双酯加氢制备二醇的新型Cu基催化剂的合成及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,4-丁二醇(BDO)的用途十分广泛,以其为原料合成的聚酯或聚氨酯比由乙二醇或丙二醇为原料合成的聚合物具有较均衡的物理性能。1,4-丁二醇的主要下游产品四氢呋喃(THF)、γ-丁内酯(GBL)和PBT(聚丁烯对苯二甲酯)树脂都是重要的化工产品,在医药中间体、家电行业等众多领域有着广泛的应用。随着科学生产技术的发展,BDO的生产也由最初的操作危险的Reppe工艺演变到马来酸酐(或酯)的选择性加氢工艺,后者也因初原料——正丁烷的经济易得而极具发展前景。调变催化剂或反应条件,还可以由马来酸酐(或酯)选择性制备GBL或THF,增强了该工艺路线的市场弹性。乙二醇(EG)也是一种重要的化工原料,主要用于聚酯纤维、塑料、橡胶、聚酯漆、胶黏剂、表面活性剂和炸药等,也大量用作溶剂、润滑剂、增塑剂和防冻剂等。自从七十年代石油危机以来,人们清醒的意识到不能再过分的依赖传统的从石油化工下游产品(环氧乙烷)出发的制备路线。因此,从合成气出发经由草酸酯制备乙二醇的路线日益引起人们的重视。草酸酯法合成乙二醇分CO氧化偶联合成草酸酯和草酸酯催化加氢制乙二醇两步,第二步为草酸酯法合成乙二醇实现工业化的关键。公开文献中对于马来酸酯和草酸酯加氢的报道多限于专利,而系统研究催化剂载体、制备条件等对于马来酸酯及草酸酯加氢催化剂活性组分的种类、分散度、价态等的影响,并通过比较这两种底物加氢的反应结果,总结出决定双酯加氢活性的关键因素。另一方面,介孔材料由于其具有较大的孔径、较高的比表面积及高的热稳定性,常常用来作为催化剂载体。与普通载体相比,介孔材料负载的催化剂由于其能更好的分散和稳定活性物种,因此常常具有较高的活性、选择性以及稳定性。
     在本论文中,我们以Cu/ZnO/Al_2O_3和Cu/SiO_2为催化剂,研究了马来酸二甲酯(DMM)和草酸二甲酯(DMO)加氢分别制备1,4-丁二醇和乙二醇,研究了Cu/ZnO/Al_2O_3催化剂上酸性对于DMM加氢的影响;载体SiO_2的种类、Cu/SiO_2(包括介孔SiO_2)中Cu的负载量、制备方法等对于DMM及DMO加氢活性的影响,并总结出了决定双酯加氢催化活性的关键因素。具体如下:
     1.Cu/ZnO/Al_2O_3催化剂上DMM催化加氢的研究
     为了调节催化剂的加氢和脱水能力以便得到较高的BDO得率,我们首先用共沉淀法制备了不同Zn:Al比例(Cu的含量固定为50 wt%)的Cu/ZnO/Al_2O_3催化剂,发现在Al含量较多的时候,还原前后CuO、Cu的晶粒均比较小且结晶度较差,而Zn含量较多时则结晶度好,颗粒也比较大。TPR则发现当Al的含量比较高时,催化剂的还原峰变得很宽,且向高温方向移动。这说明Al含量较高的催化剂能够促进CuO的分散,但是CuO也会与Al_2O_3产生较强的相互作用,使得催化剂难于还原。而Cu和ZnO间的相互作用却能够促进Cu的还原提高Cu表面积。CZA-81(Zn:Al=8:1)Cu表面积高达12.9 m~2/gcat,而CZA-18却只有4.1 m~2/gcat。这导致CZA-18的低温活性较差,在180℃的时候,双键加氢产物DMS不能完全转化。另外,BDO的选择性随着Zn:Al的增加而增加,并在CZA-41上最高,在180℃反应时,BDO的得率达73%。而THF的选择性则随着Zn:Al的比例的下降而逐渐增加,并在CZA-14上最高,在220℃反应时,THF的得率达96%。这是因为随着Al含量的增加,催化剂上的酸中心的量也随之增加,这导致了BDO脱水生成THF的反应更容易进行。
     为了进一步验证酸中心对于BDO脱水反应的促进作用,并了解不同酸中心种类对于脱水产物的分布的影响,在上述共沉淀制备的CZA-14催化剂上我们用浸渍的方法修饰了0.5~2 wt%的K,结果发现K的加入使得催化剂的还原峰往高温方向移动,降低了低温活性和脱水产物的选择性,提高了BDO的选择性。K的修饰还改变了脱水产物的分布,尤其是在高温和K修饰量较高(1.5和2wt%)的时候丁醇(BL)成为主要的脱水产物。这可能是由于K的修饰主要覆盖了B酸位,而BL可能是BDO在L酸位上脱水产生的。
     2.Cu/介孔SiO_2催化剂上DMM催化加氢的研究
     首先用Cu(NO_3)_2的水溶液直接浸渍MCM-41载体,制备了负载量为10~80wt%的Cu/MCM-41催化剂,XRD表征发现介孔MCM-41的长程有序结构被明显的破坏,而且CuO的颗粒较大,为60 nm左右,这表明部分CuO以较大的颗粒分布在载体的外表面。将这些Cu/MCM-41催化剂用于DMM加氢,发现60 wt%的Cu/MCM-41催化剂的活性和BDO的选择性最佳,在240℃、5 MPa、H_2/E=200以及DMM LHSV=0.36 ml/gcat.h的时候,BDO的得率为55.5%。
     由于Cu/MCM-41催化剂DMM加氢低温活性比较低,CuO颗粒不能很好的分散,且MCM-41的长程有序结构有明显的破坏,因此一方面我们使用水热稳定性更高的SBA-15作为载体,另一方面我们改进了浸渍方法,使用醋酸铜的乙醇溶液来浸渍。这种方法浸渍的Cu/SBA-15能够很好的保持长程有序性,XRD测出的CuO的颗粒的大小为20 nm左右,在低负载量(5,10wt%)时TEM上能观察到有较多的CuO以较小的颗粒分散与SBA-15的孔道中。与Cu/MCM-41催化相比,Cu/SBA-15催化剂在较低的负载量时就有较高的DMM加氢活性,在10 wt%负载量时催化活性最高,在220℃时BDO得率达56.4%。
     为了进一步研究Cu的分散和价态对于DMM加氢反应活性的影响,我们用不同方法制备的Cu/SBA-15催化剂,包括等体积浸渍法(IWI)、沉积沉淀法(DP)、均匀沉积沉淀法(HDP)和嫁接法(Grafting),负载量均为10 wt%。TEM发现IWI方法不能很好的分散Cu物种,而其他三种方法则能很好的分散Cu物种,而且这三种方法制备的催化剂还原前后TEM中均未发现CuO或Cu的颗粒,XRD也未检测出CuO或者Cu的衍射峰,但是EDX却证实了Cu元素的存在,这说明CuO或Cu可能是以TEM不能检测出来的颗粒均匀分布在孔壁上。另外,通过小角XRD和TEM发现HDP方法制备的Cu/SBA-15催化剂中载体的长程有序结构被部分的破坏,这是由于HDP过程中载体SBA-15部分溶解并与Cu物种反应生成页硅酸铜的缘故,这在FTIR和N_2吸脱附等温线上得到了证实。虽然HDP法得到的Cu/SBA-15结构有部分的破坏,但是其催化活性在四种催化剂中最高,且活性顺序与Cu~0表面积的顺序一致。但Grafting得到的Cu/SBA-15催化剂的Cu比表面虽然比较低(1.6 m~2/g),但是其催化活性仍然与Cu表面要高的多的DP得到的Cu/SBA-15催化剂(3.8 m~2/g)相当,这是由于还原后其表面的Cu主要是以Cu~+的形式存在,且在反应过程中没有明显的改变,这被XPS-Auger所证实。这说明了Cu~+在马来酸二甲酯加氢中也具有十分重要的作用,因此我们认为是Cu~0/Cu~+的协同作用决定了该反应的催化活性。
     3.Cu/SiO_2催化剂上DMO加氢的研究
     首先我们以硅溶胶作为硅源、用蒸氨法制备了Cu/SiO_2催化剂,我们通过改变蒸氨温度来研究Cu物种的分散及其与载体的相互作用,并研究了这些对于DMO加氢催化活性的影响。我们发现在蒸氨温度较低的时候(333 K、343 K),Cu物种与载体SiO_2的作用力较弱,且Cu物种的分散性较差,XRD能检测出尖锐的CuO的衍射峰。而蒸氨温度比较高的时候(353 K、363 K、373 K)时,Cu物种和载体作用力则比较强,XRD谱图上未检测出CuO的衍射峰,且发现FTIR在663 cm~(-1)有δ-OH的振动峰存在;N_2吸附谱图上3 nm附近产生新的孔径分布;TEM上更是观察到了无规则分布的针状物。这些都表明较高蒸氨温度制备的催化剂上有铜页硅酸盐的存在,而且通过比较663 cm~(-1)的页硅酸盐的δ_(OH)峰和800cm~(-1)附近的SiO_2的振动峰的强度比值,我们发现363 K制备的催化剂(CuSi-363)上页硅酸盐的量最多,另外该催化剂的XPS谱图上Cu 2p_(3/2)的结合能最高,这说明363 K制备的催化剂中Cu物种和载体SiO_2的作用力最强,因此还原以后Cu~+的含量也是最高的。将这一系列的Cu/SiO_2催化剂用于DMO加氢反应后发现,CuSi-363的DMO加氢活性最高,在优化条件下,EG得率达98%。而且我们发现蒸氨温度较低时催化剂的活性与Cu~0表面积成正比,而蒸氨温度较高时则与Cu~+表面积成正比。这说明在DMO加氢反应中也是Cu~+/Cu~0的协同作用决定这催化剂的催化活性。
     为了更好的研究Cu~+/Cu~0的协同作用,我们用浸渍法(WI)、蒸氨法(AE)和化学吸附水解法(CH)制备了Cu/SiO_2催化剂,这三种方法制备的催化剂中Cu和载体相互作用的强弱顺序为AE>CH>WI。研究发现浸渍法不能很好的分散Cu物种,催化剂还原前后CuO和Cu的颗粒大小分别为25.6 nm和36.5 nm,因此其催化活性也最差。而AE和CH方法则能较好的分散Cu物种,在350℃还原后,Cu颗粒大小仅为3 nm左右。H_2-TPR中,Cu/SiO_2-AE的还原峰温比Cu/SiO_2-CH的高,这表明前者Cu物种与载体的作用力强。XPS-AES分峰结果显示还原后的催化剂中AE法的Cu~+占28.0%,而CH和WI法的分别占19.3%和5.6%,但是由于Cu/SiO_2-CH的Cu~0表面积比Cu/SiO_2-AE的要高,因此计算出CH法和AE法的Cu~+的表面积类似。DMO加氢活性结果显示Cu/SiO_2-CH的活性最高,表明在Cu~+表面积相近时,催化剂的活性由Cu~0表面积决定。为了进一步提高催化剂的活性,我们将CH方法的Cu的理论负载量加倍,但ICP-AES测定Cu的负载量并未因此增加,而且Cu表面积和DMO加氢活性还因此稍有下降,这表明CH方法制备的催化剂的Cu负载量仅取决于载体本身的性质。
     4.Cu/介孔SiO_2催化剂上双酯加氢的研究
     由于CH方法制备的Cu催化剂的负载量与载体相关,因此我们选用不同的介孔材料作为载体,包括SBA-15、MCM-41、MCF和HMS,用CH方法制备了一系列催化剂。ICP-AES结果表明,Cu/介孔SiO_2的Cu负载量均在23 wt%左右,这比普通SiO_2作为载体时的Cu的负载量提高了将近一倍。XRD显示还原前后Cu物种能够很好的分散在介孔SiO_2上,还原前后的TEM也证实了这一点。但TEM和小角XRD表征发现Cu/MCM-CH、Cu/MCF-CH和Cu/HMS-CH的长程有序结构有部分的破坏。还原以后XPS-AES显示Cu/介孔SiO_2催化剂上Cu物种主要以Cu~0的形式存在,且Cu颗粒均在3 nm左右,Cu~0表面积顺序为Cu/MCM-CH>Cu/SBA-CH>Cu/HMS-CH>Cu/MCF-CH,但均在11 m~2/g左右。DMO加氢活性顺序却与上述顺序不一样,为Cu/SBA-CH>Cu/MCM-CH>Cu/MCF-CH>Cu/HMS-CH,这可能是由于Cu/MCM-CH和Cu/HMS-CH的孔径和Cu颗粒大小相近,从而导致孔道阻塞和传质困难,因此使得反应活性较低。在Cu/SBA-CH催化剂上,我们优选了反应条件,发现该催化剂在200℃,2.5MPa,H_2/E=50,DMO LHSV=1.5 h~(-1)时,EG得率为96.2%。而时空得率高达0.758 g(h.gcat),这高于所有文献值。对于SBA-15载体的制备过程,我们做了一些改变,将除去模板剂的过程由500℃空气中焙烧改为冰水浴中用Fenton方法除去,希望能够提高SBA-15表面的硅羟基的密度,从而提高Cu负载量,最终提高催化活性。但是ICP结果显示Fenton方法除模板剂并未提高Cu的负载量,而且活性甚至有所下降,N_2吸附脱附和小角XRD结果显示SBA-15的长程有序结构有所破坏,这可能与Fenton法处理SBA-15反应比较剧烈,瞬间产生大量气体,以及使用过量强酸来除去Fe(OH)_3有关。因此,我们还是使用焙烧法来除去模板剂P123。如此制得的上述Cu/SBA-CH催化剂在优选的反应条件下,在500h的反应时间内能够保持平均约96%的EG得率,显示了极高的EG时空得率和很高的稳定性。
     我们将Cu/SBA-CH催化剂继续用于DMM加氢中,结果发现其活性比HDP方法制备的催化剂高,优选条件为T=200℃、p=5.0 MPa、H_2/DMM=300(molmol~(-1))和DMM LHSV=0.36 ml/(gcat·h),此时BDO的得率为74.6%。这表明Cu/SBA-CH催化剂在DMO和DMM加氢中均具有优异的催化活性,因此具有很大的工业应用潜力。
Great interest has been aroused due to the steadily growing demand for 1,4-butanediol(BDO) which is widely used as a starting material for polymers and solvents.The polybutylene terephthalate(PBT) and other polyurethances produced from BDO had superior properties as structural and engineering plastics,and play an important role in many fields.Tetrahydrofuran(THF),obtained through the dehydration of BDO,is an indispensable solvent for many polymers and a monomer in the manufacture of polytetramethylene ether glycol(PBT),etc.At present,Davy process has showed great advantage for producing BDO not only the lower operation pressure,but also because well-established fixed-bed reactor technology could be utilized.Moreover,the products distribution could be regulated to fit the market demand using dialkyl maleate as reactant.Ethylene glycol is also an important chemical used in polyesters manufacture or as antifreeze.The catalytic hydrogenation of dimethyl oxalate(DMO) to ethylene glycol(EG) is the second step of indirect synthesis of glycol from syngas,which is a new chemical process including the oxidative coupling reaction of carbon monoxide to diaikyl oxalate and the catalytic hydrogenation of dialkyl oxalate to glycol.In this work,catalytic hydrogenation of dimethyl maleate and dimethyl oxalate has been studied in details.The optimum copper-based catalysts were prepared by changing carriers,adding promoters as well as improving preparation methods.By means of N_2-adsorption,XRD,XPS&AES, SEM,TEM,TPR,FTIR,UV-Vis techniques,the elects of bulk structure and surface component of catalysts on the catalytic performance were investigated.
     The main contents of this paper are as follows:
     1.DMM hydrogenation over Cu/ZnO/Al_2O_3 catalyst
     For the purpose of obtaining higher yield of BDO,we adjusting the hydrogenation and dehydrogenation ability by preparation of Cu/ZnO/Al_2O_3 catalysts of different Zn:Al molar ratio.It is found that when Zn:Al is higher,the crystallinity of Cu species is also higher and the crystallite size larger,but its reduction temperature is smaller than the one with lower Zn:Al ratio,which is because of the promotion effect of ZnO to the reduction of CuO.When Zn:Al is lower,Cu species can be well dispersed,resulting in smaller CuO and Cu particles.However,because of the strong interaction between Cu species and Al_2O_3,the Cu species are reduced at higher temperatures and the catalysts display a lower Cu~0 surface area and DMO hydrogenation activity;and also because of its higher acidic Al_2O_3 content,THF selectivity is higher over the catalysts with lower Zn:Al ratio.At a reaction temperature of 220℃,THF selectivity reaches 96%at CZA-14.On the contrary, higher Zn:Al ratio favor the selectivity of BDO.At 180℃,BDO selectivity reaches 73%over CZA-41.
     For the confirmation of the effect of acid center on BDO dehydration to THF,a small amount of K is added to CZA-14 catalyst by impregnation.It is found that K adding hinders reduction of Cu species,decreases both hydrogenation and dehydration activity and increases BDO selectivity.Moreover,the dehydration product distribution has been substantially changed after K modification.At higher reaction temperatures and higher K loadings,butanol becomes the main dehydration product,which may be because of the preferential covering of Br(o|¨)nsted acid by K_2O, leaving Lewis acid uncovered.
     2.DMM hydrogenation over Cu/mesoporous SiO_2 catalyst
     10~80 wt%Cu was loaded on mesoporous MCM-41 by impregnation method. It was found that the long range ordered structure of MCM-41 was obviously deteriorated during impregnation,and Cu species could not be well dispersed.When this series of catalysts was used in DMO hydrogenation,it was found that 60Cu/MCM-41 catalyst showed the best catalytic performaces,with a BDO yield of 55.5%at a reaction temperature of 240℃.
     In order to increase copper dispersion and better retention of mesoporous structure,SBA-15 instead of MCM-41 is used as catalyst support and the method of impregnation is improved.It was found that over thus prepared Cu/SBA-15 catalyst, Cu species can be better dispersed yet not better enough,because an average CuO particle size of around 20 nm was detected over 20Cu/SBA-15.Compared with Cu/MCM-41 catalysts,DMO hydrogenation activity maximizes at a much lower Cu loading of 10 wt%over Cu/SBA-15.At 220℃,over 10Cu/SBA-15,a BDO yield of 56.4%was obtained.
     For the purpose of better understanding of the influence of Cu dispersion and valence state to DMM hydrogenation,Cu/SBA-15 prepared by different methods was carefully characterized and was related with DMM hydrogenation activity.It was found that deposition-precipitation(DP),homogeneous deposition-precipitation(HDP) and Grafting method can well disperse copper species before and after reduction, while incipient wetness impregnation(IWI) method can not.Small angle XRD pattern and N_2 adsorption-desorption data indicate that partial structure collapse was found over Cu/SBA-15 catalyst prepared by HDP method,however,the HDP catalyst shows the best DMM hydrogenation activity and the activity was found to be linearly correlated with the Cu~0 surface area except for DP and Grafting Cu/SBA-15.The DMM hydrogenation activity of Grafting Cu/SBA-15 catalyst is comparable with DP Cu/SBA-15,while its Cu~0 surface area was much lower.XPS-AES spectra indicate that after reduction and reaction,Cu~+ predominates over Grafting Cu/SBA-15,while over other catalysts,Cu~0 predominates.Combining the XPS-AES results,Cu~0 surface areas and the catalytic performances,it can be deduced that Cu~+ plays an important role in DMM hydrogenation.We suppose that it is Cu~+/Cu~0 cooperation that determines DMM hydrogenation activity.
     3.DMO hydrogenation over Cu/commercial SiO_2 catalyst
     The influence of ammonia evaporation temperature(T_(AE)) to the structure and DMO hydrogenation activity was studied over Cu/SiO2 catalysts prepared by ammonia evaporation(AE) method.It was found that a lower T_(AE)(333 K and 343 K) resulted in poor Cu dispersion and a weaker Cu-support interaction,while it was the opposite over Cu/SiO_2 catalysts prepared with higher T_(AE).When T_(AE) was higher(353 K,363 K and 373 K),TEM,FTIR and N_2 adsorption results suggest the existence of copper phyllosilicate,whose amout maximized at T_(AE) of 363 K and XPS indicates a strongest Cu-support interaction in CuSiO-363 catalyst.As a result,after reduction, CuSi-363 contains the highest amour of Cu~+.At lower T_(AE),DMO hydrogenation activity was found to be linearly correlated with Cu~0 surface area,while at higher T_(AE), the activity was linearly correlated with Cu~+ surface area,which means that Cu+ also plays an important role over DMO hydrogenation.So we also make a conclusion that Cu~+/Cu~0 cooperation determines the activity of DMO hydrogenation.
     Cu/SiO_2 catalysts was prepared by different methods including wetness impregnation(WI),chemisorption-hydrolysis(CH) and ammonia evaporation(AE), which will result in different Cu-support interactions,in order to better understand Cu~+/Cu~0 interaction.It was found that WI can not well disperse Cu species,thus resulted in lowest DMO hydrogenation activity.XPS-AES and N_2O titration results shows that although a higher Cu~+/Cu~0 ratio was found over CuSi-AE catalyst,Cu~+ surface area was almost the same with that of CuSi-CH,however,a much larger Cu~0 surface area was found over CuSi-CH catalyst,which resulted in a better DMO hydrogenation activity.It was also found that the Cu loading of the CH Cu/SiO_2 catalyst was determined by the SiO_2 support,further increase of Cu nominal loading could not increase the actually Cu loading.
     4.Di-ester hydrogenation over Cu/mesoporous SiO_2 catalyst
     We choose different mesoporous SiO_2 as support in order to increase Cu loading and DMO hydrogenation activity of CH CuSiO_2 catalyst.ICP-AES results show that Cu loading was substantially increased over Cu/mesoporous SiO_2 catalysts.Among SBA-15,MCM-41,MCF and HMS,it was SBA-15 supported Cu catalyst that shows the best DMO catalytic activity and the catalyst also best retains the mesoporous structure.Under optimized reaction conditions,an EG yield of 96.2%was obtained. The space time yield was calculated to be 0.758 g/(h·gcat),which was the highest among all the values reported by open literatures.
     Fenton method was used to remove the P123 surfacant in order to reduce the loss of suface silanols induced by calcination.However,it was found that when the Fenton SBA-15 was used as support,Cu loading and Cu~0 surface area was not substantially increased when compared with calcined SBA-15,which may be because of the deterioration of SBA-15 support during Fenton and subsequentant CH process. Thus,calcined SBA-15 was again used as support for the preparation of CH Cu/SBA-15 catalyst and the catalyst was subjected to a stability test of 500 h under the optimized conditions.An average EG yield of 96%was obtained over 500 h time on stream,which proves the superior DMO hydrogenation activity and EG selectivity as well as stability of the CH Cu/SBA-15 catalyst.
     The CH Cu/SBA-15 catalyst was also used in DMM hydrogenation and it was found that it shows higher activity and BDO selectivity than HDP Cu/SBA-15 catalyst. A BDO yield of 74.6%was obtained under optimized conditions.These results indicate that CH Cu/SBA-15 shows superior catalytic performances in both DMO and DMM hydrogenation and is a very promising catalyst for industrial purpose.
引文
[1]Mitsubishi K.C.1,4-butanediol/tetrahydrofuran production technology[J].Chemtech,1988,12:759-763.
    [2]Harris N.T.,M.W.Butanediol via maleic anhydride[J].Hydrocarb.Process,1990,69(5):79-82.
    [3]Brpwmstein A.M.L.,H.L.Which route to 1,4-butanediol?[J].Hydrocarb.Process,1977,9:159-162.
    [4]Yasuo T.New route to 1,4-BDO and THF[J].Hydrocarb.Process,1981,9:187-190.
    [5]王俐 国内外1,4-丁二醇市场预测[J].化工技术经济,2003,21(2):26-33.
    [6]李小鹏 刘越 耗氢产品1,4-丁二醇生产技术及市场前景[J].氯碱工业,2004,6(6):23-27.
    [7]孟秀芳1,4-丁二醇的生产和市场前景[J].山西化工,2004,24(3):12-14.
    [8]Report P.German Technology in Organic Synthesis[J].Maruzen:Institute for Synthesis in Organic Chemistry,1954.
    [9]Weissermel K.A.,H.[J].J.Industrielle Organische Chemie,1994.
    [10]李玉芳 烯丙醇的生产方法及其下游产品开发[J].科技与开发:化工中间体,2003,1:18-21.
    [11]Sharif M.Turner K.Process for the production of butane-1,4-diol[P].U.S.Pat.:US 4584419,1986-4-22
    [12]Kanetaka J.,Asano,T.,Masamune,S.New process for production of tetrahydrofuran[J].Ind.Eng.Chem.,1970,62(4):24-32.
    [13]Hara Y.Inagaki H.Method for producing 1,4-butanediol[P].Eur.Pat.:EP 0453948,1991-10-30
    [14]Attig T.G.Graham A.M.Praparation of r-butyrolactone and 1,4-butanediol by catalytic hydrogenation of maleic acid[P].U.S.Patent:US 4827001,1989-5-2
    [15]Williams P.S.Production of alcohols and ethers by the catalysed hydrogenation of esters[P].U.S.Patent:US 4973717,1990-11-27
    [16]Mabry M.A.,Prichard W.W.,Ziemecki S.B.Process for making tetrahydrofuran and 1,4-butanediol using Pd/Re hydrogenation catalyst [P].U.S.Pat.:US 4550185,1985-10-29
    [17]AG H.Improvements in or relating to the preparation of 1,4-butanediol [P].GB Pat.:GB 1512751,1975-1-14
    [18]Ramioulle J.W.C.Process for the production of 1,4-butanediol and tetrahydrofuran [P].U.S.Pat.:US 4155919,1979-5-22
    [19]Fischer R.,Gosch H.-J.,Harder W.,Malsch K.-D.,Eggersdorfer M.,Franz L.,Zimmermann H.,Brenner K.,Halbritter K.,Saucer W.,H.-J.S.Preparation of 1,4-butanediol or tetrahydrofuran or both [P].U.S.Pat.:US 4940805,1990-7-10
    [20]Herrmann U.Emig G.Liquid phase hydrogenation of maleic anhydride and intermediates on copper-based and noble metal catalysts [J].Ind.Eng.Chem.Res.,1997,36(8):2885-2896.
    [21]Herrmann U.Emig G.Kinetics and mechanism in the liquid-phase hydrogenation of maleic anhydride and intermediates [J].Chem.Eng.Technol.,1998,21(3):285-295.
    [22]Herrmann U.Emig G.Liquid phase hydrogenation of maleic anhydride to 1,4-butanediol in a packed bubble column reactor [J].Ind.Eng.Chem.Res.,1998,37(3):759-769.
    [23]Mabry M.A.,Prichard W.W.,Ziemecki S.B.Pd/Re hydrogenation catalyst for making tetrahydrofuran and 1,4-butanediol [P].U.S.Pat.:US 4609636,1986-9-2
    [24]Rao V.N.M.Process for production of butyrolactones and butanediols [P].U.S.Pat:US 4782167,1988-11-1
    [25]Budge J.R.,Attig T.G.,Graham A.M.Two-stage maleic anhydride hydrogenation process for 1,4-butanediol process [P].U.S.Pat:US 5196602,1993-5-23
    [26]Budge J.R.,Attig T.G.,Pedersen S.E.Process for the hydrogenation of maleic acid to 1,4-butanediol [P].U.S.Pat:US 5473086,1995-12-5
    [27]Pedersen S.E.,Frye J.G.,Attig T.G.,Budge J.R.Catalysts for the hydrogenation of aqueous maleic acid to 1,4-butanediol[P].U.S.Pat.:US 5698749,1997-12-16
    [28]Budge J.R.,Attig T.G.,Dubert R.A.用于马来酸加氢制1,4-丁二醇的改进的催化剂[P].中国专利:CN 1286139,2001—3-7
    [29]Bhattachayya A.Maynard M.A.Catalysts for maleic acid hydrogenation to 1,4-butanediol[P].Eur.Pat.:EP 1773746,2006
    [30]R.Connor,K.Folkers,Adkins H.The preparation of copper-chromiun oxide catalysts for hydrogenation[J].J.Am.Chem.Soc.,1932,54(3):1138-1145.
    [31]Kouba J.K.Snyder R.B.Coproduction of butanediol.and tetrahydrofuran and their subsequent separation from the reaction product mixture[P].U.S.Pat.:US 4656297,1987
    [32]童立山,李向伟,王海京制备1,4丁二醇和/或r-丁内酯的催化剂[P].中国专利:CN1113831,1995-12-27
    [33]童立山,王海京,高国强,张新杰,冯薇荪,李向伟,邓景辉1,4-丁二醇的制备方法[P].中国专利:CN1116615,1996-2-14
    [34]童立山,羊衍巽,李向伟,冯薇荪,王海京,王彦,徐元1,4-丁二醇的制备方法[P].中国专利:CN 1116616,1996-2-14
    [35]张新杰,童立山,王海京,邓景辉气相氢化制1,4-丁二醇的催化剂(二)[P].中国专利:CN 1137944,1996-12-18
    [36]王海京,童立山,张新杰,邓景辉气相氢化制1,4-丁二醇的催化剂(一)[P].中国专利:CN 1138018.1996-12-18
    [37]王海京,童立山,张新杰,周怡然气相加氢制1,4-丁二醇的催化剂[P].中国专利:CN 1154872.1997-7—23
    [38]王海京,冯薇荪,童立山,周怡然,高国强一种气相加氢制1,4-丁二醇的催化剂[P].中国专利:CN 1182639,1998-5-27
    [39]王海京,冯薇荪,童立山,高国强,周怡然一种气相加氢制1,4-丁二醇的方法[P].中国专利:CN 1182732,1998—5—27
    [40]Guo P.J.,Chen L.F.,Yan S.R.,Dai W.L.,Qiao M.H.,Xu H.L.,Fan K.N.One-step hydrogenolysis of dimethyl maleate to tetrahydrofuran over chromium-modified Cu-B/-gamma-Al_2O_3 catalysts[J].J.Mol.Catal.A-Chem.,2006,256(1-2):164-170.
    [41]Suzuki S.,Inagaki H.,Ueno H.Process for producing 1,4-butanediol and tetrahydrofuran[P].Eur.Pat.:EP 0373947,1989-12-14
    [42]Zhang Q.,Wu Z.,Xu L.High-pressure hydrogenolysis of diethyl maleate on Cu-Zn-Al-O catalysts[J].Ind.Eng.Chem.Res.,1998,37(9):3525-3532.
    [43]Schlander J.H.Turek T.Gas-phase hydrogenolysis of dimethyl maleate to 1,4-butanediol and gamma-butyrolactone over copper/zinc oxide catalysts[J].Ind.Eng.Chem.Res.,1999,38(4):1264-1270.
    [44]Mokhtar M.,Ohlinger C.,Schlander J.H.,Turek T.Hydrogenolysis of dimethyl maleate on Cu/ZnO/Al_2O_3 catalysts[J].Chemical Engineering & Technology,2001,24(4):423-426.
    [45]Ohlinger C.Kraushaar-Czarnetzki B.Improved processing stability in the hydrogenation of dimethyl maleate to gamma-butyrolactone,1,4-butanediol and tetrahydrofuran[J].Chemical Engineering Science,2003,58(8):1453-1461.
    [46]Muller S.P.,Kucher M.,Ohlinger C.,Kraushaar-Czametzki B.Extrusion of Cu/ZnO catalysts for the single-stage gas-phase processing of dimethyl maleate to tetrahydrofuran[J].J.Catal.,2003,218(2):419-426.
    [47]魏文德.有机化工原料大全[M].北京:化学工业出版社,1999:99-111.
    [48]蔡启瑞 彭少逸.碳-化学中的催化作用[M].北京:化学工业出版社,1995:1-9.
    [49]许茜,王保伟,许根慧 乙二醇合成工艺的研究进展[J].石油化工,2007,36(2):194—199.
    [50]徐依菡 乙二醇合成技术研究进展及市场预测[J].石油化工技术经济,1999,23(4):20-23.
    [51]宋云英 李明 乙二醇合成技术的研究进展[J].化工科技市场,2006,29(9):23-28.
    [52]Eugene,M.G.,Andre.V.K.Caboxalates in catalytic hydrogenolysis of alkylene oxides[P].U.S.Pat.:US 6316571,2001-11-13
    [53]Soo,H.,Ream,B.C.,Robson,J.H.Monoalkylene glycol production using mixed metal framework compositions[P].U.S.Patent:US 4967018,1990-10-30
    [54]林青松,李素梅,周斌,周卓华,张延荣,张玉宝,王晓平,周秀春,王雅辉陈钢 环氧乙烷水合法制乙二醇的催化剂及过程[P].中国专利:CN 12374811999-12-08
    [55]Odanaka H.Yamamoto T.Preparation of high-purity alkylene glycol[P].J.P.Pat.:JP 5690029,1981
    [56]Bhise V.S.Process for preparing ethylene glycol[P].U.S.Patent:US 4500559,1983
    [57]Akasaki K.Takahashi K.Preparation of alkylene glycol[P].J.P.Pat.:JP 571006631,1982
    [58]张应淳译 采用铑催化剂由合成气直接合成乙二醇[J].石油化工译丛,1989,4:16-23.
    [59]Ishino M.,Tamura M.,Deguchi T.,Nakamura S.Mechanistic studies on direct ethylene glycol synthesis from carbon monoxide and hydrogen 1.Homogeneous rhodium catalyst[J].J.Catal.,1992,133(2):325-331.
    [60]Kiso Y.Saeki K.Novel effect of imidazole compounds on a homogeneous ruthenium carbonyl catalyst in hydrogenation of carbon monoxide:a new catalyst for ethylene glycol synthesis[J].J.Organomet.Chem.,1986,309(1-2):C26-C28.
    [61]Takano T.,Deguchi T.,Ishino M.,Nakamura S.Effect of phosphine ligands on homogeneous hydrogenation of carbon monoxide by iridium catalysts[J].J.Organomet.Chem.,1986,309(1-2):209-214.
    [62]Kazuhisa M.,Akio M.,Takashi M.Effect of Ru_3(CO)_(12) and Triisopropylphosphiphosphine on the catalytic activity of CO hydrogenation by Co2(CO)8[J].Bull.Chem.Soc.Jpn.,1987,60:438-440.
    [63]张旭之,王松汉,戚以政.乙烯衍生物工学[M].北京:化学工业出版社,1995:214.
    [64]Nishimura K.,Uchiumi S.,Fujii K.Oxalic acid diesters[P].Jpn.Pat.:JP 77106790,1977-9-7
    [65]Tahara S.,Fujii K.,Nishihira K.Continuous preparation of ethylene glycol [P].Eur.Pat.:EP 046983,1982-3-10
    [66]Brown S.H.Crabtree R.H.Alkane functionalization on a preparative scale by mercury-photosensitized cross-dehydrodimerization [J].J.Am.Chem.Soc,1989,111(8):2946-2953.
    [67]Yagita H.,Asami K.,Muramatsu A.,Fujimoto K.Oxidative dimerization of dimethyl ether with solid catalysts [J].Appl.Catal.,1989,53(1):L5-L9.
    [68]Salvatore S.,Luigi R.Process for preparing glycolic acid and its polymers [P].U.S.Pat.:US 4052452,1977
    [69]Matteoli U.,Menchi G.,Bianchi M.,Piacenti F.Homogeneous catalytic hydrogenation dicarboxylic acid esters.Ⅱ [J].J.Organomet.Chem.,1986,299(2):233-238.
    [70]Matteoli U.,Bianchi M.,Menchi G.,Prediani P.,Piacenti F.Homogeneous catalytic hydrogenation of dicarboxylic acid esters [J].J.Mol.Catal.,1984,22(3):353-362.
    [71]Matteoli U.,Bianchi M.,Menchi G.,Frediani P.,Piacenti F.Hydrogenation of dimethyl oxalate in the presence of ruthenium carbonyl carboxylates:ethylene glycol formation [J].J.Mol.Catal.,1985,29(2):269-270.
    [72]Matteoli U.,Menchi G.,Bianchi M.,Piacenti F.Homogeneous catalytic hydrogenation of the esters of bicarboxylic acids :Part Ⅲ.Ethylene glycol from dimethyl oxalate [J].J.Mol.Catal.,1988,44(3):347-355.
    [73]Matteoli U.,Menchi G.,Bianchi M.,Piacenti F.Selective reduction of dimethyl oxalate by ruthenium carbonyl carboxylates in homogeneous phase Part ⅠV [J].J.Mol.Catal.,1991,64(3):257-267.
    [74]Teunissen H.T.Elsevier C.J.Ruthenium-catalyzed hydrogenation of dimethyl oxalate to ethylene glycol [J].Chem.Commun.,1997,7:667-668.
    [75]Lee J.S.,Kim J.C,Kim Y.G.Methyl formate as a new building block in C1 chemistry [J].Appl.Catal.,1990,57(1):1-30.
    [76]Wall R.G.Catalysts for ester hydrogenation [?].U.S.Pat.:US 4113662,1978-9-12
    [77]Wilkes J.B.Ethylene glycol by catalytic hydrogenation[P].Belgium Pat.:BE 883541,1980-9-15
    [78]Zehner L.R.Lenton R.W.Process for the production of ethylene glycol[P].U.S.Pat.:US 4112245,1978-9-5
    [79]Poppelsdorf F.Process for the production of ethylene glycol[P].Eur.Pat.:EP 060787,1982-3-12
    [80]Haruhiko M.,Kouichi H.,Taizou U.,Yasuo N.,Seizou I.,Takanori T.Hydrogenation catalysts for the production of ethylene glycol[P].Jpn.Pat.:JP 57122939,1982-7-31
    [81]Haruhiko M.,Kouichi H.,Taizou U.,Yasuo N.,Seizou I.,Takanori T.Production for the catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol[P].Jpn.Pat.:JP 57122946,1982-7-3t
    [82]Haruhiko M.,Kouichi H.,Taizou U.,Yasuo N.,Seizou I.,Takanori T.Production of catalysts for hydrogenation of dimethyl oxalate to ethylene glycol[P].Jpn.Pat.:JP 57122941,1982-7-31
    [83]Haruhiko M.,Kouichi H.,Taizou U.,Yasuo N.,Seizou I.,Takanori T.Production of catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol [P].Jpn.Pat.:JP 57122938,1982-7-31
    [84]Hirai K.,Uda T.,Nakamura Y.Catalyst composition for producing ethylene glycol and process for produce the catalyst composition[P].U.S.Pat.:US 4614728,1986-9-30
    [85]Bartley W.J.Process for the production of ethylene glycol[P].U.S.Pat.:US 4677234,1987-7-30
    [86]Bartley W.J.Ethylene glycol by catalytic hydrogenation[P].U.S.Pat.:US 4628128,1986-11-9
    [87]Poppelsdorf F.Smith C.A.Annular-shaped catalysts for hydrogenation of alkyl oxalates[P].U.S.Pat.:US 4649226,1987-03-10
    [88]陈贻盾 马锦波CO气相催化合成草酸酯及草酸乙二醇的开发[J].石油与天然气化工,1998,27(2):67-71.
    [89]黄当睦,陈彰明,陈福星,林平,兰花水,何燕芬草酸二乙酯催化加氢制乙二醇模试研究[J].工业催化,1996,4(4):24-29.
    [90]李振花,李延春,许根慧草酸二乙酯气相催化加氢合成乙二醇的研究[J].化学工业与工程,1994,10(4):27-33.
    [91]Xu G.H.,Li Y.C.,Li Z.H.,Wang H.J.Kinetics of the Hydrogenation of Diethyl Oxalate to Ethylene-Glycol[J].Ind.Eng.Chem.Res.,1995,34(7):2371-2378.
    [92]Thomas D.J.,Wehrli J.Y.,Wainwright M.S.,Trimm D.L.,Cant N.W.Hydrogenolysis of diethyl oxalate over copper-based catalysts[J].Appl.Catal.A:Gen.,1992,86(2):101-114.
    [93]李竹霞,钱志刚,赵秀阁,肖文德草酸二甲酯加氢CuO/S iO2催化剂前体的研究[J].华东理工大学学报,2004,30(6):613-617.
    [94]李竹霞,钱志刚,赵秀阁,肖文德载体对草酸二甲酯加氢铜基催化剂的影响[J].华东理工大学学报,2005,31(1):27-31.
    [95]Tungler A.,Tarnai T.,Hegedus L.Palladium-mediated heterogeneous catalytic hydrogenations.Selectivity of liquid-phase reactions for the fine chemicals industry [J].Platinum Met.Rev.,1998,42(3):108-115.
    [96]van Gorp K.,Boerman E.,Cavenaghi C.V.,Berben P.H.Catalytic hydrogenation of fine chemicals:sorbitol production[J].Catal.Tod.,1999,52(2-3):349-361.
    [97]Sheldon R.A.Selective catalytic synthesis of fine chemicals:opportunities and trends[J].J.Mol.Catal.A:Chem.,1996,107(I-3):75-83.
    [98]Blaser H.-U.Studer M.The role of catalysis for the clean production of fine chemicals[J].Appl.Catal.A:Gen.,1999,189(2):191-204.
    [99]Hoelderich W.F.Environmentally benign manufacturing of fine and intermediate chemicals[J].Catal.Tod.,2000,62(1):115-130.
    [100]段启伟,闵恩泽,何鸣元 绿色技术在石油化工中的应用研究进展[J].石油化工,2000,29(7):530-535.
    [101]Rao R.,Dandekar A.,Baker R.T.K.,Vannice M.A.Properties of Copper Chromite Catalysts in Hydrogenation Reactions[J].J.Catal.,1997,171(2):406-419.
    [102]Evans J.W.,Casey P.S.,Wainwright M.S.,Trimm D.L.,Cant N.W.Hydrogenolysis of alkyl formates over a copper chromite catalyst[J].Appl.Catal.,1983,7(1):31-41.
    [103]Fujita S.-i.,Moribe S.,Kanamori Y.,Kakudate M.,Takezawa N.Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO_2 - effects of the calcination and reduction conditions on the catalytic performance[J].Appl.Catal.A:Gen.,2001,207(1-2):121-128.
    [104]吴静,申延明,孔令艳,刘长厚,张振祥铜系无Cr负载型糠醛加氢制2-甲基呋喃催化剂的制备、表征及催化性能[J].石油化工,2002,31(10):799-802.
    [105]洪中山,曹勇,孙琦,邓景发,范康年焙烧条件对Cu/ZnO/Al_2O_3甲醇催化剂的影响[J].复旦学报,2002,41(3):330-334.
    [106]张文忠,丁时鑫,殷元骐Cu/SiO_2催化剂的制备与表征[J].分子催化,1993,7(3):178-185.
    [107]Shimokawabe M.,Takezawa N.,Kobayashi H.Characterization of copper-silica catalysts prepared by ion exchange[J].Appl.Catal.,1982,2(6):379-387.
    [108]Kohler M.A.,Curry-Hyde H.E.,Hughes A.E.,Sexton B.A.,Cant N.W.The structure of Cu/SiO_2 catalysts prepared by the ion-exchange technique[J].J.Catal.,1987,108(2):323-333.
    [109]Guerreiro E.D.,Gorriz O.F.,Rivarola J.B.,Arrfia L.A.Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation[J].Appl.Catal.A:Gen.,1997,165(2):259-271.
    [110]Kohler M.A.,Lee J.C.,Trimm D.L.,Cant N.W.,Wainwright M.S.Preparation of Cu/SiO_2 catalysts by the ion-exchange technique[J].Appl.Catal.,1987,31(2):309-321.
    [111]Toupance T.,Kermarec M.,Lambert J.F.,Louis C.Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption[J].J.Phys.Chem.B,2002,106(9):2277-2286.
    [112]Toupance T.,Kermarec M.,Louis C.Metal particle size in silica-supported copper catalysts.Influence of the conditions of preparation and of thermal pretreatments[J].J.Phys.Chem.13,2000,104(5):965-972.
    [113]Boccuzzi F.,Coluccia S.,Martra G.,Ravasio N.Cu/SiO_2 and Cu/SiO_2-TiO_2catalysts Ⅰ.TEM,DR UV-Vis-NIR,and FTIR characterisation[J].J.Catal.,1999,184(2):316-326.
    [114]Boccuzzi F.,Martra G.,Papalia C.P.,Ravasio N.Cu/SiO_2 and Cu/SiOE-TiO_2catalysts Ⅱ.Identification of the active sites during polymerisation of 2,6-dimethylphenol in the presence of molecular O_2[J].J.Catal.,1999,184(2):327-334.
    [115]Boccuzzi F.,Chiorino A.,Martra G.,Gargano M.,Ravasio N.,Carrozzini B.Preparation,characterization,and activity of Cu/TiO_2 catalysts.1.Influence of the preparation method on the dispersion of copper in Cu/TiO_2[J].J.Catal.,1997,165(2):129-139.
    [116]Boccuzzi F.,Chiorino A.,Gargano M.,Ravasio N.Preparation,characterization,and activity of Cu/TiO_2 catalysts.2.Effect of the catalyst morphology on the hydrogenation of 1,3-cyclooctadiene and the CO-NO reaction on Cu/TiO_2 catalysts [J].J.Catal.,1997,165(2):140-149.
    [117]Stakheev A.Y.Kustov L.M.Effects of the support on the morphology and electronic properties of supported metal clusters:modern concepts and progress in 1990s[J].Appl.Catal.A:Gen.,1999,188(1-2):3-35.
    [118]李国安,王承学,赵凤玉,冉祥海.糠醛液相加氢制糠醇新型催化剂的研究[J].精细石油化工,1995,1:40-44.
    [119]Ferhat Z.,Derouault A.,Barrault J.,Bettahar M.Hydrogenation of cinnamaldehyde in liquid phase in the presence of copper supported catalysts[J].React.Kinet.Catal.Lett.,2002,76(2):249-258.
    [120]Rhodes M.D.Bell A.T.The effects of zirconia morphology on methanol synthesis from CO and H_2 over Cu/ZrO_2 catalysts:Part Ⅰ.Steady-state studies[J].J.Catal.,2005,233(1):198-209.
    [121]Rhodes M.D.,Pokrovski K.A.,Bell A.T.The effects of zirconia morphology on methanol synthesis from CO and H_2 over Cu/ZrO_2 catalysts:Part Ⅱ.Transient-response infrared studies[J].J.Catal.,2005,233(1):210-220.
    [122]Ma Y.,Sun Q.,Wu D.,Fan W.-H.,Deng J.-F.A gel-oxalate co-precipitation process for preparation of Cu/ZnO/Al_2O_3 ultrafine catalyst for methanol synthesis from CO_2+H_2:(Ⅱ) effect of various calcination conditions[J].Appl.Catal.A:Gen.,1999,177(2):177-184.
    [123]刘寿长,王文祥,陈诵英.Cu-Fe系催化剂的比表面、物相和还原行为活性的关系[J].郑州大学学报,1997,29(1):72-77.
    [124]李君,蒋毅,程极源,王华明.顺酐常压加氢制r-丁内酯[J].应用化学,2000,17(4):379-382.
    [125]Brands D.S.,Poels E.K.,Bliek A.Ester hydrogenolysis over promoted Cu/SiO2 catalysts[J].Appl.Catal.A-Gen.,1999,1.84(2):279-289.
    [126]陈霄榕,王爱菊,卢学英,康慧敏.Cu-Zn-Al催化剂上糠醛气相加氢制糠醇的研究[J].化工进展,2001,20(6):40-43.
    [127]黄子政 邱丽娟.糠醛液相加氢制糠醇无毒催化剂的研制[J].石油化工,1992,21(1):35-38.
    [128]Poels E.K.Brands D.S.Modification of Cu/ZnO/SiO2 catalysts by high temperature reduction[J].Appl.Catal.A-Gen.,2000,191(1-2):83-96.
    [129]Marsden W.L.,Wainwright M.S.,Friedrich J.B.Zinc promoted Raney copper catalysts for methanol synthesis[J].Ind.Eng.Chem.Prod.Res.Dev.,1980,19(4):551-556.
    [130]Brown Bourzutschky J.A.,Homs N.,Bell A.T.Hydrogenation of CO_2 and CO_2/CO mixtures over copper-containing catalysts[J].J.Catal.,1990,124(1):73-85.
    [131]Vandescheur F.T.,Brands D.S.,Vanderlinden B.,Luttikhuis C.O.,Poels E.K.,Staal L.H.Activity-enhanced copper-zinc based catalysts for the hydrogenolysis of esters[J].Appl.Catal.A:Gen.,1994,116(1-2):237-257.
    [132]Klier K.Methanol synthesis[J].Adv.Catal.,1982,31:243-313.
    [133]Gao L.Z.Au C.T.CO_2 Hydrogenation to Methanol on a YBa_2Cu_3O_7 Catalyst [J].J.Catal.,2000,189(1):1-15.
    [134]Dandekar A.,Baker R.T.K.,Vannice M.A.Carbon-Supported Copper Catalysts:Ⅱ.Crotonaldehyde Hydrogenation[J].J.Catal.,1999,184(2):421-439.
    [135]Wang G.,Zhao Y.,Cai Z.,Pan Y.,Zhao X.,Li Y.,Sun Y.,Zhong B.Investigation of the active sites of CO2 hydrogenation to methanol over a Cu-based catalyst by the UBI-QEP approach[J].Surf.Sci.,2000,465(1-2):51-58.
    [136]Okamoto Y.,Fukino K.,Imanaka T.,Teranishi S.Surface Characterization of Cuo-Zno Methanol-Synthesis Catalysts by X-Ray Photoelectron-Spectroscopy.1.Precursor and Calcined Catalysts[J].J.Phys.Chem.,1983,87(19):3740-3747.
    [137]Okamoto Y.,Fukino K.,Imanaka T.,Teranishi S.Surface Characterization of Cuo-Zno Methanol-Synthesis Catalysts by X-Ray Photoelectron-Spectroscopy.2.Reduced Catalysts[J].J.Phys.Chem.,1983,87(19):3747-3754.
    [138]Kainai Y.,Watanabe T.,Fujitani T.,Saito M.,Nakamura J.,Uchijima T.Role of ZnO in promoting methanol synthesis over a physically-mixed Cu/SiO_2 and ZnO/SiO_2 catalyst[J].Energy Convers.Mgmt,1995,36(6-9):649-652.
    [139]李振花,许根慧,王海京,陈洪钫.铜基催化剂的制备方法对草酸二乙酯加氢反应的影响[J].催化学报,1995,16(1):9-14.
    [140]Russell E.M.Weigel S.J.The synthesis of molecular seives from non-aqueous solvents[J].Chem.Soc.Rev.,1997,26:309-317.
    [141]Kresge C.T.,Leonowicz M.E.,Roth W.J.Orderedmeso porous molecular sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,350:710-712.
    [142]Beck J.S.,Vartuli J.C.,Roth W.J.,Leonowicz M.E.,Kresge C.T.,Schmitt K.D.,Chu C.T.W.,Olson D.H.,Sheppard E.W.A new family of mesoporous molecular sieves prepared with liquid crystal templates[J].J.Am.Chem.Soc.,1992,114(27):10834-10843.
    [143]Bleloch A.,Johnson B.F.G.,Ley S.V.,Price A.J.,Shephard D.S.,Thomas A.W.Modified mesoporous silicate MCM-41 materials:immobilised perruthenate-a new highly active heterogeneous oxidation catalyst for clean organic synthesis using molecular oxygen[J].Chem.Commun.,1999,1999(18):1907-1908.
    [144]Koh C.A.,Montanari T.,Nooney R.I.,Tahir S.F.,Westacott R.E.Experimental and Computer Simulation Studies of the Removal of Carbon Dioxide from Mixtures with Methane Using AIPO_4-5 and MCM-41[J].Langmuir,1999,15(18):6043-6049.
    [145]祝淑芳,倪文,张铭金,鲁礼林.介孔分子筛材料合成及应用研究的现状及进展[J].岩石矿物学杂志,2006,25(4):822-826.
    [146]赵丽,余家国,赵修建.介孔纳米结构材料的研究与发展[J].稀有金属材料与工程,2004,33(1):5-10.
    [147]Chen C.-Y.,Burkett S.L.,Li H.-X.,Davis M.E.Studies on mesoporous materials Ⅱ.Synthesis mechanism of MCM-41[J].Micropor.Mater.,1993,2(1):27-34.
    [148]Monnier A.,Schuth F.,Huo Q.,Kumar D.,Margolese D.,Maxwell R.S.,Stucky G.D.,Krishnamurty M.,Petroff P.,Firouzi A.,Janicke M.,Chmelka B.F.Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures[J].Science,1993,261(5126):1299-1303.
    [149]Steel A.,Carr S.W.,Anderson M.W.14N NMR study of surfactant mosophases in the synthesis of mesoporous silicates[J].Chem.Commun.,1994,1571-1572.
    [150]Jimmy C.Y.,Zang L.Z.,Yu J.G.Rapid synthesis of mesoporous TiO_2 with high photocatalytic activity by ultrasound-induced agglomeration[J].New J.Chem.,2002,26(4):416-421.
    [151]Yu J.,Yu J.C.,Ho W.,Leung M.K.P.,Cheng B.,Zhang G.,Zhao X.Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania[J].Appl.Catal.A:Gen.,2003,255(2):309-320.
    [152]Shoichi T.,Ryoji T.,Satoshi S.Structural study of mesoporous titania prepared from titanium alkoxide and carboxylic acid[J].J.Sol-Gel Sci.Techn.,2000,19:711-715.
    [153]Corma A.,Fornes V.,Garcia H.,Miranda M.A.,Sabater M.J.Highly Efficient Photoinduced Electron Transfer with 2,4,6-Triphenylpyrylium Cation Incorporated inside Extra Large Pore Zeotype MCM-41[J].J.Am.Chem.Soc.,1994,116(21):9767-9768.
    [154]Kloetstra K.R.,Laren M.V.,Bekkum H.V.Binary Caesium-Lanthanum oxide supported on MCM-41:a new stable heterogeneous basic catalyst[J].J.Chem.Sci.,1997,93(6):1211-1220.
    [155]Ravikovitch P.I.,Wei D.,Chueh W.T.,Hailer G.L.,Neimark A.V.Evaluation of Pore Structure Parameters of MCM-41 Catalyst Supports and Catalysts by Means of Nitrogen and Argon Adsorption[J].J.Phys.Chem.B,1997,101(19):3671-3679.
    [156]Yang H.,Kuperman A.,Coombs N.Synthesis of oriented films of mesoporous silica on mica[J].Nature,1996,379:703-705.
    [157]步绍静,靳正国,刘晓新,杨立荣,程志捷纳米TiO_2介孔薄膜的模板组装制备研究[J].无机化学学报,2004,20(2):169-174.
    [158]Han Y.,Meng X.,Guan H.,Yu Y.,Zhao L.,Xu X.,Yang X.,Wu S.,Li N.,Xiao F.-S.Stable iron-incorporated mesoporous silica materials(MFS-9) prepared in strong acidic media[J].Micropor.Mesopor.Mater.,2003,57(2):191-198.
    [159]霍涌前,李君,王伟,弓亚琼,张逢星.MCM-41介孔分子筛组装过渡金属配合物的电子光谱[J].光谱学与光谱分析,2004,24(3):281—284.
    [160]Feng X.,Fryxell G.E.,Wang L.Q.Functionalized monolayers on ordered mesoporous supports[J].Science,1997,276:923-926.
    [161]张雪峥,乐英红,高滋PW/SBA-15负载型催化剂的性能研究[J].高等学校化学学报,2001,22(7):1169-1172.
    [162]白妮,张萍,郭阳红,庞文琴,宋溪明,陈红梅,李彪,常小红.脂溶性金属钛菁衍生物在介孔分子筛中的封装及其催化性质研究[J].高等学校化学学报,2001,22(8):1275-1278.
    [163]薛屏,卢冠忠,郭杨龙,王筠松,吴东方.青霉素酰化酶在含铁MCM-41介孔分子筛上的固定化研究[J].化学通报,2003,10:681-683.
    [164]Deere J.,Magner E.,Wall J.G.,Hodnett B.K.Adsorption and activity of cytochrome c on mesoporous silicates[J].Chem.Commu.,2001,5:465-466.
    [165]Morgan M.L.The C-4 industry beyond 2000[J].Chem.Ind.- London,1998,3:90-94.
    [166]Morgan M.L.The rapidly changing world of 1,4-butanediol[J].Chem.Ind.-London,1997,5:166-168.
    [167]艾珍 朱林.合成气合成乙二醇的研究进展[J].化工时刊,2008,22(1):64-66.
    [168]侯志扬.合成气路线生产乙二醇技术进展[J].精细化工原料及中间体,2008,4:35-39.
    [169]Warwick L.M.,S.W.;Jan,B.F.Zinc-promoted raney copper catalyst for methanol synthesis[J].Ind.Eng.Chem.Prod.Res.Dev.,1980,19(4):551-556.
    [170]Jorge L.G.,C.;Fransisco,S.;Germ(?)n,C.Preparation and characterization of a plate-supported raney copper catalyst[J].Ind.Eng.Chem.Res.,1989,28(2):146-149.
    [171]Jung S.M.,Godard E.,Jung S.Y.,Park K.C.,Choi J.U.Liquid-phase hydrogenation of maleic anhydride over Pd/SiO2:effect of tin on catalytic activity and deactivation[J].J.Mol.Catal.A-Chem.,2003,198(1-2):297-302.
    [172]Pillai U.R.,Sahle-Demessie E.A.,Young D.Maleic anhydride hydrogenation over Pd/Al_2O_3 catalyst under supercritical CO_2 medium[J].Appl.Catal.B:Environ.,2003,43(2):131-138.
    [173]Ruiz J.R.Jimenez-Sanchidrian C.Heterogeneous catalysis in the Meerwein-Ponndorf-Verley reduction of carbonyl compounds[J].Curr.Org.Chem.,2007,11(13):1113-1125.
    [174]Timofeeva M.N.,Jhung S.H.,Hwang Y.K.,Kim D.K.,Panchenko V.N.,Melgunov M.S.,Chesalov Y.A.,Chang J.S.Ce-silica mesoporous SBA-15-type materials for oxidative catalysis:Synthesis,characterization,and catalytic application [J].Appl.Catal.A:Gen.,2007,317(1):1-10.
    [175]Zhang X.,Yue Y.,Gao Z.Chromium Oxide Supported on Mesoporous SBA-15as Propane Dehydrogenation and Oxidative Dehydrogenation Catalysts[J].Catal.Lett.,2002,83(1-2):19-25.
    [176]Mulukutla R.S.,Shido T.,Asakura K.,Kogure T.,Iwasawa Y.Characterization of rhodium oxide nanoparticles in MCM-41 and their catalytic performances for NO-CO reactions in excess O2[J].Appl.Catal.A:Gen.,2002,228(1-2):305-314.
    [177]李竹霞,钱志刚,赵秀阁,肖文德Cu/SiO_2催化剂上草酸二甲酯加氢反应的研究[J].化学反应工程与工艺,2004,20(2):121-128.
    [178]傅献彩,沈文霞,姚天扬.物理化学(上册)[M].高等教育出版社,1990:474-482.
    [179]http://col.njtu.edu.cn/zskj/4013/table/tableO7.htm.
    [180]马沛生.化学数据[M].中国石化出版社,2003:129-190.
    [181]李竹霞.草酸二甲酯催化加氢合成乙二醇过程的研究.2006,华东理工大学博士论文.p.23.
    [182]Tanev P.T.,Chibwe M.,Pinnavaia T.J.Titanium-Containing Mesoporous Molecular-Sieves for Catalytic-Oxidation of Aromatic-Compounds[J].Nature,1994,368(6469):321-323.
    [183]Grun M.,Unger K.K.,Matsumoto A.,Tsutsumi K.Novel pathways for the preparation of mesoporous MCM-41 materials:control of porosity and morphology [J].Micropor.and Mesopor.Mater.,1999,27(2-3):207-216.
    [184]Zhao D.Y.,Feng J.L.,Huo Q.S.,Melosh N.,Fredrickson G.H.,Chmelka B.F.,Stucky G.D.Triblock copolymer synthesis of mesoporous silica with periodic 50to 300 angstrom pores[J].Science,1998,279(5350):548-552
    [185]Liu Y.M.,Xu J.,He L.,Cao Y.,He H.Y.,Zhao D.Y.,Zhuang J.H.,Fan K.N.Facile Synthesis of Fe-Loaded Mesoporous Silica by a Combined Detemplation-Incorporation Process through Fenton's Chemistry[J].J.Phys.Chem.C,2008,112(42):16575-16583.
    [186]Schmidt-Winkel P.,Lukens W.W.,Yang P.,Margolese D.I.,Lettow J.S.,Ying J.Y.,Stucky G.D.Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores[J].Chem.Mater.,2000,12(3):686-696.
    [187]Tu C.H.,Wang A.Q.,Zheng M.Y.,Wang X.D.,Zhang T.Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation[J].Appl.Catal.A:Gen.,2006,297(1):40-47.
    [188]Brunauer S.,Emmett P.H.,Teller E.Adsorption of gases in multimolecular layers[J].J.Am.Chem.Soc.,1938,60:309-319.
    [189]Robertson S.D.Anderson R.B.The structure of Raney nickel :IV.X-ray diffraction studies [J].J.Catal,1971,23(2):286-294.
    [190]Shishido T.,Yamamoto Y.,Morioka H.,Takaki K.,Takehira K.Active Cu/ZnO and CU/ZnO/Al_2O_3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol [J].Appl.Catal.A:Gen.,2004,263(2):249-253.
    [191]Stone F.S.Waller D.Cu-ZnO and Cu-ZnO/Al_2O_3 catalysts for the reverse water-gas shift reaction.The effect of the Cu/Zn ratio on precursor characteristics and on the activity of the derived catalysts [J].Top.Catal.,2003,22(3-4):305-318.
    [192]Atake I.,Nishida K.,Li D.,Shishido T.,Oumi Y.,Sano T.,Takehira K.Catalytic behavior of ternary Cu/ZnO/Al_2O_3 systems prepared by homogeneous precipitation in water-gas shift reaction [J].J.Mol.Catal.A:Chem.,2007,275(1-2):130-138.
    [193]Figueiredo R.T.,Martinez-Arias A.,Granados M.L.,Fierro J.L.G.Spectroscopic evidence of Cu-Al interactions in Cu-Zn-Al mixed oxide catalysts used in CO hydrogenation [J].J.Catal.,1998,178(1):146-152.
    [194]Saito M.,Wu J.G.,Tomoda K.,Takahara I.,Murata K.Effects of ZnO contained in supported Cu-based catalysts on their activities for several reactions [J].Catal.Lett.,2002,83(1-2):1-4.
    [195]Guo Y.Z.,Meyer-Zaika W.,Muhler M.,Vukojevic S.,Epple M.Cu/Zn/Al xerogels and aerogels prepared by a sol-gel reaction as catalysts for methanol synthesis [J].Eur.J.Inorg.Chem.,2006,4774-4781.
    [196]Yang Y.,Xiang H.-W.,Xu Y.-Y.,Bai L.,Li Y.-W.Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis [J].Appl.Catal.A:Gen.,2004,266(2):181-194.
    [197]Madhavi G.,Kulkarni S.J.,Murthy K.,Viswanathan V.,Raghavan K.V.Side chain alkylation of 2-picoline with formaldehyde over alkali modified zeolites [J].J.Porous Mat.,2007,14:433-441.
    [198]Guerreiro E.D.,Gorriz O.F.,Larsen G.,Arrua L.A.Cu/SiO_2 catalysts for methanol to methyl formate dehydrogenation - A comparative study using different preparation techniques [J].Appl.Catal.A:Gen.,2000,204(1):33-48.
    [199]Zhu H.O.,Wang J.,Zeng C.Y.,Zhao D.Y.Novel SBA-15 supported heteropoly acid catalysts for benzene alkylation with 1-dodecene [J].Nanotechnology in Mesostructured Materials,2003,146:661-664.
    [200]Juan J.C,Zhang J.,Yarmo M.A.12-Tungstophosphoric acid supported on MCM-41 for esterification of fatty acid under solvent-free condition [J].J.Mol.Catal.A:Chem.,2007,267(1-2):265-271.
    [201]Sun Y.,Walspurger S.,Tessonnier J.-P.,Louis B.,Sommer J.Highly dispersed iron oxide nanoclusters supported on ordered mesoporous SBA-15:A very active catalyst for Friedel-Crafts alkylations [J].Appl.Catal.A:Gen.,2006,300(1):1-7.
    [202]Martinez A.,Lopez C,Marquez F.,Diaz I.Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts:the influence of metal loading,cobalt precursor,and promoters [J].J.Catal.,2003,220(2):486-499.
    [203]Khodakov A.Y.,Zholobenko V.L.,Bechara R.,Durand D.Impact of aqueous impregnation on the long-range ordering and mesoporous structure of cobalt containing MCM-41 and SBA-15 materials [J].Micropor.Mesopor.Mater.,2005,79(1-3):29-39.
    [204]Kruk M.,Jaroniec M.,Kim T.-W.,Ryoo R.Synthesis and Characterization of Hexagonally Ordered Carbon Nanopipes [J].Chem.Mater.,2003,15(14):2815-2823.
    [205]Liu J.,Zhang X.,Han Y.,Xiao F.-S.Direct Observation of Nanorange Ordered Microporosity within Mesoporous Molecular Sieves [J].Chem.Mater.,2002,14(6):2536-2540.
    [206]Galarneau A.,Cambon H.,Renzo F.D.,Fajula F.True Microporosity and Surface Area of Mesoporous SBA-15 Silicas as a Function of Synthesis Temperature [J].Langmuir,2001,17(26):8328-8335.
    [207]Gregg S.J.Sing K.S.W.Adsorption,surface area and porosity [M].London:Academic Press,1982:11-15.
    [208]Sing K.S.W.,Everett D.H.,Haul R.A.W.,Moscou L.,Pierotti R.A.,Rouquerol J.,Siemieniewska T.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J].Pure Appl.Chem.,1985,57(4):603-619.
    [209]Wei Y.L.,Cao Y.,Zhu J.H.,Yan X.W.Investigation on new mesoporous solid basic material MgO/SBA-15 [J].Chin.J.Inorg.Chem.,2003,19(3):233-239.
    [210]Saadi A.,Rassoul Z.,Bettahar M.M.Gas phase hydrogenation of benzaldehyde over supported copper catalysts [J].J.Mol.Catal.A:Chem,2000,164(1-2):205-216.
    [211]Valange S.,Derouault A.,Barrault J.,Gabelica Z.One-step generation of highly selective hydrogenation catalysts involving sub-nanometric Cu_2O supported on mesoporous alumina:strategies to control their size and dispersion [J].J.Mol.Catal.A:Chem.,2005,228(1-2):255-266.
    [212]Liu Z.,Amiridis M.D.,Chen Y.Characterization of CuO Supported on Tetragonal ZrO_2 Catalysts for N_2O Decomposition to N_2 [J].J.Phys.Chem.B,2005,109:1251-1255.
    [213]Wang Y.M.,Wu Z.Y.,Shi L.Y.,Zhu J.H.Rapid functionalization of mesoporous materials:Directly dispersing metal oxides into as-prepared SBA-15 occluded with template [J].Adv.Mater.,2005,17(3):323-327.
    [214]Montanari B.,Vaccari A.,Gazzano M.,Kassner P.,Papp H.,Pasel J.,Dziembaj R.,Makowski W.,Lojewski T.Characterization and activity of novel copper-containing catalysts for selective catalytic reduction of NO with NH_3 [J].Appl.Catal.B:Environmental,1997,13(3-4):205-217.
    [215]Brieler F.J.,Froba M.,Chen L.,Klar P.J.,Heimbrodt W.,Nidda H.-A.K.v.,Loidl A.Ordered Arrays of Ⅱ/Ⅵ Diluted Magnetic Semiconductor Quantum Wires:Formation within Mesoporous MCM-41 Silica [J].Chem.Eur.J,2002,8(1):185-194.
    [216]Van Der Grift C.J.G.,Elberse P.A.,Mulder A.,Geus J.W.Preparation of silica-supported copper catalysts by means of deposition-precipitation [J].Appl.Catal.,1990,59(1):275-289.
    [217]Kermarec M.,Carriat J.Y.,Burattin P.,Che M.,Decarreau A.Ftir Identification of the Supported Phases Produced in the Preparation of Silica-Supported Nickel-Catalysts [J].J.Phys.Chem.,1994,98(46):12008-12017.
    [218]Clause O.,Kermarec M.,Bonneviot L.,Villain F.,Che M.Nickel(Ii) Ion Support Interactions as a Function of Preparation Method of Silica-Supported Nickel Materials [J].J.Am.Chem.Soc,1992,114(12):4709-4717.
    [219]van der Grift C.J.G.,Wielers A.F.H.,Mulder A.,Geus J.W.The reduction behaviour of silica-supported copper catalysts prepared by deposition-precipitation[J].Thermochimica Acta,1990,171:95-113.
    [220]Lapisardi G.,Chiker F.,Launay F.,Nogier J.P.,Bonardet J.L.A "one-pot"synthesis of adipic acid from cyclohexene under mild conditions with new bifunctional Ti-AlSBA mesostructured catalysts[J].Catal.Commun.,2004,5(6):277-281.
    [221]Tian B.Z.,新型介观结构材料的合成:从无定形到晶态.2004,复旦大学博士论文.
    [222]Marchi A.J.,Fierro J.L.G.,Santamaria J.,Monzon A.Dehydrogenation of isopropylic alcohol on a Cu/SiO_2 catalyst:A study of the activity evolution and reactivation of the catalyst[J].Appl.Catal.A:Gen.,1996,142(2):375-386.
    [223]van der Grift C.J.G.,Mulder A.,Geus J.W.Characterization of silica-supported copper catalysts by means of temperature-programmed reduction[J].Appl.Catal.,1990,60(2):181-193.
    [224]van den Oetelaar L.C.A.,Partridge A.,Stapel P.J.A.,Flipse C.F.J.,Brongersma H.H.A Surface Science Study of Model Catalysts.1.Quantitative Surface Analysis of Wet-Chemically Prepared Cu/SiO_2 Model Catalysts[J].J.Phys.Chem.B,1998,102:9532-9540.
    [225]van den Oetelaar L.C.A.,Partridge A.,Toussaint S.L.G.,Flipse C.F.J.,Brongersma H.H.A Surface Science Study of Model Catalysts.2.Metal-Support Interactions in Cu/SiO_2 Model Catalysts[J].J.Phys.Chem.B,1998,102:9541-9549.
    [226]Haruhiko M.,Kouichi H.,Taizou U.,Yasuo N.,Seizou I.,Takanori T.Preparation of ethylene glycol[P].Jpn.Pat.:JP 57123127,1982-7-31
    [227]关鹏搏.脂肪醇的制造和应用[M].北京轻工业出版社,1990:226—228.
    [228]Carlini C.,Macinai A.,Marchionna M.,Noviello M.,Galletti A.M.R.,Sbrana G.Selective synthesis of isobutanol by means of the Guerbet reaction - Part 3:Methanol/n-propanol condensation by using bifunctional catalytic systems based on nickel,rhodium and ruthenium species with basic components[J].J.Mol.Catal.A:Chem.,2003,206(1-2):409-418.
    [229]Burattin P.,Che M.,Louis C.Characterization of Ni(Ⅱ) phase formed on silica upon deposition-precipitation[J].J.Phys.Chem.B,1997,101(36):7060-7074.
    [230]Gervasini A.,Manzoli M.,Martra G.,Ponti A.,Ravasio N.,Sordelli L.,Zaccheria F.Dependence of copper species on the nature of the support for dispersed CuO catalysts[J].J.Phys.Chem.B,2006,110(15):7851-7861.
    [231]Sun K.P.,Lu W.W.,Qiu F.Y.,Liu S.W.,Xu X.L.Direct synthesis of DME over bifunctional catalyst:surface properties and catalytic performance[J].Appl.Catal.A:Gen.,2003,252(2):243-249.
    [232]Liu Z.,Amiridis M.D.,Chen Y.Characterization of CuO supported on tetragonal ZrO_2.catalysts for N_2O decomposition to N_2[J].J.Phys.Chem.B,2005,109(3):1251-1255.
    [233]Rodrigues E.L.,Marchi A.J.,Apesteguia C.R.,Bueno J.M.C.Promoting effect of zinc on the vapor-phase hydrogenation of crotonaldehyde over copper-based catalysts[J].Appl.Catal.A:Gen.,2005,294(2):197-207.
    [234]Carlini C.,Di Girolamo M.,Macinai A.,Marchionna M.,Noviello M.,Galletti A.M.R.,Sbrana G.Synthesis of isobutanol by the Guerbet condensation of methanol with n-propanol in the presence of heterogeneous and homogeneous palladium-based catalytic systems[J].J.Mol.Catal.A:Chem.,2003,204:721-728.
    [235]Yates D.M.,Joyce K.J.,Heaney P.J.Complexation of copper with polymeric silica in aqueous solution[J].Appl.Geochem.,1998,13(2):235-241.
    [236]徐华龙,黄静静,杨新艳,杜俊明,沈江,沈伟K-MnO/γ-Al_2O_3和Cu/SiO_2催化剂应用于苯甲酸甲酯连续加氢合成无氯苯甲醇[J].化学学报,2006,64(16):1651—1621.
    [237]Evans J.,Zaki A.B.,El-Sheikh M.Y.,El-Safty S.A.Incorporation of Transition-Metal Complexes in Functionalized Mesoporous Silica and Their Activity toward the Oxidation of Aromatic Amines[J].J.Phys.Chem.B,2000,104(44):10271-10281.
    [238]Wang Y.M.,Wu Z.Y.,Wei Y.L.,Zhu J.H.In situ coating metal oxide on SBA- 15 in one-pot synthesis[J].Micropor.Mesopor.Mater.,2005,84(1-3):127-136.
    [239]Carvalho W.A.,Wallau M.,Schuchardt U.Iron and copper immobilised on mesoporous MCM-41 molecular sieves as catalysts for the oxidation of cyclohexane [J].J.Mol.Catal.A:Chem,1999,144(1):91-99.
    [240]Carniti P.,Gervasini A.,Modica V.H.,Ravasio N.Catalytic selective reduction of NO with ethylene over a series of copper catalysts on amorphous silicas [J].Appl.Catal.B:Environ.,2000,28(3-4):175-185.
    [241]Shimokawabe M.,Asakawa H.,Takezawa N.Characterization of copper/ziconia catalysts prepared by an impregnation method [J].Appl.Catal.,1990,59(1):45-58.
    [242]Vradman L.,Landau M.V.,Kantorovich D.,Koltypin Y.,Gedanken A.Evaluation of metal oxide phase assembling mode inside the nanotubuiar pores of mesostructured silica [J].Micropor.Mesopor.Mater.,2005,79(1-3):307-318.
    [243]Chen L.F.,Guo P.J.,Qiao M.H.,Yan S.R.,Li H.X.,Shen W.,Xu H.L.,Fan K.N.Cu/Si02 catalysts prepared by the ammonia-evaporation method:Texture,structure,and catalytic performance in hydrogenation of dimethyl oxalate to ethyleneglycol [J].J.Catal.,2008,257(1):172-180.
    [244]Yin A.Y.,Guo X.Y.,Dai W.L.,Li H.X.,Fan K.N.Highly active and selective copper-containing HMS catalyst in the hydrogenation of dimethyl oxalate toethylene glycol [J].Appl.Catal.A:Gen.,2008,349(1-2):91-99.
    [245]Parvulescu V.,Anastasescu C,Constantin C,Su B.L.Mono (V,Nb) or bimetallic (V-Ti,Nb-Ti) ions modified MCM-41 catalysts:synthesis,characterization and catalysis in oxidation of hydrocarbons (aromatics and alcohols) [J].Catal.Tod.,2003,78(1-4):477-485.
    [246]Rosenholm J.B.,Rahiala H.,Puputti J.,Stathopoulos V.,Pomonis P.,Beurroies I.,Backfolk K.Characterization of Al- and Ti-modified MCM-41 using adsorption techniques [J].Colloids Surfaces A,2004,250(1-3):289-306.
    [247]Tsoncheva T.,Areva A.,Dirnitrov M.,Paneva D.,Mitov I.,Linden M.,Minchev C.MCM-41 silica modified with copper and iron oxides as catalysts for methanol decomposition [J].J.Mol.Catal.A:Chem.,2006,246(1-2):118-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700