymer Chemistry 2006,44 (23):6801-6809.
    [15]A. R. Tripathy, W. J. MacKnight, S. N. Kukureka. In-situ copolymerization of cyclic poly(butylene terephthalate) oligomers and is an element of-caprolactone [J]. Macromolecules,2004,37 (18):6793-6800.
    [16]S. Salhi, M. Tessier, J. C. Blais, R. E. Gharbi, A. Fradet. Synthesis of aliphatic-aromatic copolyesters by a high temperature bulk reaction between poly(ethylene terephthalate) and cyclodi(ethylene succinate) [J]. Macromolecular Chemistry and Physics,2004,205 (18):2391-2397.
    [17]M. Iwai, Y. Kimura. Kyoto International Symposium on Biodegradable Polymers, Japan 2007, P11.
    [18]Lin Jia, Lingzhi Yin, Yang Li, Qiaobo Li, Jing Yang, Jianyong Yu, Zhen Shi, Qiang Fang, Amin Cao. Syntheses, characterization and in situ self-assembly [J]. Macromolecular Bioscience,2005,5 (6):526-538.
    [19]Jacoben, S.; Fritz, H. Cz; Degee, Ph.; Dubois, Ph.; Jerome, R. New developments on the ring opening polymerization of polylactide [J]. Industrial Crops and Products,2000,11 (2-3):265-275.
    [20]张国栋,杨纪元,冯新德,顾忠伟.聚乳酸的合成研究进展[J].化学进展,2000,12(1):89-102.
    [21]Ross S. D.; Coburn E. R.; Leach W. A. Robinson W. B. Isolation of a cycle trimer from polyethylene terephthalate film [J]. Journal of Polymer Science, 1954,13 (70):406-407.
    [22]Repin H.; Papanikolau E. Synthesis and properties of cyclic di(ethylene terephthalate) [J]. Journal of Polymer Science, Part A:Polymer Chemistry,1969, 7 (12):3426-3427.
    [23]Goodman I.; Nesbitt B. F. The structures and reversible polymerization of cyclic oligomers from poly(ethylene terephthalate) [J]. Polymer,1960,1 ():384-396.
    [24]Meraskentis E.; Zahn H. Synthesis of cyclic tris(ethylene terephthalate) [J]. Journal of Polymer Science, Part A:Polymer Chemistry,1966,4 (7):1890-1891.
    [25]Brunelle D. J.; Bradt J. E.; Serth-Guzzo J. Takekoshi T.; Evans T. L.; Pearce E. J.; Wilson P. R. Semicrystalline polymers via ring-opening polymerization Preparation and polymerization of alkylene phthalate cyclic oligomers [J]. Macromolecules,1998,31 (15):4782-4790.
    [26]Hubbard P.; BrittainW. J.; Simonsick W. J. Ross C. W. Synthesis and Ring-Opening Polymerization of Poly(Alkylene 2,6-Naphthalenedicarboxylate) Cyclic Oligomers [J]. Macromolecules,1996,29 (26):8304-8307.
    [27]张逸民,杜宝石.CR硫化胶结晶度的X衍射分峰计算法[J].橡胶工业,1998,45,524-527.
    [1]A. K. Mohantya, M. Misraa, G. Hinrichsen. Biofibres, biodegradable polymers and biocomposites. An overview [J]. Macromolecular Materials and Engineering, 2000,276/277:1-24.
    [2]Tsuji, H.; Fukui, I. Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending [J]. Polymer,2003,44 (10),2891-2896.
    [3]Yoda Satoshi, Bratton Daniel, Howdle Steven M. Direct synthesis of poly(1-lactic acid) in supercritical carbon dioxide with dicyelohexyldimethylearbodiimide and 4-dimethylaminopyridine [J]. Polymer,2004,45 (23):7839-7843.
    [4]Paola Rizzarelli, Coneetto Puglisi, Giorgio Montaudo. Soil burial and enzymatic degradation in solution of aliphatic polyesters [J]. Polymer Degradation and Stability,2004,85 (2):855-863.
    [5]K. H. Wei, G. Kiss. Liquid crystalline polymer blends with stabilized viscosity [J]. Polymer Engineering and Science,1996,36 (5):713-720.
    [6]Xuefeng Wang, Jonathan Engel, Chang Liu. Liquid crystal polymer (LCP) for MEMS:processes and application [J]. Journal of Micromechanics and Microengineering,2003,13 (5):628-633.
    [7]Qun Yang, Masayuki Hirata, Danian Lu, Hajime Nakajima, Yoshiharu Kimura. Highly Efficient Reinforcement of Poly-L-lactide Materials by Polymer Blending of a Thermotropic Liquid Crystalline Polymer [J]. Biomacromolecules, 2011,12 (2),354-358.
    [8]Yang Lixin, Chen Xuesi, Jing Xiabin. Stabilization of poly(lactic acid) by polycarbodiimide. Polymer Degradation and Stability,2008,93 (10): 1923-1929.
    [9]Danijela Jovanovic, Marijas Nikolic, Jasna Djonlagic. Synthesis and characterization of biodegradable aliphatic copolyesters with hydrophilic soft segments. Journal of the Serbian Chemical Society,2004,69 (12):1013-1028.
    [10]Inoue, T. Advanced polymer materials, One point 8, Engineering plastics [M], Kyoritsu Shuppan, Japan,2004, P117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700