纳米光催化剂的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用溶胶-凝胶法制备了双稀土元素、稀土和杂多酸、以及稀土、杂多酸和分子筛多组分共掺杂改性的纳米TiO_2光催化剂:La-Y/TiO_2、La-Eu/TiO_2、La-PWA/TiO_2、Ce-PMoA/TiO_2、ZLW-TiO_2和ZPMo-TiO_2纳米光催化剂。表征了光催化剂的晶体结构、形貌、比表面积和孔径分布、表面形态、光吸收能力等性质。以亚甲基蓝(MB)的降解为探针反应,研究了催化剂晶型、离子掺杂量、MB溶液的pH值对MB光催化降解过程的影响。分析光催化剂结构和表面性质与其吸附和光活性之间的关系。
     (1)所制得的催化剂为锐钛矿型TiO_2,晶粒尺寸较小,稀土离子的掺杂使TiO_2晶型发生膨胀和畸变,提高了光催化剂的稳定性,有效抑制了TiO_2在高温下的晶相转变。经掺杂改性后TiO_2的光吸收能力增强,吸光波长向可见光区移动。改性后催化剂的比表面积增大,尤其是多组分催化剂ZLW-TiO_2和ZPMo-TiO_2的比表面积是纯TiO_2的5倍。
     (2)进行了一系列光催化降解MB实验。与纯TiO_2相比,La-Y/TiO_2、La-Eu/TiO_2、La-PWA/TiO_2、Ce-PMoA/TiO_2、ZLW-TiO_2和ZPMo-TiO_2的光催化活性明显增强。La-PWA/TiO_2、Ce-PMoA/TiO_2、ZLW-TiO_2和ZPMo-TiO_2的等温吸附实验表明,MB在催化剂表面的吸附符合Langmiur吸附等温式,且其光催化降解MB的速率常数增大。
     通过离子吸附法和化学合成法制备了Fe-Al-silicate和PG-Fe光催化剂,对其结构进行表征,通过光催化羟基化苯酚实验来评价其光催化活性,两种催化剂的光催化活性和选择性均较好。
     (1) Fe-Al-silicate具有类方石英晶型,比表面积较大,有强的吸收紫外光能力。PG-Fe在紫外区和可见区均有较强的吸光能力。
     (2)以Fe-Al-silicate和PG-Fe为光催化剂,考察了各种影响因素对光催化羟基化苯酚反应的影响。在优化实验条件下,Fe-Al-silicate光催化羟基化苯酚的转化率、邻苯二酚和对苯二酚收率、选择性分别为64.9%、39.3%、22.3%和95%。PG-Fe光催化羟基化苯酚的转化率、邻苯二酚和对苯二酚收率、选择性分别为87.8%、37%、27.4%和73.3%。
     (3)推测了两种催化剂的光催化机理。Fe-Al-silicate和PG-Fe受紫外光辐射时,反应体系中生成?OH,?OH和苯酚发生反应生成邻苯二酚和对苯二酚。
A series of nano photocatalysts La-Y/TiO_2, La-Eu/TiO_2, La-PWA/TiO_2, Ce-PMoA/TiO_2, ZLW-TiO_2 and ZPMo-TiO_2 were prepared by Sol-Gel method. The properties such as crystal structure, specific surface area, pore distribution, surface properties and optical adsorption properties were characterized. The degradation of methylene blue (MB) was chosen as the probe reaction to examine the photocatalytic activities of as prepared nano photocatalysts, the influence of the crystal phase, amount of ions dopping and pH value of MB solution to the process of MB photo degradation were studied. The relationships among the structure properties of the photocatalysts and their photocativities were analyzed.
     (1) The photocatalysts are anatase phase, and have litter crystalline size. Rare earth ions doping could swelled and aberrated the crystalline, improved the stability of anatase phase, and inhibited the crystalline phase transition. The ions doping could enhance optical adsorption in ultraviolet region, and the wavelength moved to visible region. The modified catalysts have larger specific surface area, especially the specific surface area of ZLW-TiO_2 and ZPMo-TiO_2 is 5 times as pure TiO_2.
     (2) The results of MB photocatalytic degradation showed, compared to pure TiO_2, the photocatalytic activities of La-Y/TiO_2, La-Eu/TiO_2, La-PWA/TiO_2, Ce-PMoA/TiO_2, ZLW-TiO_2 and ZPMo-TiO_2 have improved. The results of La-PWA/TiO_2, Ce-PMoA/TiO_2, ZLW-TiO_2 and ZPMo-TiO_2 isothermal adsorption showed that isotherm curve of MB on the surface of catalysts can be well described by Langmuir equation and the rate constant of photocatalytic degradation MB improved obviously.
     The photocatalysts Fe-Al-silicate and PG-Fe were prepared by ions adsorption and chemistry synthesis method respectively, and their structures were characterized. The photocatalytic activities were evaluated by phenol hydroxylation, and the results showed that two kinds of catalysts exhibit excellent photocatalytic activity and higher selectivity.
     (1) Fe-Al-silicate was identical to the typical pattern characteristic of cristobalite-like phase, has larger specific surface area and stranger adsorption ability in ultraviolet and visible region. PG-Fe has stronger adsorption ability in both ultraviont and visible region.
     (2) The effects of various parameters on photocatalytic hydroxylation of phenol were studied using Fe-Al-silicate and PG-Fe as photocatalysts. In optimize reaction condition, the phenol conversion, yield of catechol and hydroquinone, selectivity can reach 64.9%, 39.3%, 22.3%, and 95% respectively, when using Fe-Al-silicate as photocatalyst. The phenol conversion, yield of catechol and hydroquinone, selectivity can reach 87.8%, 37%, 27.4% and 73.3 respectively, when using PG-Fe as photocatalyst.
     (3) The mechanism of photocatalysis of the catalysts was inferred. When the Fe-Al-silicate and PG-Fe were radiated by ultraviolet light, the ?OH was formed in the reaction system, ?OH can react with phenol to form catechol and hydroquinone.
引文
[1] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1): 69-96.
    [2] Fujishima A, Honda K. Electrochemical photolysis water at a semiconductor electrode. Nature, 1972, 238: 37-38.
    [3] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfitein aqueous solution at TiO_2 power. J. Am. Chem. Soc., 1977, 99(1): 303-304.
    [4] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solution at semiconductor powers. J. Phys. Chem., 1977, 81(15): 1484-1488.
    [5] Pruden A L, Ollis D F. Photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water. J. Catal., 1983, 82(2): 404-417.
    [6] Hsiav C Y, Lee C L, Ollis D F. Heterogeneous photocatalysis: Degradation of dilute solutions of dichloromethane, chloroform and carbon tetrachloride with illuminated TiO_2 photocatalyst. J. Catal., 1983, 82(2): 418-423.
    [7] Bard A J, Photoelectrochemistry. Science, 1980, 207(4427): 139-144.
    [8] Rosenberg L, Brock J R, Heller A. Collection optics of TiO_2 photocatalyst on hollow glass microbeads floating on oil slicks. J. Phys. Chem., 1992, 96(8): 3423-3428.
    [9] Jimmy C. Ti1-xZrxO2 solid solution for the photocatalytic degradation of cetone in air. J. Phys. Chem., 1998, 102: 5094-5096.
    [10] Linsebigler A L, Guangquan L, John T, Photocatalysis on TiO_2 surface: principles, mechanisms and selected results. Chem. Rev., 1995, 95(1): 735-738.
    [11] Carrawaye E R, Hofman A J, Holfman M R. Photocatalytic oxidation of organic acid on quantum sized semiconductor colloids. Environ. Sci. Technol., 1994, 28(5): 786-790.
    [12] Ding Z, Lu G Q, Greenfield P F. Role of the crystallite phase of TiO_2 in heterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem., 2000, 104(19): 4815-4820.
    [13] Kubacka A, Fuerte A, M-Arias A, et al. Nanosized Ti–V mixed oxides: effect of doping level in the photo-catalytic degradation of toluene using sunlight-type excitation. Appl. Catal. B: Environ., 2007, 74(1-2): 26-33.
    [14] Sclafani A, Palmisano Li, Schiavello M. Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. J. Phys. Chem., 1990, 94(2): 829-832.
    [15] Bilkley I B, Gonzalez C T, Lees J S, et al. A structural investigation of titanium dioxide photocatalysis. J. Colid. State Chem., 1991, 92(1): 178-190.
    [16] Hagfeldt A, Hratzel M. Light-induced resox reacrtion in nanocrystalling system. Chem. Rev., 1995, 95(1): 49-68.
    [17] Burdett J K, Hughbanks T, Miller G J, et al. Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide. J. Am. Chem. Soc., 1987, 109(12): 3639-3646.
    [18] Arnal P, Corriu R J P, Leclercq D, et al. Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol–gel methods. J. Mater. Chem., 1996(6): 1925-1932.
    [19] Zhang Z B, Wang C C, Zakaria R. Role of particle size in nanocrystalline TiO_2-based photocatalysts. J. Phys. Chem. B., 1998(102): 10871-10878.
    [20] Kumark N P, Keizer K, Burggraaf A J, et al. Densification of nanostructured titania assisted by a phase transformation. Nature, 1992, 358: 48-51.
    [21] Palmisano L, Augugliaro V, Sclafani A, et al. Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J. Phys. Chem., 1988, 92(23): 6710-6713.
    [22] Li G L, Wang G H. Synthesis of nanometer-sized TiO_2 particles by a micro-emulsion method. NanoStruc. Mater., 1999,11(5): 663-668.
    [23] Wang C C, Ying J Y. Sol?Gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater., 1999, 11(11): 3113-3120.
    [24] Zheng Y Q, Shi E, Cui S X, et al. Hydrothermal Preparation of Nanosized Brookite Powders. J. Am. Ceram. Soc., 2000, 83(10): 2634-2636.
    [25] Morooka S, Yasutake T, Kobata A, et al. A mechanism for the production of ultrafine particles of TiO_2 by a gas-phase reaction. Inter. chem. Eng., 1989, 29(1): 119-126.
    [26]施利毅,刘春忠,古宏晨.高温气相反应合成金红石型纳米TiO_2颗粒的研究.金属学报, 2000, 36(3): 299-305.
    [27] Gablenz S, Voltzke D, Abicht H P, et al. Preparation of fine TiO_2 powders via spray hydrolysis of titanium tetraisopropoxide. J. Mater. Sci. Lett., 1998, 17(7): 537-539.
    [28] Zhang H J, Chen G H, Bahnemann D W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem., 2009, 19(29): 5089-5121.
    [29] Bavykin D V, Friedrich J M, Walsh F C. Protonated titanates and TiO_2 nanostructured matrials: synthesis, properties, and applications. Adv. Mater., 2006, 18(21): 2807-2824.
    [30] Cao Y, Yang W, Zhang W, et al. Improved photocatalytic activity of Sn4+ doped TiO_2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J. Chem., 2004, 28(2): 218-222.
    [31] Bryan J D, Heald S M, Chambers S A, et al. Strong room-temperature ferromagnetism in Co2+-doped TiO_2 made from colloidal nanocrystals. J. Am. Chem. Soc., 2004, 126(37): 11640-11647.
    [32] Park H, Vecitis C D, Choi W, et al. Solar-powered production of molecular hydrogen from water. J. Phys. Chem. C., 2008, 112(4): 885-889.
    [33] Choi W, Termin A, Hoffmann M R. The Role of metal ion dopants in quantum-sized TiO_2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98(51): 13669-13679.
    [34] San N. Photocatalytic degradation of 4-nitrophenol in aqueous TiO_2 suspensions: theoretical prediction of the intermediates. J. Photochem. Photobio. A: Chem., 2002,146 (3): 189-197.
    [35] Asahi. R., Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269-271.
    [36] Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doping TiO_2 photocatalyst under visible light. Chem. Lett., 2003, 32(4): 364-365.
    [37] Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett., 2002, 81(3): 454-456.
    [38] Yu J C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders. Chem. Mater., 2002, 14(9): 3808-3816.
    [39] Barborini E, Conti A M, Kholmanov I, et al. Nanostructured TiO_2 films with 2eV optical gaps. Adv. Mater., 2005, 17(5): 1842-1846.
    [40] Khan S V M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO_2. Science, 2002. 297(5590): 2243-2245.
    [41] Lin L, Kuntz R R. Photocatalytic hydrogenation of acetylene by molybdenum-sulfur complexes supported on titania. Langmuir, 1992, 8(2): 870-875.
    [42] Konta R, Ishii T, Kato H, et al. Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J. Phys. Chem. B., 2004, 108(206): 8992-8995.
    [43] Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement of photocatalytic activity by metal deposition: Characterization and photonic efficiency of Pt, Au and Pd deposited on TiO_2 catalyst. Water Res., 2004, 38: 3001-3008.
    [44] Yu J G, Xiong J F, Cheng B, et al. Fabrication and characterization of Ag-TiO_2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal. B: Environ., 2005, 60(3-4): 211-221.
    [45] Ishibai Y, Sato J, Akita S, et al. Photocatalytic oxidation of NOx by Pt-modified TiO_2 under visible light irradiation. J. Photochem. Photobio. A: Chem., 2007, 188(1): 106-111.
    [46] Yang Y Z, Chang C H, Idirss H. Photocatalytic production of hydrogen from ethanol over M/TiO_2 catalysts(M=Pd, Pt or Rh). Appl. Catal. B: Environ., 2006, 67(3-4): 217-222.
    [47] Jin Z L, Zhang X J, Lu G X, et al. Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO_2-investigation of different noble metal loading. J. Mole. Catal. A: Chem., 2006, 259(1-2): 275-280.
    [48] Wang J A, Cuan A, Salmones J, et al. Studies of sol-gel TiO_2 and pt/TiO_2 catalysts for NO reduction by CO in an oxygen-rich condition. Appl. Surf. Sci., 2004, 230(1-4): 94-105.
    [49] Kim S C, Heo M C, Hahn S H, et al. Optical and photocatalytic properities of Pt-photodeposited sol-gel TiO_2 films. Mater. Lett., 2005, 59(17): 2059-2063.
    [50] Arabatzis I M, Stergiopoulos T, Andreeva D, et al. Charaterization and photocatalytic activity of Au/TiO_2 thin films for azo-dye degradation. J. Catal., 2003, 200(1): 127-135.
    [51] Kumar P S S, Sivakumar R, Anandan S, et al. Photocatalytic degradation of acid red 88 using Au-TiO_2 nanoparticles in aqueous solutions. Water Res., 2008, 42: 4878-4884.
    [52] Overbury S H, Schwartz V, Mullins D R, et al. Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO_2. J. Catal., 2006, 241(1): 56-65.
    [53] Rodriguze-Gonzalez V, Zanella R. MTBE visible-light photocatalytic decomposition over Au/TiO_2 and Au/TiO_2-Al2O3 sol-gel prepared catalysts. J. Mole. Catal. A: Chem., 2008, 281(1-2): 93-98.
    [54] Sun L, Li, Wang C L, et al. Ultrasound aided photochemical synthesis of Ag loaded TiO_2 nanotube arrays to enhance photocatalytic activity. J. Hazard. Mater., 2009, 171(1-3): 1045-1050.
    [55] Ren L L, Zeng Y P, Jiang D L. Preparation, characterization and photocatalytic activities of Ag-deposited porous TiO_2 sheets. Catal. Commun., 2009, 10(5): 645-649.
    [56] Einaga H, Ibusuki T, Futamura S. Improvement of catalyst durability of deposition of Rh on TiO_2 in photooxidation of aromatic compounds. Environ. Sci. Tech., 2004, 38(1): 285-289.
    [57] Jin Z L, Zhang X J, Lu G X, et al. Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO_2-investigation of different noble metal loading. J. Mole. Catal. A: Chem., 2006, 259(1-2): 275-280.
    [58] Okumra M, Masuyama N, Konishi E, et al. CO oxidation below room temperature over Ir/TiO_2 catalyst preparation by deposition precipitation method. J. Catal., 2002, 208(2): 485-489.
    [59] Yang J C, Y C, Kim Y G,et al. Characterization of photoreduced Pt/TiO_2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO_2catalsts. Appl. Sur. Sci., 1997, 121-122(2): 525-529.
    [60] Schiavello M. Some working principles of heterogeneous photocatalysis by semiconductors. Electrochim. Acta, 1993, 38(1): 1056-1062.
    [61] Iliev V, Tomova D, Bilyarska L, et al. Photooxidation of xylenol orange in the presence of palladium-modified TiO_2 catalyst. Catal. Commun., 2004, 5(12): 759-763.
    [62] Wang J Y, Liu Z H, Zheng Q, et al. Preparation of photosensitized nanocrystalline TiO_2 hydrosol by nanosized CdS at low temperature. Nanotechnology, 2006, 17(18): 4561-4566.
    [63] Hensel J, Wang G M, Li Y, et al. Synergistic effect of CdSe quantum dots Sensitization and nitrogen doping of TiO_2 nanostructures for pPhotoelectrochemical solar hydrogen generation. Nano Lett., 2010, 10(2): 478-483.
    [64] Sukharev V,Kershaw R. Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water. J. Photochem. Photobio. A: Chem., 1996, 98(3): 165-169.
    [65] Bedja I, Kamat P V. Capped semiconductor colloids synthesis and photoelectrochemical behavior of TiO_2 capped SnO2 nanocrystallites. J. Phys. Chem., 1995, 99(22): 9182-9188.
    [66] Ratanatawanate C, Tao Y, Balkus K J. Photocatalytic activity of PbS quantum Dot/TiO_2 nanotube composites. J. Phys. Chem. C., 2009, 113(24): 10755-10760.
    [67] Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO_2 under visible light irradiation. J. Photochem. Photobio. A: Chem., 2001, 141(2-3): 209-217.
    [68] Bellardita M, Addamo M, A, et al. Photocatalytic activity of TiO_2/SiO2 systems. J. Hazard. Mater., 2010, 174(1-3): 707-713.
    [69] Lu C Y, Chen Z, Han H C, et al. Carbon nanoparticles coated TiO_2 nanofibers and its photocatalytic activity. Chinese J. Inorg. Chem., 2010, 26(3): 313-317.
    [70]王海,陈德文,徐广智.金属酞菁在二氧化钛胶体表面光诱导电子转移.科学通报, 1994, 39(5): 424-427.
    [71] Patrick B, Kamat P V. Photosensitization of large-bandgap semiconductors, charge injection from triplet excited thionine into ZnO colloids. J. Phys. Chem., 1992, 96(3): 1423-1428.
    [72] Molinari A, Amadeli R, Antolini L, et al. Photoredox and photocatalytic processes on Fe(Ⅲ)-porphyrin suefzce modified nanocrystalline TiO_2. J. Mole. Catal. A: Chem., 2000, 158(1): 521-531.
    [73] Kamat P V, Fox M A. Photosensitization of TiO_2 colloids by erythrosine B in acetonitrile. Chem. Phys. Lett., 1983, 102(4): 379-384.
    [74] Houlding V H, Gratzel M. Photochemical HZ generation by visible light sensitization of TiO_2 particles by surface complexation with 8-hydroxyquiline. J. Am. Chem. Soc., 1983, 105(22): 5695-5700.
    [75] Li F B, Li X Z, Hou M F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO_2 suspension for odor control. Appl. Catal. B: Environ., 2004, 48(3): 185-194.
    [76] Li F B, Li X Z, Hou M F, et al. Enhanced photocatalytic activity of Ce3+-TiO_2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odor control. Appl. Catal. A: Gen., 2005, 285(1-2): 181-189.
    [77] Hou M F, Li F B, Li R F, et al. Mechanisms of enhancement of photo-catalytic properties and activity of Nd3+ doped TiO_2 for methyl orange degradation. J. Rare Earths, 2004, 4(22): 542-546.
    [78] Zhang Y H, Zhang H X, Xu Y X, et al. Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO_2. J. Solid State Chem., 2004, 177(10): 3490-3498.
    [79] Xu A, Gao Y, Liu H Q. The preparation, characterization and their photocatalytic activities of rare-earth-doped TiO_2 nanoparticles. J. Catal., 2002, 207(2): 151-157.
    [80] Ranjit K T, Willner I, Bossmann S H, et al. Lanthanide oxide-doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenosyacetic acid. Enhance. Sci. Tech., 2001, 35: 1544-1549.
    [81] Stengl V, Bakardjieva S, Murafa N. Preparation and photocatalytic activity of rare earth doped TiO_2 nanoparticles. Mater. Chem. Phys., 2009, 114(1): 217-226.
    [82] Parida K M, Sahu N. Visible light induced photocatalytic activity of rare earth titania nanocomposites. J. Mole. Catal. A: Chem., 2008, 287(1-2): 151-158.
    [83] Choi C H, Juang R S. Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO_2 nanoparticles. J. Hazard. Mater., 2007, 149(1): 1-7.
    [84] Yang P, Lu C, Hua N P, et al. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater. Lett., 2002, 57(4): 794-801.
    [85]李越湘,王添辉,彭绍琴,等. Eu3+、Si4+共掺杂TiO_2光催化剂的协同效应.物理化学学报, 2004, 20(12): 1434-1439.
    [86] Wei H Y, Wu Y S; Lun N, et al. Preparation and photo-catalysis of TiO_2 nanoparticles Co-doped with nitrogen and lanthanum. J. Mater. Sci., 2004, 39(4): 1305-1308.
    [87] Sakatani Y, Nunoshuge J, Ando H.et al. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N co-doped TiO_2. Chem. Lett., 2003, 32(12): 1156-1157.
    [88] Xu J J, Ao Y H, Fu D G, et al. A simple route for the preparation of Eu, N-codoped TiO_2 nanoparticles with enhanced visible light-induced photocatalytic activity. J. Colloid Interface Sci., 2008, 328(2): 447-451.
    [89] Shen X Z, Liu Z C, Xie S M, et al. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. J. Hazard Mater., 2009, 162(2-3): 1193-1198.
    [90] Yoon M, Chang J A, Kim Y, et al. Synthesis of Sn-porphyrin-intercalated trititanate nanofibers optoelectronic properties and photocatalytic activities. J. Phys. Chem. B., 2001, 105(13): 2539-2545.
    [91] Ozer R R. Ferry J L. Investigation of the photocatalytic activity of TiO_2–polyoxometalate systems. Environ. Sci. Technol., 2001, 35(15): 3242-3246.
    [92] Marci G, Garcia-Lopea E, Palmisano L, et al. Preparation, characterization and photocatalytic activity of TiO_2 impregnated with the heteropolyacid H3PW12O40: Photo-assisted degradation of 2-propanol in gas-solid regime. Appl. Catal. B: Environ., 2009, 90: 497-506.
    [93] Bai B, Zhao J L, Feng X. Preparation and characterization of supported photocatalysis: HPA/TiO_2/SiO2 composit. Mater. Lett., 2003, 57(24-25): 3914-3918.
    [94] Yang Y, Guo Y, Hu C, et al. Lacunary Keggin-type polyoxometalates-based macroporous composite films: Preparation and photocatalytic activity. Appl. Catal. A: Gen., 2003, 252(2): 305-314.
    [95] Ohno T, Saito S, Fujihara K, et al. Photocatalyzed production of hydrogen and iodine from aqueous solutions of iodide using platinum-loaded TiO_2 powder. Bull. Chem. Soc Jpn., 1996, 69(11): 3059-3064.
    [96] Kenji H, Teruaki H. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions. Water Res., 1990, 24(11): 1415-1417.
    [97] Hidaka H, Asai Y, Zhao J, et al. Photoelectrochemical decomposition of surfactants on a TiO_2/TCO particulate film electrode assembly. J. Phys. Chem., 1995, 99(20): 8244-8248.
    [98] Hoffman M R, Martin S T, Wonyong Choi, et al. Environmental application of semiconductor photocatalysis. Chem. Rev., 1995, 95(1): 69-96.
    [99] Takita Y, Yamada H, Hashida M, et al. Conversion of 1,1,2-Trichloro-1,2,2- trifluoroethane (CFC113) over TiO_2-Supported Metal and Metal Oxide Catalysts. Chem. Lett., 1990, 19: 715-718.
    [100] Matos J, J Laine, M J Herrmann. Effect of the type of activated carbons on thephotocatalytic degradation of aqueous organic pollutants by UV-irradiated titania. J. Catal., 2001, 200(1): 10-20.
    [101] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc., 1977, 99(1): 303-304.
    [102] Gerischer H, Heller A. The role of oxygen in photooxidation of organic molecules on semiconductor particles. J. Phys. Chem., 1991, 95: 5261-5267.
    [103] Berry R J, Mueller M R. Photocatalytic decomposition of crude oil slicks using TiO_2 on floating substrate. J. Microchem., 1994, 50(1): 28-32.
    [104] Sunada K, Kikuchi Y, Hashimoto K, et al. Bactericidal and detoxification effects of TiO_2 thin film photocatalysts. Environ. Sci. Technol., 1998, 32(5): 726-728
    [105] Wang L H, Tsai H H, Hsien Y H. The kinetics of photocatalytic degradation of tricholroethylene in gas phase over TiO_2 supported on glass bead. Appl. Catal. B: Environ., 1998, 17(4): 313-320.
    [106] Rosana M A, Wilson F J. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl. Catal. B: Environ., 1997, 14(1-2): 55-68.
    [107]下吹越光秀,工业材料, 1997, 45, 67-70.
    [108] Sakata Y, Yamamoto T, Okazaki T, et al. Generation of visible light response on the photocatalyst of a copper ion containing TiO_2. Chem. Lett., 1998, 324(12): 1253-1254.
    [109] Moon S C, Mametsuka H, Suzuki E, et al. Stoichiometric decomposition of pure water over pt-loaded Ti/B binary oxide under UV-light irradiation. Chem. Lett., 1998, 314(2): 117-118.
    [110] Sayama K, Tanaka A, Domen K, et al. Photocatalytic decomposition of water over a Ni-loaded Rb4Nb4O17 catalyst. J. Catal., 1990, 124(2): 541-547.
    [111] Karaktisou K E, Verykios X E. Effects of altervalence cation doping of TiO_2 on its performance as a photocatalyst for water cleavage. J. Phys. Chem., 1993, 97(6): 1184-1189.
    [112] Ptail A J, Shinde M H, Potdar H S, et al. Chemical synthesis of titania(TiO_2) power via mixed precursor route for membrance applications. Mater. Chem. Phys., 2001, 68(1-3): 7-16.
    [113] Liu X H, Yang J, Wang L, et al. An improvement on sol-gel methed for preparing ultrafine and crystallized titania power. Mater. Sci. Eng., 2000, 298(1-2): 241-245.
    [114] Molinari R, Poerio T, Argurio P. Selective removal of Cu2+ versus Ni2+, Zn2+ and Mn2+ by using a new carrier in a supported liquid membrane. Catal. Today, 2006, 118(1-2): 52-56.
    [115] Jian M, Zhu L F, Wang J Y, et al. Sodium metavanadate catalyzed direct hydroxylation of benzene to phenol with hydrogen peroxide in acetonitrile medium. J. Mol. Catal. A. Chem., 2006, 253(1-2): 1-7.
    [116] Azabou S, Najjar W, Ghorbel A, et al. Mild photochemical synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol. J. Agric. Food Chem., 2007, 55(12): 4877-4882.
    [117] Shindo K, Osawa A, Kasai Y, et al. Hydroxylations of substituted naphthalenes by Escherichia coli expressing aromatic dihydroxylating dioxygenase genes from polycyclic aromatic hydrocarbon-utilizing marine bacteria. J. Mol. Catal. B., 2007, 48(1-2): 77-83.
    [118] Tanarungsun G, Kiatkittipong W, Praserthdam P, et al. Hydroxylation of benzene to phenol on Fe/TiO_2 catalysts loaded with different types of second metal. Catal. Commun., 2008, 9(9): 1886-1890.
    [119] Silva C G, Faria J L. Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol–gel TiO_2 under UV irradiation. J. Mol. Catal. A, 2009, 305(1-2): 147-154.
    [120] Fujihira M, Satoh Y, Osa T. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO_2. Nature, 1981, 293: 206-208.
    [121] Fujihira M, Satoh Y, Osa T. Heterogeneous photocatalytic oxidation of aromatic compounds on semiconductor materials: The photo-fenton type reaction. Chem. Lett, 1981, 10: 1053-1056.
    [122] Fujishima K, Fukuoka A, Yamagishi A, et al. Photooxidation of benzene to phenol by ruthenium bipyridine complexes grafted on mesoporous silica FSM-16, J. Mol. Catal. A: Chem., 2001, 166(1): 211-218.
    [123] Park H, Choi W. Photocatalytic convesion of benzene to phenol using modified TiO_2 and polyoxometalates. Catal. Lett., 2005, 101: 291-297.
    [124] Jia J G, Ohna T, Matsumura M. Efficient dihydroxylation of naphthalene on photoirradiated rutile TiO_2 power in soution containing hydrogen peroxide. Chem. Lett., 2000, 10(8): 908-909.
    [125] Sliva C G., Faria J L. Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol-gel TiO_2 under UV irradiation. J. Mole. Catal. A: Chem., 2009, 305(1-2): 147-154.
    [126] Lee H, Choi W. Photocatalytic oxidation of arsenite in TiO_2 suspension:kinetics and mechanisms. Environ. Sci. Technol., 2002, 36: 3872-3878.
    [127] Shimizu S, Akahne H, Kodama T, et al. Selective photo-oxidation of benzene over transition metal-exchanged BEA zeolite. Appl. Catal. A: Chem., 2004, 269: 75-79.
    [128] Teramura K, Tanaka T, Hosokawa T, et al. Selective photo-oxidation of various hydrocarbons in the liquid phase over V2O5/Al2O3. Catal. Today, 2004, 96: 205-209.
    [129] Sakthivel S, Hidalgo M C, Bahnemann D W, et al. A fine route to tune the photocatalytic activity of TiO_2. Appl. Catal. B: Environ., 2006, 63: 31-44.
    [130] Huang D G, Liao S J, Zhou W B, et al. Synthesis of samarium and nitrogen-co-doped TiO_2 by modified hydrothermal method and its photocatalytic performance for the degradation of 4-chlorophenol. J. Phys. Chem. Solids, 2009, 70: 853-859.
    [131] Bai C L, Xie S S, Zhu X. Titanium dioxide nanoparticles co-doped with Fe3+ and Nd3+ ions for photocatalysis. Solid State Phenomena, 2007, 239: 121-123.
    [132] Xiao Q, Si Z C, Yu Z M, et al. Characterization and photocatalytic activity of Sm3+-doped TiO_2 nanocrystalline prepared by low temperature combustion method. J. Alloys Compd., 2008, 450: 426-431.
    [133] Zhao D, Peng T Y, Xiao J R. Preparation, characterization and photocatalytic performance of Nd3+-doped titania nanoparticles with mesostructure. Mater. Lett., 2007, 61: 105-108.
    [134] Liang C H, Li F B, Liu C S, et al. The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO_2 for the degradation of Orange I. Dyes Pig., 2008, 76: 477-484.
    [135] Zhou J K, Takeuchi M, Ray A K, et al. Enhancement of photocatalytic activity on photodecomposition of formic acid over V-ion-implanted P25 under visible light irradiation. J. Colloid Interface Sci., 2007, 311: 497-501.
    [136]何崇智,郗秀荣,孟庆恩,等. X射线衍射实验技术.上海:上海科学技术出版社, 1988.
    [137] Bessekhouad Y, Robert D, Weber J V. Synthesis of photocatalytic TiO_2 nanoparticles: optimization of the preparation conditions. J. Photochem. Photobio. A: Chem., 2003, 175: 47-53.
    [138] Livage J. Henry M, Sanchez C. Sol-Gel chemistry of transition metal oxide. Prog. Solid State Chem., 1988, 18: 259-342.
    [139]李光明,徐子颉,甘礼华,等. TiO_2凝胶形成的动力学研究.同济大学学报, 1999, 27(3): 347-350.
    [140] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/soild systems, with special reference to the determination of surface area and porosity. Pure Appl. Chem., 1985, 57: 603-619.
    [141] Edelson L H, Glaeser A M. Role of particle substructure in the sintering of nanosized titania. J. Am. Ceram. Soc., 1988, 71(2): 225-235.
    [142]朱光.掺杂稀土离子的纳米TiO_2粉末制备及性能研究.西安理工大学硕士学位论文, 2008.
    [143] Rodriguez-Talaverra R, Vargas S, Aarroyo-Murillo R, et al. Modification of the phase transition temperatures in titania doped with various cations. J. Mater. Res., 1997, 12(3): 439-442.
    [144] Nakaoka Y, Nosaka Y. ESR investigation into the effects of heat treatment and cryatal structure on radicals produced over irradiated TiO_2 powder. J. Photochem. Photobio. A: Chem., 1997, 110: 229-305.
    [145] Cerrato G, Marchese L, Morterra C. Structural and morphological modifications of sintering microcrystalline TiO_2: an XRD, HRTEM and FTIR study. Appl. surface Sci., 1993, 70: 200-205.
    [146] Lu M C, Roam G D, Chen J N. Adsorption characteristics of dichlorvos onto hydrous titanium dioxide. J. Wat. Res., 1996, 30(7): 1670-1676.
    [147] Cho Y, Choi W, Lee C H, et al. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO_2. Environ. Sci. Technol., 2001, 35(5): 966-970.
    [148] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293: 269-271.
    [149] Cai T J, Liao Y C, Peng Z S, et al. Photocatalytic performance of TiO_2 catalysts modified by H3PW12O40, ZrO2 and CeO2. J. Environ. Sci., 2009, 21: 997-1004.
    [150] Cai T J, Yue M, Wang X W, et al. Preparation, characterization and photocatalytic performance of NdPW12O40/TiO_2 composite catalyst. Chinese J. Catal., 2007, 28(1): 10-16.
    [151] Takagi H, Fujishiro Y, Awano M. Preparation and characterization of the Sb-doped TiO_2 photocatalysts. J. Mater. Sci., 2001, 36: 949-955.
    [152] Huang D, Wang Y, Yang L, et al. Direct synthesis of mesoporous TiO_2 modified with phosphotungstic acid under template free condition. Micropor. Mesopor. Mater., 2006, 96: 301-306.
    [153] Turek W, Pomarzansk E S, Pron A, et al. Propylene oxidation over poly (azomethines) doped with heterpolyacids. J. Catal., 2000, 189: 297-313.
    [154] Rao P M, Wolfson A, Kababya S, et al. Immobilization of molecular H3PW12O40 heteropolyacid catalyst in alumina-grafted silica-gel and mesostructured SBA-15 silica materices. J. Catal., 2005, 232: 210-225.
    [155] Jiang S, Guo Y, Wang C, et al. One-step sol-gel preparation and enhanced photocatalytic activit of porous polyoxometalate-tantalum pentoxide nanocomposites. J. Colloid Interface Sci., 2007, 308: 208-215.
    [156] Li L, Wu Q, Guo Y, et al. Nanosize and bimodal porous polyoxotungstate- anatase TiO_2 composites preparation and photcatalytic degradation of organophosphorous pesticide using visible-light excitation. Micro. Meso. Mater., 2005, 87(1): 1-9.
    [157] Kozhevnikov I V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reaction. Chem. Rev., 1998, 98(1): 171-198.
    [158] Guo Y, Yang Y, Hu C, et al. Preparation, characterization and photochemical properties of ordered macroporous hydrid silica materials based on monovacant Keggin-type polyoxometalate. J. Mater. Chem., 2002, 12(10): 3046-305.
    [159] Yu J G, Yu J C, Leung M K, et al. Effects of a cidic and hydrolysis catalysts on the photocatalytic activity and microsturctures of bimodal mesoporous titania. J. Catal., 2003, 217: 69-78.
    [160] Senthilkumaar S, Kalaamani P, Porkodi K, et al. Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste. Bioresour. Technol., 2006, 97: 1618-1625.
    [161] Messina P V, Schulz P C. Adsorption of reactive dyes on titania–silica mesoporous materials. J. Colloid Interface Sci., 2006, 299: 305-320.
    [162] Mahmoodi N M, Arami M. Bulk phase degradation of Acid Red 14 by nanophotocatalysis using immobilized titanium(IV) oxide nanoparticles. J. Photochem. Photobio. A: Chem., 2006, 182: 60-66.
    [163]曹维良,庄绪霞,杨作银,等.苯酚羟基化制备苯二酚反应机理的理论研究.高等学校化学学报, 2005, 26(3): 489-492.
    [164]游贤德.过氧化物氧化法制取邻苯二酚与对苯二酚.化学推进剂与高分子材料, 2003, 1(2): 33-35.
    [165]刘迎新,李新学,魏雄辉.对苯二酚合成方法的研究进展.化学通报, 2004, 67(12): 869-875.
    [166]杜亚平.苯二酚的开发与生产进展.上海化工, 2008, 33(3): 19-24.
    [167] Diego A A, Carmen N, Isidro M. Transition-metal-catalyzed synthesis of hydroxylated arenes, Chem. Eur. J., 2010, 16: 5274-5284.
    [168] Jia Y X, Han W, Xiong G X, et al. Diatomite as high performance and environmental friendly catalysts for phenol hydroxylation with H2O2. Sci. Tech. Adv. Mater., 2007, 8: 106-109.
    [169] Jiang Y J, Gao Q M. Preparation of Cu2+/-VSB-5 and Their Catalytic Properties on Hydroxylation of Phenol. Mater. Lett., 2007, 61: 2212-2216.
    [170] Liu H, Lu G Z, Guo Y L, et al. Study on the synthesis and the catalytic properties of Fe-HMS materials in the hydroxylation of phenol. Micro. Meso. Mater., 2008, 108: 56-64.
    [171] Kuznetsova N I, Kirillova N V, Kuzetsova L I, et al. Hydrogen peroxide and oxygen–hydrogen oxidation of aromatic compounds in catalytic systems containing heteropoly compounds. J. Hazard. Mater., 2007, 146: 569-576.
    [172] Park S, Seo J G, Jung J C, et al. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalysts supported on TiO_2-ZrO2 mixed metal oxides, Catal. Commun., 2009, 10: 1762-1765.
    [173] Centi G, Perathoner S. One-step H2O2 and phenol syntheses: Examples of challenges for new sustainable selective oxidation processes. Catal. Today, 2009, 143: 145-150.
    [174] Liu T, We X Y, Zhao J J, et al. Microwave-assisted hydroxylation of benzene to phenol with H2O2 over FeSO4/SiO2. Min. Sci. Tech., 2010, 20: 93-96.
    [175] Izabela S, Maria Z, Monika R, et al. Cu state and behaviour in MCM-41 mesoporous molecular sieves modified with copper during the synthesis comparison with copper exchanged materials. Micro. Meso. Mater., 2004, 74(1-3): 131-136.
    [176]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学.北京:科学技术出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700